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Preface

This book describes basic seismology in the context of earthquakes and exploration seis-
mology. The first part of the book describes the basic physics of acoustic wave propagation,
which includes Fermat, principle Huygens principle, Green’s theorem, Snell’s law, reflection
and transmission coefficients for a layered medium, Rayleigh resolution, diffraction, spec-
ular rays, eikonal equation, ray tracing, the acoustic wave equation in space-time and the
Helmholtz equation in space-frequency. A general solution of the wave equation can be
obtained by using the acoustic reciprocity equation of convolution type, otherwise known
as Green’s theorem.

The second part of the book describes the numerical modeling of the eikonal and acoustic
wave equations using the finite difference method. The eikonal equation is used to describe
rays and compute traveltimes of arrivals, while the wave equation solutions by finite dif-
ferences provide the full seismograms. These methods are then used to image the earth’s
parameter distributions using traveltime tomography and migration, as described in the
third part of the book.

The last part of the book describes the physics of elastic wave propagation. The reci-
procity equation of convolution and correlation types are derived, and their use in the
context of interferometry is described.

This book is written at the level where it can be understood by physical scientists
who have some familiarity with the principles of wave propagation, Fourier transforms,
and numerical analysis. The book can be taught as a one-semester course for advanced
seniors and graduate students in the physical sciences and engineering. Exercises are given
at the end of each chapter, and many chapters come with MATLAB codes that illustrate
important ideas.
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Part I

Physics of Acoustic Wave
Propagation
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Chapter 1

Physics of Acoustic Wave
Propagation

The theory of acoustic wave propagation is now described. This is an important theory in
its own right because explorationists often assume that wave propagation in rocks can be
approximated by acoustic theory so that they can simplify their data processing algorithms.
The acoustic approximation says that shear effects in the data are negligible and the domi-
nant wave type is a compressional wave, a wave where the particle motion is parallel to the
propagation direction. This is an acceptable approximation for somewhat layered media,
near-offset traces recorded by vertical component phones, and surface-wave filtered data.
To deepen our understanding of this acoustic approximation we now present an overview
of the physics of the acoustic wave equation. A good background reference book is Aki and
Richards (1980) and Kinlser and Frey (1961).

1.1 Acoustic Media and Acoustic Waves

Assume a compressible, non-viscous (i.e., no attenuation) fluid with no shear strength and
in equilibrium (i.e., no inertial forces); this will be denoted as an acoustic medium.
Small localized displacements of the fluid will propagate as an acoustic wave, also known
as a compressional wave. Due to the lack of shear strength, localized deformations of the
medium do not result in shear deformations but instead cause changes in the fluid element’s
volume, as shown in Figure 1.1.

The equilibrium force/unit area on the faces of a volume element will be called the time-
independent equilibrium pressure Peq(r), while the change in pressure due to a localized
compressional wave will be denoted as P (r, t). For example, the atmospheric pressure
decreases with increases in elevation and can be considered to be independent of time. If
I begin talking, however, I excite transient acoustic waves P (r, t) that locally disturb the
equilibrium pressure outside my lips by fresh injections or extractions of air from my lungs.
To restore the system’s equilibrium this local disturbance propagates outward from the
source and is known as a pressure wave.

Snapshots of the particle distribution for the condensation and rarefaction portions of
wave propagation are shown in Figure 1.1. In the compressional case the element volume is

3



4 CHAPTER 1. PHYSICS OF ACOUSTIC WAVE PROPAGATION

Equilibrium

CompressionRarefraction

Figure 1.1: Cube of air in (top) equilibrium and (bottom) disturbed from equilibrium. The
lower left diagram depicts a rarefaction where the surrounding medium pulls the cube (i.e.,
smaller cube outlined by dark lines) into a larger volume so that the air density in the
white cube is less than that in the surrounding medium. The cause of his ”pull” is that
the pressure in the ambient medium is less than that of the air inside the cube. The lower
right diagram is similar, except the surrounding medium compresses the cube into a smaller
volume resulting in denser air. In this case the pressure in the ambient medium is greater
than that inside the small cube.

filled with denser (shaded) air while in the rarefaction case the element volume has lighter
(unshaded) air than the surrounding medium. We can physically create the condensation
wave just outside our lips by injecting air from our lungs into the medium (HELLLL!),
and the rarefaction wave by sucking air into our lungs (UHHHHH!). Using a spring-mass
model, rarefactions are modeled by pulling a spring (i.e., tension) and condensations by
compressing a spring (compressions).

