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Preconditioning Methods for Improved 
Convergence Rates in Iterative Reconstructions 

Neal H. Clinthorne, Member, IEEE, Tin-Su Pan, Member, IEEE, Ping-Chun 
Chiao, Member, IEEE, W. Leslie Rogers, Member, IEEE, and John A. Stamos 

Abstract- Because of the characteristics of the tomographic 
inversion problem, iterative reconstruction techniques often 
suffer from poor convergence rates-especially at high spatial 
frequencies. By using preconditioning methods, the convergence 
properties of most iterative methods can be greatly enhanced 
without changing their ultimate solution. To increase reconstruc- 
tion speed, we have applied spatially-invariant preconditioning 
filters that can be designed using the tomographic system 
response and implemented using 2-D frequency-domain filtering 
techniques. 

In a sample application, we performed reconstructions from 
noiseless, simulated projection data, using preconditioned and 
conventional steepest-descent algorithms. The preconditioned 
methods demonstrated residuals that were up to a factor of 
30 lower than the unassisted algorithms at the same iteration. 
Applications of these methods to regularized reconstructions from 
projection data containing Poisson noise showed similar, although 
not as dramatic, behavior. 

I. INTRODUCTION 
N SPECT and PET, accurately modeling the effects of I imaging system resolution, attenuation, and scatter, in ad- 

dition to employing a regularized solution criterion for noise 
suppression, will improve quantitative accuracy. Because the 
set of equations resulting from this modeling process can 
be difficult to solve directly, however, iterative methods are 
usually employed. While iterative reconstruction techniques 
allow a straightforward implementation, they have a major 
disadvantage in that their progress toward the desired solution 
can often be painfully slow. Since this behavior is primarily 
a consequence of the ill-posed nature of the tomographic 
inversion problem, regularized solution objectives-necessary 
to reduce the noise-sensitivity of the reconstruction-have the 
side-benefit of improving converging rates. Once the desired, 
regularized solution objective has been specified, however, 
the convergence rate of most iterative methods can be further 
enhanced-without altering the chosen solution criterion-by 
preconditioning [ 11. 

Preconditioning techniques have been applied in many areas 
of numerical analysis including tomographic reconstruction 
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[2]-[4]. These methods hinge on being able to find a system of 
equations “close” in some sense to the true system, but more 
easily invertible. In this work, we have exploited the similarity 
of the tomographic reconstruction problem to that of decon- 
volving a 2-D spatially invariant blur and have developed 
preconditioners that can be represented as frequency-domain 
filtering operations. These preconditioning filters typically 
have a high-pass characteristic and can be tailored to individual 
tomographs by employing the system response in their design. 

The next section presents the relevant background to least- 
squares reconstruction methods. A general framework for iter- 
ative solution techniques and convergence rate expressions are 
given in Section 111. Section IV discusses necessary qualities 
for preconditioners and Section V presents reconstructions of 
simulated SPECT data using a preconditioned steepest-descent 
iteration with both least-squares and regularized least-squares 
objective functionals. 

11. BACKGROUND 
We assume that the reconstruction problem can be formu- 

lated as the solution to an over-determined set of imaging 
equations 

y = Az, ( 1 )  

where z is an m-vector representing the emission density of 
a “pixelated” object, y is an n-vector of projection data and 
-4 is the 71 x rri system transfer matrix which can include, in  
addition to an accurate model of the tomograph resolution, the 
attenuation map of the object and a model for y-ray scattering. 

The projection data are usually corrupted by measurement 
noise and since the imaging system is assumed to be overde- 
termined (71 > ‘ r n  and AT is of full column-rank), the above 
equation may have no formal solution. It is common practice 
in this case to solve ( 1 )  in a least-squares sense, that is, we 
choose z* to minimize d(?) where 

If there is no measurement error in the projection vector, 
choosing z* to minimize ( 2 )  recovers the original emission 
density x otherwise x3 is the unique solution such that the 
Euclidian distance of the projection data to Az* is minimized. 

To account for the effects of nonstationary or covarying 
noise in the projection data, “weighted” least-squares solution 
objectives are often employed. The weighting is typically 
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accomplished by choosing the solution z* that minimizes the 
squared "K-norm," defined as 

where K is usually taken to be the noise covariance matrix if 
it is known or an estimate thereof. 

The solution to the above minimization problem is given by 
the well-known least-squares normal equations [ 11. 