1.2 Acoustic Hooke’s Law: P = −κ∇ · u
Hooke’s law for an acoustic medium says that stress is linearly proportional to strain for
small ”enough” strains. A simple 1-D example will first be given to demonstrate Hooke’s
law, and then we will apply it to the case of an acoustic medium.
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1. 1-D Spring: The force on a mass connected to a spring disturbed from equilibrium
(see Figure 1.2) is given by

F = −k(du/l)k̂, (1.1)

where du is the displacement from equilibrium1, k is the spring constant, l is the
length of the spring in equilibrium, and k̂ is the downward point unit vector in Fig-
ure 1.2. The ratio du/l is normalized by the length of the spring l and is known as
the compressional strain of the spring model2. Note that in the equilibrium position
there is no motion because the gravitational force balances the spring (i.e., elastic)
force. When disturbed, the equation of equilibrium is given by the above equation
where F is the sum of all the other forces acting on the weight. If the elastic force is
non-zero (e.g., pull the mass downward and let go!) then this unbalanced force will
be equilibrated by the inertial force m∂2u/∂t2, which will pull the mass back towards
its equilibrium position.

2. 3-D Acoustic Springy Cube: A solid cube of acoustic material can be deformed by
external forces acting on its faces. If the deformation is ”small” enough then Hooke’s
law says that the measure of deformation can be linearly related to the force/area
on each face. In the 3D case, the measure of deformation is the normalized volume
change of the cube dV/V where V is the original volume and dV is the volume change
after the disturbance. Therefore Hooke’s law becomes,

P = −κdV/V, (1.2)

where κ is the bulk modulus. Note that a volume change is the 3-D equivalent of a
1-D displacement change.

Figure 1.2 shows that the relative volume change dV/V is given by:

dV

V
=

−
original︷ ︸︸ ︷
dxdydz+

deformed︷ ︸︸ ︷
(dx+ δu)(dy + δv)(dz + δw)

dxdydz
,

=
δudydz + δvdxdz + δwdxdy

dxdydz
+O(2nd− order terms)

≈ ∂u

∂x
+
∂v

∂y
+
∂w

∂z
= ∇u. (1.3)

Substituting equation 1.3 into equation 1.2 yields:

P = −κ(x, y, z)∇ · u + S(x, y, z, t), (1.4)

where u = (u, v,w) are the cartesian components of displacement along the x, y, and
z axes and S(x, y, z, t) is a time-dependent body source term that is independent of

1The convention we will adopt here is that positive values of dl indicate downward displacements, and
negative values indicate upward displacements in a right-handed coordinate system.

2Normalization is necessary because the strain value should be the same no matter how long the spring.
For example, a spring twice as long as the original will deform by 2du to give the same strain value as the
original spring.
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dx      dy       dz
du      dv      dw+ +du      dv      dw
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du {
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=
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Figure 1.2: (Top) Spring in (left) equilibrium and (right) disturbed from equilibrium. (Bot-
tom) Elemental cube of air in (left) equilibrium and (right) disturbed from equilibrium. In
this case the cube has expanded so net tensional forces of surrounding medium must be
expanding cube. Note that the 1st-order volume change is outlined by the solid heavy lines,
where the higher-order terms are associated with the corner parts.
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the displacement field3. Often the spatial and temporal variables are suppressed for
the P and u field variables, but the spatial coordinates are explicitly expressed for
the bulk modulus to remind the reader that the physical properties of the medium
can vary with location4.

Note:

• Neglecting second-order terms is the small displacement approximation, valid for
δV/V < 10−4 or sound quieter than a jet engine (Kinsler and Frey, 1961).

• Sign convention: P is the force/area that the surrounding medium exerts on the face
of the elemental cube, where tensions (force pointing away from cube into external
medium) are negative and compressions (force pointing into cube) are positive. For
example, the divergence of u is positive if the volume expands by tensional forces,
which is consistent with the sign in equation 1.4.

Geological Strain Exercises

1. Utah and California are moving apart at a rate of roughly 1 cm/year in an E-W
direction due to tensional stresses in the Intermountain Basin region. If the distance
between San Francisco, California and Salt Lake City, Utah is approximately 1600 km
what is the tensional strain rate (i.e., strain per unit time) in Salt Lake City for this
movement? Show work. Reno is about midway between San Francisco and Salt Lake
City; what is the strain rate measured in Reno compared to that in Salt Lake City.

2. As you will soon find out, a plane P-wave solution to the acoustic wave equation is
u(x, y, z, t) = cos(kx − ωt)̂i, where ω is angular frequency and k is the wavenumber;
here u is the displacement deformation of the medium in the x-direction, and v = w =
0 for all time and space. Does the volume of a small acoustic cube (with deformations
governed by u(x, y, z, t) = cos(kx − ωt)̂i) change with time as a plane wave passes
through the medium? For k = 2π and ω = 2π plot u(x, y, z, t) in the x-coordinate for
−6 < x < 6 for t=0. Also, plot out ∇ · u, which indicates the relative volume change
of a small cube (recall negative values of dV/V indicate compressions and positive
values indicate expansions).

3. From your previous plots, roughly draw the deformed shape of the small acoustic
cube for different values of u(x, y, z, t) in your plot. At what spatial increments do
the cube volumes get smaller and which spatial increments do they expand from the
equilibrium position.

4. Repeat above exercise except use t=.5 for the plots.

3For example, heating up the cube will cause it to expand and this body force is independent of the
acoustic deformation force. Another example, S(x, y, z, t) can be a source that injects material into the
medium such as an air gun used for marine seismic surveys.

4The bulk modulus κ is assumed to be time independent for acoustic wave propagation in rocks.
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1.3 Newton’s Law: ∂P/∂x = −ρ(x, y, z)∂2u/∂t2

The external force on an acoustic cube is illustrated in Figure 1.3. These forces have a non-
zero gradient along the x-axis, and so there is a net elastic force imposed upon the cube
by the external medium5. This net force must be balanced by an inertial force (i.e., force
associated with acceleration) so that Newton’s law says that the x-component of acoustic
force is given by:

︷ ︸︸ ︷
[P (x+ dx, y, z, t) − P (x, y, z, t)]dydz Net Fx on Cube Faces ≈ −

mass of cube︷ ︸︸ ︷
[ρ(x, y, z)dxdydz] ü(x, y, z, t),

(1.5)

where the double dot corresponds to two time derivatives. Expanding the LHS in a Taylor
series about the point (x, y, z) we get

[P (x, y, z, t) − P (x, y, z, t) +
∂P

∂x
dx+ high − order terms]dydz ≈

−[ρdxdydz]ü(x, y, z, t); (1.6)

dividing by dxdydz and neglecting higher-order terms we get the x-component part of the
acoustic wave equation:

∂P (x, y, z, t)
∂x

= −ρ(x, y, z)ü(x, y, z, t). (1.7)

For an arbitrary force distribution the vector form of Newton’s law in a linear acoustic
medium is:

∇P = −ρ(x, y, z)ü(x, y, z, t), (1.8)

where ü(x, y, z, t) = (ü, v̈, ẅ) is the particle acceleration vector and ∇P = (∂P/∂x, ∂P/∂y, ∂P/∂z).

Note:

• The minus sign is used so that we are consistent with the notation for pressure. If the
external presume P (x+ dx, y, z, t) is positive and less than P (x, y, z, t) in Figure 1.3
then the cube should accelerate to the left, which it will according to the above form
of Newton’s Law.

1.4 Acoustic Wave Equation

Notice that the vectorial equation 1.8 consists of 3 component equations, yet there are 4
unknown field values: (u, v,w) and P . At the least, we need one more equation of constraint
in order to identify a unique solution. This extra equation comes from the scalar Hooke’s

5Recall, the net component of force on the cube is determined by adding together the vectorial components
of force acting in one direction along each face of the cube.



1.4. ACOUSTIC WAVE EQUATION 9

P(x, y, z, t) P(x+dx, y, z, t)

....

TENSIONS ARE PULLS (-)

COMPRESSIONS ARE PUSHES (+)

.

Figure 1.3: External (top) tension and (bottom) compressional forces on an elemental cube.
In the lower case there exists a spatial gradient of the disturbed pressure field along the
x-axis so that the cube accelerates to the right.
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law in equation 1.4. We can combine Hooke’s law and the three component equations of
Newton’s law to get the 1st-order equations of motion; and, as seen below, manipulate them
to get a single scalar equation with just one unknown field variable P . Let us now derive
the scalar wave equation.

Applying ∂2/∂t2 to equation 1.4 and applying ∇· to equation 1.8 after dividing by
ρ(x, y, z) gives the 1st-order acoustic equations of motion:

P̈ = −κ(x, y, z)∇ · ü + S̈(x, y, z, t), (1.9)

∇ · [1/ρ(x, y, z)∇P ] = −∇ · ü, (1.10)

where ü= ∂2u/∂t2. Substituting ∇ · ü from equation 1.9 into equation 1.10 yields the
2nd-order acoustic wave equation:

∇ · (1/ρ(x, y, z)∇P ) − 1/κ(x, y, z)P̈ = −S̈(x, y, z, t)/κ(x, y, z), (1.11)

which is valid for acoustic wave propagation in arbitrary velocity and density distributions.
Assuming negligible density gradients the above equation reduces to the constant-density

scalar wave equation:

∇2P − 1
c2

∂2P
∂t2 = −ρ(x, y, z)S̈(x, y, z, t)/κ(x, y, z), (1.12)

where

c =
√
κ(x, y, z)/ρ(x, y, z) , (1.13)

and, as we will see in the next section, c = c(x, y, z) describes the compressional wave
propagation velocity.