It is easy to show (Appendix I) that if the projection data 
is corrupted by Poisson counting noise, the unconstrained 
maximum-likelihood estimate of the object z,~.2~ also satis- 
fies (4) providing that the noise covariance matrix K ( z )  = 
diag(Az) is simultaneously estimated as a function of the 
object estimates, 

The normal equations are therefore useful in describing solu- 
tions with respect to a variety of statistical criteria. 

111. SOLUTION METHODS 

A. Generalized Landweber Iteration 

For a quadratic objective function, inspection of (3) reveals 
that it can solved directly for the desired solution; however, 
even a 64 x 64 pixel estimate of the object requires inversion of 
the 4096 x 4O96ATKP1 A matrix-a computationally intensive 
procedure. Although the required matrix inversion is feasible 
on many computer systems, it is nevertheless impractical when 
the matrix A changes from slice-to-slice or patient-to-patient, 
which occurs for example, as the attenuation distribution 
changes in SPECT. 

Just as the normal equations are useful for describing the 
solution with respect to a number of statistical criteria, the 
generalized Landweber iteration [SI can be used to describe 
a wide class of simultaneous-update iterative methods. The 
iteration, a variant of the successive approximation method, 
can be written as 

where PI, is the estimate of the object distribution at iteration 
I C ,  A,  and K are defined above, and l%Ik is a positive-definite, 
symmetric preconditioning matrix which can dramatically alter 
the convergence properties of (6) without changing the fixed- 
point of the iteration. 

The above iteration can describe a wide variety of iterative 
methods. As examples: the EM algorithm is obtained by setting 
Kk = diag(Akk) and Mk = diag(3k); the SIRT method 
results if i t f k  = 1 and KI, = I ;  and with proper choice of 
hfk, the conjugate-gradient and steepest-descent methods can 
similarly be obtained. 

B. Convergence Rates 

Since the preconditioner MI, does not alter the fixed- 
point of (6) ,  by properly choosing h f k  the convergence rate 
of most currently used iterative methods can be enhanced 
without altering their ultimate solution. In order to more fully 
characterize the necessary properties for good preconditioners, 
we first present conditions for convergence and an expression 
for the convergence rate. 

Define the residual vector at each iteration by 

&k = ATKil(y - Akh); (7)  

or the backprojection of the weighted projection-space error 
vector. Using this formulation, a recurrence relation for the 
residual vectors can be derived for the case in which K is 
constant with iteration (Appendix 11) and can be used to obtain 
the following inequality: 

(8) 

A sufficient condition for the convergence of (6) to a unique 
solution is provided by an appeal to the contraction map- 
ping principle which states that if the norm of the operator 
( I  - A T K - ' A M i 1 )  is less than unity (i.e., a contraction), 
convergence is assured [6 ] ,  [7]. This condition is satisfied if 
the eigenvalues of ATK- 'AMi l  lie in the open interval (0, 

IlEk+lll 5 111 - ATK-lAlwL1ii II&kll .  

2 ) .  

the faster convergence will be. If the eigenvalues of 
ATK-lAM;l lie in the interval (0, l),  the matrix norm in 
(8) reduces to 

Inspection of (8) reveals that the smaller I(I-ATK-lAM;l 1 1 ,  

111 - ATK-1A4Mi1JJ = 1 - X,;,(ATK-lAAdil) (9) 

where the notation X,;,(B) indicates the minimum eigen- 
value of 4. Convergence rates in unpreconditioned iterative 
methods suffer because while the maximum eigenvalue of 
the composite matrix ATK- lA  may be close to one, the 
minimum eigenvalue is usually very close to zero (i.e., the 
condition number of the system matrix is large). To be useful 
in improving the convergence rate, the preconditioner, h f k  

must therefore improve the condition of the system thereby 
decreasing the norm (9). 

C. Regularized Solutions 

In practice the poorly conditioned nature of the system 
response matrix causes other difficulties-most notably, am- 
plification of the errors in the projection data resulting from 
Poisson counting noise. In order to reduce this sensitivity 
to noise, a stabilizing term is often added to the objective 
functional to penalize solutions inconsistent with our prior 
notions of how they should behave: 

The first term, as before, is a measure of the distance of the 
solution from the data, but now the additional term introduces 
a penalty for the deviation of certain features of the object 
(e.g., smoothness) from those deemed acceptable a priori. 
The regularization parameter, a, controls the balance between 
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solutions agreeing entirely with the data and those agreeing 
with our prior knowledge. The matrix Q in (10) is often 
chosen to approximate a two-dimensional, second derivative 
operator so that the “roughness” of the reconstructed objects is 
penalized [8], [9]. The weighting matrix W can be employed 
to apply the smoothing in a spatially variant manner; for 
example, it can be chosen to prevent smoothing across known 
boundaries in the reconstructed image [ 101. 