The above equation is known as the inhomogeneous acoustic wave equation for negligible
density variations, expressed as

∇2P − c−2∂2P/∂t2 = F , (1.14)

where F = −S̈(x, y, z, t)/c(x, y, z)2 is the inhomogeneous source term that specifies the
location and time history of the source. For example, F specifies the strength of the hammer
blow and its location in an experiment. It is this last equation that is most often used in
imaging (i.e., migration) of exploration seismic data.

1.5 Solutions of the Wave Equation

The physics of wave propagation will now be examined using some special solutions to the
wave equation 1.14. A harmonic plane wave propagating in a homogeneous medium will be
first examined, and then the case of a 2-layered medium will be studied. Figure 1.4 depicts
the oscillations of a harmonic wave as recorded by a geophone.
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Figure 1.4: Snapshot of a 2-D wave propagating in x− z space along the direction parallel
to the wavenumber k vector; the upper plot shows the corresponding seismograms in x− t
space. The actual propagation velocity is c = λ/T and the shortest distance between
adjacent dashed lines (i.e., peaks of the wavefront) is defined to be the wavelength λ. The
darkened (undarkened) portions of the seismograms correspond to downward (upward)
particle displacements of the ground from its equilibrium position. Large amplitude values
in a seismogram corresponds to large ground displacements.
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1.5.1 1-D Wave Propagation in an Homogeneous Medium

A harmonic wave oscillates with period T and has a temporal dependence usually given by
eiωt, where ω = 2π/T is the angular frequency inversely proportional to the period T ;
the units of frequency f = 1/T are cycles/sec while T has units of sec/cycle. The period
is the shortest time in which the wave repeats one cycle of motion.

A plane propagating wave is one in which the wavefronts (wavefronts are defined as the
locus of points in (x, y, z) space with constant phase at a fixed time) line up along straight
lines, and a harmonic plane wave can be described by the following function:

P (x, t) = A0e
i(kx−ωt), (1.15)

where the constant A0 is the amplitude and the real part kx−ωt of the exponential argu-
ment is defined as the phase. Equation 1.15 also solves the homogeneous wave equation 1.12
for the constant amplitude term A0

6. A plane wave propagating in the x-direction appears
as a rippling rug, where the shortest distance between adjacent crests is defined as the
wavelength λ. The wavenumber k = 2π/λ is inversely proportional to the wavelength
and the units of wavelength are distance per cycle.

The function ei(kx−ωt) describes a right-going plane wave and ei(kx+ωt) describes a left-
going wave. To see this for the rightgoing wave, note that we follow a wavefront (using x(t)
as a marker) by keeping the phase φ = (kx−ωt) constant. Because x must increase to keep
the phase constant with increasing time (such that x/t = ω/k) this means that the wave is
moving to right with the compressional velocity given by ω/k. Conversely, φ = (kx+ωt) is
a constant if t increases and x decreases; thus, the wave is moving to the left.

An equivalent way of keeping track of the wavefront is to recognize that the phase
φ = kx − ωt of the wavefront does not change with time if we (that is x(t)) are riding on
its peak, implying that dφ/dt = kdx/dt− ω = 0, or

dx/dt = ω/k = λ/T. (1.16)

This implies that the peak of the wavefront propagates with phase velocity of

vphase = ω/k = λ/T. (1.17)

We can show that a propagating plane wave solves the wave equation in a homogeneous
medium by plugging equation 1.15 into equation 1.12 to get

(k2 − (ω/c)2)P (x, y, z, t) = 0, (1.18)

which admits non-trivial solutions if

k2 = (ω/c)2. (1.19)

This equation is known as the dispersion equation and imposes a constraint on wavenum-
ber and frequency variables in the Fourier domain. Since c =

√
κ/ρ is constant in a homo-

geneous medium, it says that the frequency-to-wavenumber ratio c = ω/k must be fixed no
6This plane wave propagates strictly along the x direction and so does not vary in either the y or z

coordinates; we also assume a sourceless medium so F = 0 everywhere.
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matter what the value of frequency; thus, higher frequencies of a propagating plane wave
imply shorter wavelengths. It also says, according to equation 1.17, that the wavefront will
move a distance of one wavelength λ during one period T of elapsed time, and according to
the dispersion equation the propagation velocity of this movement is equal to c =

√
κ/ρ.

That is, we have connected the static rock parameters of κ and ρ to the velocity c that
characterizes the dynamics of wave propagation.

1.5.2 2-D Wave Propagation in an Homogeneous Medium

The following function

P (x, z, t) = A0e
i(k·r−ωt), (1.20)

solves the wave equation 1.12, where the wavenumber vector is given by k = (kx, kz) and
the observation vector is given by r = (x, z). This describes a plane traveling obliquely to
the x-axis but its propagation vector is strictly in the x− z plane as shown in Figure 1.4.
The wavenumber vector k is parallel to the propagation direction.

Similar to the 1-D dispersion equation, the 2-D dispersion equation can be derived
by plugging 1.20 into equation 1.12 to get

k2
x + k2

z − (ω/c)2 = 0. (1.21)

The real part of equation 1.20, i.e., cos(kxx+ kzz − ωt), plots out as straight lines perpen-
dicular to the wavenumber vector k, and these lines propagate in a direction parallel to k
as t increases. This is easy to prove because the general equation for a straight line is given
by k · r = cnst, where k is a fixed vector perpendicular to the straight line. The locus of
points r that satisfy this equation of constant phase defines the wavefront where the phase
(i.e., φ = kxx+ kzz − ωt) is a constant. Thus as the time increases, i.e. as cnst increases,
the straight line also moves such that the direction of movement is parallel to the fixed k
vector, as shown in Figure 1.4.

Therefore equation 1.20 represents a harmonic plane wave propagating along the direc-
tion parallel to k. Similar to the discussion for a 1-D plane wave, the shortest distance
between two adjacent peaks of the wavefront is defined to be the wavelength λ and is given
by λ = 2π/k, where k =

√
k2

x + k2
z is known as the wavenumber. Using this definition of k

and that for ω the 2-D dispersion relation takes the same form as equation 1.19.
An illustration of the relationship between the wavenumber vector and the direction of

wave propagation is given in Figure 1.4 snapshot. Note, that as the length of the wavenum-
ber vector increases the wavelength decreases, and as the wavenumber direction changes so
does the direction of the propagating wave.

Note:

• As illustrated in Figure 1.4, the apparent wavelength λx = λ/ sinφ in the x-
direction is the shortest distance between adjacent peaks measured along the x-axis
in x-z space for a single snapshot.

• Identifying the crest of a single event in the seismograms (in x-t space) allows us to
compute the speed at which this event races from one geophone to the next. This
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apparent speed of propagation in the x-direction is known as the apparent velocity
vx = λx/T ; it can be measured by drawing a straight line that connects the crests
from one seismogram to the next and calculating it’s slope as dt/dx. This slope
dt/dx is defined as the apparent slowness in the x-direction, and the reciprocal slope
vx = dx/dt is the apparent velocity in the x-direction. As illustrated in Figure 1.4,
the apparent velocity vx is given by vx = v/sinφ and says that the apparent velocity
is infinite for vertically propagating waves. Conversely, the apparent velocity is equal
to the actual propagation velocity for horizontally traveling waves.

• The apparent velocity in the vertical direction vz is given by vz = v/ cos φ. In this
case, vertically traveling waves travel with vz = c, while horizontally traveling waves
travel with vz = ∞.

• The apparent wavelength in the horizontal direction is given by λx = vx/f = c/ sin φ
and the apparent wavelength in the z-direction is λz = vz/f = c/ cos φ.

• A simple way to measure the apparent velocity of events in seismograms is to freeze
time at some t0, and draw a horizontal line at t0 across the shot gather so that it
intersects a peak at some seismogram. Find the distance between this seismogram
and the nearest neighboring seismogram where the line intersects a peak again. See
Figure 1.5 for the apparent wavelengths measured for three different events.

• The particle motion vector is given by u= (u, v,w) and is perpendicular to the wave-
front in an isotropic medium. This can be shown for an harmonic plane wave by noting
that the gradient of a plane pressure wave is ∇P = iPk, which according to Newton’s
law is proportional to the particle displacement vector u. Since k is perpendicular to
the wavefront then so is the particle displacement vector.

Plane Wave Exercises

1. Assume a plane wave with the same wavelength as that in Figure 1.4, except the wave
is propagating vertically to the surface (i.e., φ = 0). Draw the associated seismograms
and visually estimate the apparent wavelength along the horizontal axis. Does this
estimated apparent wavelength agree with value calculated from the formula λ/ sin φ?

2. Same question as previous one except assume a horizontally propagating plane wave.

3. Recall ∂ cos kx/∂x = −k sin kx and that ∂ sin kx/∂x = k cos kx. Show that ∂eikx/∂x =
ikeikx, where eikx = cos kx+ i sin kx.

4. Show that P (x, y, z, t) = ei(kx−ωt) solves the 3D wave equation

∂2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2
− ∂2P

c2∂t2
= 0. (1.22)

where ω is angular frequency.
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Figure 1.5: Zoom view of a shot gather and estimate of apparent wavelengths λi for i =
1, 2, 3. The distance between adjacent troughs (i.e., dark portions of an event) along a
horizontal dashed line represents the apparent wavelength; different types of events have
different wavelengths here.