The direct solution for the k that minimizes (10) can be 
written immediately as 

But, as before, the size of the problem often precludes the use 
of the direct approach. An iterative method, converging to the 
regularized solution, is given by 

kk+l = %k + h f F 1 ( A T K i l y  - ( A T K L I A  + .QTWQ)3i:k). 
(12) 

Paralleling the development of (9) for the unregularized 
iteration, an analogous expression for the preconditioned, 
regularized iteration can be derived as 

( ( E k + l ( (  L (11 - (ATK-’A + aQTWQ)ML’(( ( ( ~ k ( 1  

where now &k = ATK-’y - ( A T K - l A  + aQTWQ)ik.  

(13) 

IV. PRECONDITIONER SELECTION 

One immediately sees from (8) that from the standpoint 
of convergence rate, the optimum choice of preconditioner 
would be h f k  = ATK- lA  (or ATK-lA + .QTWQ for the 
regularized case). With this selection, the iteration (6) becomes 
Newton’s method and, for a quadratic objective, converges in 
one iteration. Nevertheless, this choice is impractical since 
the preconditioner is just as difficult to invert as the matrix 
ATK-lA.  We seek preconditioners that both are close to 
the true system and are efficiently invertible. If the condition 
number of ATK-’AIML1 is less than that of ATK-’A alone, 
the convergence rate of the iteration (6) will improve. 

Numerous types of preconditioners have been applied to 
iterative problems ranging from the diagonal preconditioner 
arising naturally in the EM algorithm [ I  I ]  to incomplete 
Cholesky factorizations of the system matrix, polynomials in 
the system matrix, and Fourier methods [ 11-[4]. Since tomo- 
graphic inversion is similar to deconvolving a two-dimensional 
spatially invariant blur (after an unfiltered backprojection of 
the projection data), we have chosen the Fourier method. For 
its implementation, we exploit the well-known relationship 
between spatially invariant point spread functions (psf) and 
block-circulant matrices, which can be efficiently inverted 
using the 2-D FFT [8]. 

V. RESULTS 

To illustrate the advantage of preconditioning, we simulated 
a parallel-collimation rotating gamma-camera system having 
128 equally spaced angular views of a 64 x 64 pixelated object 
having no attenuation. The number of samples per projection 
was 64, the length of each projection element was the same 
as that of one side of a square object pixel, and the simulated 

Fig. 1. Point response function of the i l T A  operation 
for a point at the center of the simulated system. 

resolution was two samples fwhm, which was accounted for 
in the system response matrix, A. The test object used in 
this study was the “complex phantom” we have previously 
employed for analyzing algorithm performance [ 121. 

A.  Preconditioning Filters 

We chose, as preconditioning operators, high-pass filters that 
attempt to undo the blurring operations inherent in the forward 
projection and backprojection operations. To derive the filters, 
we generated a point spread function of the ATA operation 
by forward projecting and backprojecting a one-pixel point 
source located at the center of the field-of-view. The resulting 
psf is shown in Fig. 1. This response was transformed to the 
frequency domain and 2-D “inverse-filters’’ were generated 
using the formula 

where H ( u ,  w) is the preconditioning filter and F ( u ,  w )  is the 
Fourier transform of the response in Fig. 1 .  Since the prf 
of this system is spatially varying, it cannot expected that a 
filter derived from the response at a single image location 
will accurately deconvolve blurring at all locations. Because 
of this, we added the gain-limiting term r in (14) to limit 
the effect of the filter where F (  U ,  11) is small. Profiles through 
the center of the two-dimensional filters for four values of r 
chosen as 0.5%, 1.0%, 5.0%, and 20.0% of the maximum of 
F ( u .  v)(rl-r4,  respectively) are shown in Fig. 2. 

B. Noiseless Reconstructions 

We used a steepest-descent variant of (6) to perform the 
reconstruction because it adaptively adjusts the magnitude of 
the correction vector such that convergence is assured for 
quadratic 4(x). The following iteration was used: 
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Fig. 3. Magnitude of objective function plotted against iteration for no 
preconditioning and preconditioning filters using rl, rz. and I?$. 