5. Show that P = eikx solves the Helmholtz equation

∂2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2
+ k2P = 0, (1.23)

where k2 = ω2/c2.

6. Which way does the plane wave eikzz+iωt propagate, up or down? Plot two snapshots
of this plane wave, one for t = 0 and the other for t = T/4 where ω = 2π/T . Assume
wavelengths and periods as shown in Figure 1.4.

1.5.3 Plane Wave Propagation in a Layered Medium

Figure 1.6 depicts a plane harmonic wave normally incident on an interface separating two
half-spaces of unequal stiffness. The functions are those for the up and downgoing solutions
of the wave equation, but it is understood that the geophones record the sum of the up-
and down-going wavefields, the total wavefield. That is, the total pressure fields in
the upper (+) and lower (-) media are expressed as

P+(z) = eikz +Rpe
−ikz, (1.24)

P−(z) = Tpe
ik′z, (1.25)

where Rp and Tp denote the pressure reflection and transmission coefficients, respectively;
here k′ = ω/c′ in the lower medium and k = ω/c in the upper medium. The harmonic
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Figure 1.6: Plane wavefront normally incident on a flat interface that separates two homo-
geneous media. The unprimed medium indicates that of the incident wave.

function eiωt has been harmlessly dropped because it cancels out in the final expressions for
Pp and Tp.

The two unknowns in these linear equations, Rp and Tp, can be determined by imposing
two equations of constraints at the interface at z = 0: continuity of pressure across the
interface

P+(z = 0) = P−(z = 0) → [eikz +Rpe
−ikz]|z=0 = Tpe

ik′z|z=0, (1.26)

or evaluating eikz and eik
′z at z = 0 we get

1 +Rp = Tp; (1.27)

and imposing continuity of particle velocity (recall Newton’s Law in equation 1.8) across
the interface gives

1/ρ∂P+/∂z|z=0 = 1/ρ′∂P−/∂z|z=0 → 1/ρ∂/∂z(eikz +Rpe
−ikz)|z=0 = 1/ρ′∂/∂z(Tpe

ik′z)|z=0,

or

(k/ρ)(1 −Rp) = (k′/ρ′)Tp, (1.28)

Setting k = ω/c and k′ = ω/c′, and solving for Rp in equations 1.27 and 1.28 yields the
pressure reflection and transmission coefficients for a normally incident plane wave on a flat
interface:

Rp = (ρ′c′ − ρc)/(ρ′c′ + ρc), (1.29)



1.5. SOLUTIONS OF THE WAVE EQUATION 17

Tp = 2ρ′c′/(ρ′c′ + ρc). (1.30)

Here ρc is known as the impedance of the medium, and roughly indicates the stiffness of
a medium. For example, a plane harmonic plane wave in a homogeneous medium exerts
a pressure denoted by P = eikx−iωt and has a particle velocity denoted by u̇ = k/(ρω)P=
1/(ρc)P . Therefore, the ratio P/u̇ becomes

P/u̇ = ρc. (1.31)

This says that decreasing impedances imply larger particle velocities for a fixed elastic
pressure on a cube’s face. This is exactly what one would expect in a really soft medium:
larger displacements for springier-softer rocks, which is one of the reasons that earthquakes
shake sediment-filled valleys more than the surrounding bedrock. Conversely, stiffer media
lead to smaller displacements for a given elastic pressure.

Note:

• The pressure reflection coefficient is negative if the impedance of the incident layer
is greater than that of the refracting layer, i.e., ρc > ρ′c′. Thus gas sands (which
typically have lower velocity than the overlying brine sand) have negative polarity
reflections.

• For all practical purposes we can consider air density as nearly zero so its impedance
is nearly zero as well. Therefore, the free-surface reflection coefficient associated with
an upcoming wave is Rp = −1 because the rock impedance of the incident layer is
greater than that of air. Equation 1.24 says that the total pressure field value on the
free surface is P = 1 +R= 1 − 1 = 0! See Figure 1.7.

• In a land experiment geophones record particle velocity of the ground while a marine
experiment records pressure with hydrophones; see Figure 1.8 for pictures of such
recording cables. If P = 0 on the free surface then we must lower the hydrophones
several feet beneath the water surface, otherwise we record nothing.

• The pressure transmission coefficient Tp is larger than 1 if the incident medium has a
lower impedance than the refracting medium, i.e. ρc < ρ′c′. For example, waves enter-
ing a really soft medium will yield larger amplitudes of pressure variations compared
to waves entering a stiffer medium.

1.5.4 Reflection and Transmission Coefficients for Particle Velocity

Marine experiments measure the pressure field, so this is why the hydrophones must be
sufficiently below the sea surface in order to measure a non-zero pressure. On the other
hand, land experiments use geophones that measure the particle velocity. Typically, only the
vertical component of particle velocity is measured. The reflection coefficient for particle
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Figure 1.7: Snapshots of the upgoing, downgoing, and total pressure fields. The total
pressure at the free surface is always zero because the air has no stiffness to resist motion.
Mathematically, the downgoing wave has equal and opposite amplitude to the upgoing wave
at the free surface. The hydrophone measures the total pressure field, not just the up or
downgoing pressure fields.
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Figure 1.8: Marine hydrophone and land geophone cables.
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velocity has a different form than that for pressure. To see this, assume that the total
vertical particle-velocity fields in the top and bottom layers are given by

ẇ+(z) = eikz +Rwe
−ikz,

ẇ−(z) = Twe
ik′z. (1.32)

The boundary conditions at the interface are continuity of vertical-particle velocity ẇ+|z=0 =
ẇ−|z=0 and pressure κ∂ẇ+/∂z|z=0 = κ′∂̇w−/∂z|z=0, where Hooke’s law is used w =
−κ∂P/∂z = −ρc2∂P/∂z.

These two continuity conditions yield the following boundary conditions:

1 +Rw = Tw,

ρc(1 −Rw) = (1 +Rw)ρ′c′, (1.33)

which can be solved for the particle velocity reflection and transmission coefficients:

Rw = (ρc− ρ′c′)/(ρ′c′ + ρc), (1.34)

Tw = 2ρc/(ρ′c′ + ρc), (1.35)

where the unprimed variables again refer to the medium of the incident wave, and the sub-
script ẇ denotes vertical-particle velocity. Note that the reflection coefficient above will
have opposite polarity compared to the pressure reflection coefficients. Also, note that in
some cases the transmitted amplitude can be greater than the amplitude of the incident
wave! Does this violate conservation of energy? No, energy is the squared modulus of
amplitude scaled by the impedance (see later section). Thus, a weaker medium with weak
rocks (small impedance) can transmit larger amplitude waves than the incident waves in a
much stronger (larger impedance) medium. It takes much more energy to rapidly displace
strong rock 1 mm than it does in a weak rock.

Free-Surface Reflection Coefficient. The particle velocity reflection coefficient is equal
to +1 at the free surface, so the total particle velocity field at the free surface is 1+Rw = 2.
Thus the free surface, because it straddles a zero stiffness medium, can oscillate with great
vigor and has the largest amplitude compared to the underlying rock motion in a half-space.
When an earthquake hits, dig a hole, jump in, and cover yourself with dirt! See Figure 1.9.

Reflection Coefficients and Bright Spots. In the 1970s oil and gas companies discov-
ered a new tool, known as ”Bright Spot” technology, for finding hydrocarbons in young
sedimentary basins in the Gulf of Mexico. Structural oil deposits in young sedimentary
sands typically were characterized by a gas cap at the top of the structure, where the cap
consisted of some gas and brine that filled the pore spaces in the sand matrix. The gassy
brine in the sandstone matrix caused the cap to be less rigid than the oil-sand below it and
the trap rock just above it. Thus, the velocity of the gas sand was typically less than 5
or 10% lower than that of the surrounding strata. This meant that the pressure reflection
coefficient was negative and relatively large in magnitude and could easily be identified in
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Figure 1.9: The vertical displacement at the free surface is maximum because no elastic
resistance at z = 0 means vigorous ground shaking. Mathematically, the downgoing wave
has equal amplitude to the upgoing wave at the free surface.

seismic sections. In particular, a stacked ”relative amplitude” section (i.e., RAP section)
would show a ”bright” negative response along the structural high if this high was a gas
deposit above the oil reservoir. Figure 1.10 shows a RAP section from a Gulf of Mexico
survey.

1.5.5 Oblique Incidence Angles, Reflection Coefficients and Snell’s Law

Figure 1.11 depicts the rays associated with an harmonic plane wave obliquely incident
on an interface in a two-layer medium; the amplitude of the incident plane wave is 1 and
propagates in the upper layer with velocity v1 and in the bottom layer with velocity v2.
Equating the sum of the pressure fields in the top medium to that in the lower medium is
given by

ei(kxx+kzz−ωt) +Rpe
i(kxx−kzz−ωt) = Tpe

i(k′
xx+k′

zz−ωt), (1.36)

where the primed and unprimed wavenumbers refer to the lower and upper mediums, re-
spectively. Similarly the total vertical particle velocity field in the upper medium can be
equated to that in the lower medium:

kz[ei(kxx+kzz−ωt) −Rpe
i(kxx−kzz−ωt)]/ρ = k′zTpe

i(k′
xx+k′

zz−ωt)/ρ′, (1.37)