At each iteration, preconditioning was accomplished by: (1) 
transforming the correction vector A T ( y  - A i k )  to the fre- 
quency domain, ( 2 )  multiplying this by the preconditioning 
filter, and ( 3 )  transforming the preconditioned update vector 
back to the spatial domain. The iteration was implemented 
in C under VMS on a DEC MicroVax I11 computer system. 
Reconstruction times for the 64 x 64 object were approximately 
40 shteration with no preconditioning and 55 shteration with 
preconditioning. 

Reconstructions of the simulated data were performed using 
no preconditioning and using preconditioning filters rl, r2, 

and r3 shown in Fig. 2 .  The norm I (y -AkkJ(  is plotted in Fig. 
3 for reconstructions using each of the filters to 1000 iterations. 
Since there is no noise in the projection data, this norm should 
reach zero when convergence is attained. It is evident that 
the preconditioned methods converge more quickly than the 
unaided steepest-descent iteration. 

The reconstructed images at 1, 10, 100, and 1000 iterations 
are shown in Fig. 4 with the slowest converging algorithm in 
the top row (no preconditioning), to the fastest converging 
at 1000 iterations in the bottom row (preconditioned with 
F2). Note that, as expected, the preconditioned reconstructions 
recover the high object frequencies more quickly. 

C. Regularized Reconstructions with Noisy Data 

As mentioned above, to reduce the variance in the re- 
construction due to projection counting noise, regularized 

Fig. 4. Reconstructed images for each filter at I ,  IO, 100, and 1000 
iteration. Row-order from top: no preconditioning, I?,, rl, r2. 

solutions are usually employed. To evaluate the effects of 
preconditioning on regularized iterations, we used the same 
phantom, this time with projection data containing Poisson 
counting noise equivalent to one million events, along with a 
zeroth-order Tikhonov stabilizer [lo]. The resulting objective 
requiring minimization takes the form 

(18) 

where a is the regularization parameter controlling the degree 
of noise smoothing. Note that this stabilizer has the action of 
adding the small constant a to each of the singular values 
of AT A before inversion, thereby significantly limiting the 
maximum singular value of the inverse. 

A steepest-descent iterative method to minimize (18) can 
be written as 

4:(z) = ( y  - A z ) ~ ( ~  - A z )  + azTz 

k k + l  f k  + ‘ rkhf - l (ATy  - ( A T A  -k a1)kk). (19) 

This algorithm was again implemented on the MicroVax I11 
and reconstruction times showed little difference from those 
for the unregularized case above. 

Using a value for the regularization parameter of 0.004 
IIATAJI1, we evaluated the convergence of the unprecondi- 
tioned reconstruction and the preconditioned reconstructions 
using the filters I’2, r3, and r4. The value of the objective 
function is plotted in Fig. 5 for each reconstruction to 50 
iterations. The behavior is similar to that of the unregularized 
case with a notable exception: the convergence in all cases is 
much faster due to the regularized solution objective. 

Reconstructed images are shown in Fig. 6 at 5 ,  10, 20, and 
50 iterations for the unaided steepest-descent method in the 
top row, filter r4 in the second row, filter r3 in third row, and 
finally, F2 at the bottom. Notice that as far as visual quality, 
there is little change in the preconditioned reconstructions after 
20 iterations. All preconditioned iterations have essentially 
reached the same numerical solution at 50 iterations. In con- 
trast, the unassisted steepest-descent method is still converging 
at 50 iterations. 
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Fig. S. Magnitude of objective function for 
the regularized iteration (19) to SO iterations. 

be employed and would not only reduce the effects of noise 
amplification but also improve convergence properties by 
increasing the magnitude very small singular values of AT A. 

In this paper, we applied preconditioning to the steepest- 
descent algorithm and solved for an unweighted least-squares 
estimate. But, since (6) can describe a variety of currently 
employed reconstruction methods, preconditioning should 
be useful in enhancing the convergence rates of all these 
methods-including the maximum likelihood estimate. The 
steepest-descent iteration was chosen in this work because 
it is simple to implement and guaranteed to converge for 
quadratic objective functions. The preconditioned conjugate- 
gradient algorithm [ I ]  would be more appropriate in practice. 

Although preconditioning can improve convergence speed, 
these methods generally involve a time penalty. For the FFT 
methods used here, the penalty was only about 25%. This 

I O  

Fig. 6.  Images reconstructed using regularized objective functional and 
preconditioned steepest-descent iteration at 5,  10, 20, and SO iterations. Top 
row: no preconditioning. Second through fourth rows: preconditioned with 
filters Ta, l-3. and rz, respectively. 

VI. DISCUSSION 

Close inspection of the images in Fig. 4 reveals that since 
preconditioning improves the high-frequency convergence rate, 
the iterates for some filters tend to appear “noisier” than if no 
preconditioning is used. As the algorithm nears convergence, 
however, this behavior tends to subside. Additionally, the 
reconstructed images in the top row of Fig. 4 demonstrate that 
the appearance of these high frequencies is not peculiar to the 
preconditioned methods and may be a natural consequence of 
the convergence properties of this simulated system. Another 
result of faster high frequency convergence rates is that 
preconditioning will have a tendency to amplify the Poisson 
counting noise faster than the unaided algorithm. This is due 
strictly to the fact that preconditioning causes the iteration to 
take a different-and faster-path to convergence. 

Even though the residuals in Fig. 3 are quite small for the 
preconditioned methods, there are still significant discrepan- 
cies between all reconstructions at 1000 iterations and the 
true object-especially at intensity discontinuities. This is due 
to the very small singular values of the matrix ATAM-’ 
that are difficult to recover even with preconditioning. In 
practice, a regularized solution criterion would nearly always 

was more than offset by the increase in convergence rate 
for both the unregularized and regularized iterations. In the 
noiseless, unregularized example, the convergence rate using 
the preconditioned methods was approximately four times 
that of the unpreconditioned rate in the early iterations. This 
became as much as a factor of 30 in the late iterations. 
Results for the regularized example were not as dramatic, 
but yet, we still observed improvements in the convergence 
properties that outweighted the additional reconstruction time. 
Furthermore, as the dimensions of the reconstruction problem 
grow, the preconditioning overhead, which increases at the 
FFT rate O ( n  log U )  will decrease relative to the projection 
and backprojection times, which tend to increase as O(n2). 

The preconditioning filters chosen for this study were simple 
apodized inverse-filters designed from spatially invariant ap- 
proximations to the spatially varying system response. In this 
study, choosing the gain limiting term as T‘2 seemed to give 
the best overall convergence performance in both examples. 
Nevertheless, the design of optimal Fourier preconditioning 
filters for tomographic systems in an open question in which 
the singular-value decompositions of the matrices ATK-l A 
and ATKPIAMP1 will play a major role in answering. 

VII. CONCLUSION 

Preconditioning is useful for enhancing convergence rates of 
iterative reconstruction methods when it is desirable not to al- 
ter a preselected solution criterion. In this study we developed 
the idea of applying block-circulant preconditioning methods 
to ECT image reconstruction problems. We demonstrated that 
convergence rates for a test object and a simulated rotating 
gamma camera tomograph could be significantly improved 
for both least-squares and regularized least-squares examples. 
While the Fourier methods described in this paper are quite 
simple to implement and can be applied to a variety of 
iterative methods, there are several routes for further investi- 
gation as well-including the determination of optimal Fourier 
preconditioning filters and the investigation of alternative 
preconditioners. In particular, polynomial preconditioners are 
attractive not only because they are simple to implement but 
also because their effect on the spectrum of A T K P I A  can be 
readily determined [3]. 
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VIII. APPENDIX I 
MAXIMUM LIKELIHOOD ESTIMATION 

If we assume that the projection data, y = (y1. . . . , ? J ~ ) ~ ,  is 
Poisson-distributed with mean Az where 2: = ( 2 1 , .  . . . x , ) ~ ,  
then maximizing the likelihood of observing the projection 
data given the object is the same as maximizing, 

4(z) = yz 1rlx %k.Ck - F u t k x k ]  (22) 
1=1 n [  k 

where  CL,^ is the corresponding element of the system response 
matrix A. 

To solve for the most-likely estimate, we set all derivatives 
to zero and solve for z: 

or equivalently, 

83 

From this, if K-’ does not vary with iteration, we can derive 
the following recurrence for the correction vectors, & k  defined 
in (7), by premultiplying both sides of (27) by ATK-’: 

Taking norms gives, 

k 
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(26) 

Substituting (6) into (26) yields the recurrence relation for the 
projection space error 
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