Evaluating the above two equations at z = 0 gives

[1 +Rp]eikxx = Tpe
ik′

xx; kz[1 −Rp]eikxx/ρ = k′zTpe
ik′

xx/ρ′, (1.38)
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Figure 1.10: RAP (relative amplitude) stacked section from a Gulf of Mexico survey showing
a bright spot.
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Figure 1.11: Harmonic plane wave incident on an horizontal interface separating two layers,
where the downgoing and upgoing waves are denoted by D and U , respectively.
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Figure 1.12: It is impossible to sum two weighted cosines with different wavenumbers to get
zero everywhere; thus the cosines are linearly independent functions for different wavenum-
ber values.

where the exponential function in time has been divided out. The above equations say that
the weighted exponential with wavenumber kx must be equal to the one with wavenumber
k′x for all values of x. This is impossible because eikxx is a linearly independent function in
x as illustrated in Figure 1.12.

Therefore, the horizontal wavenumber in the upper (kx = ω sin θ/c) must be equated to
that in the lower medium (k′x = ω sin θ/c′) to give Snell’s law:

kx = k′x → sin θ/c = sin θ′/c′. (1.39)

This equation says that transmission rays bend across an interface, bending towards the
vertical when entering a slower velocity medium and bending towards the horizontal when
entering a faster medium (see Figure 1.13). At the critical incidence angle θcrit the
refraction angle of the transmitted ray θ′ is 90 degrees so that Snell’s law says θcrit =
arcsin(c/c′) if c′ > c. This gives rise to refraction head waves that propagate parallel to
the interface at the velocity c′ of the underlying medium (see the horizontal dashed ray in
middle diagram of Figure 1.14).

A consequence of Snell’s law is that a medium with a velocity that increases linearly
with depth always turns a downgoing ray back towards the surface, as shown in Figure 1.13.
This can easily be shown by approximating the linear velocity gradient medium with a stack
of thinly-spaced layers, each with a homogeneous velocity that slightly increases with depth.
The velocity increase is the same across each layer. Applying Snell’s law to a downgoing
ray shows that each ray transmitted across an interface bends a little bit more towards the
horizontal until it goes back up. As the thickness of each layer decreases, the ray trajectory
will be the arc of a circle if the velocity linearly increases with depth.

The reflection and transmission coefficients can be derived by dividing out the exponen-
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Figure 1.13: Downgoing rays bend across an interface towards the horizontal if the velocity
increases with depth. For a medium where c(z) = a + bz, all downgoing rays eventually
bend back towards the surface.

tials in equation 1.38 to give

1 +Rp = Tp; (kz/ρ)(1 −Rp) = (k′z/ρ
′)Tp, (1.40)

where Rp and Tp represent the reflection and transmission coefficients that are a function
of incidence angle. Defining kz = 2π cos θ/λ and k′z = 2π cos θ′/λ′ changes the equation of
particle velocity continuity to

(cos θ/(λρ))(1 −Rp) = (cos θ′/(λ′ρ′))Tp; (1.41)

and because λ = c/f we have

(cos θ/(cρ))(1 −Rp) = (cos θ′/(c′ρ′))Tp. (1.42)

Solving for the pressure reflection coefficient in equations 1.42 and 1.40 yields the plane-
wave reflection coefficient for pressure waves with oblique angles of incidence:

Rp = (− cos θ′ρc+ cos θρ′c′)/(cos θρ′c′ + cos θ′ρc). (1.43)

An illustration of a reflection ray and associated seismograms is shown in Figure 1.14.
If the source is a point source and the receivers are offset from the source the collection
of seismograms is denoted as a shot gather. The associated reflection traveltime curves
(see lower diagram in Figure 1.14) plot out as hyperbolas. In a 2-layer medium with a
homogeneous upper-layer velocity of v, the reflection traveltime curve is described by the
hyperbolic equation t(x) =

√
(x/v)2 + (2d/v)2 where d is the thickness of the first layer and

x is the horizontal offset between the source and receiver.
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Figure 1.14: (Top) Shot gather, (middle) ray diagrams for direct, reflection, and refraction
arrivals, and (bottom) associated traveltime curves. The refraction event (also called a
head wave) can only be excited in this two-layer model if the underlying layer has a faster
velocity V2 than the overlying layer with velocity V1.
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Figure 1.15: Reflection rays related to (left) the total pressure field P and (right) upgoing
field U . The ”deghosted” U field does not contain the distorting effects from the receiver-
side ghost and is, therefore, more desirable than the P field; however, it still contains the
distorting effects from the source-side ghost.

1.5.6 Upgoing and Dowgoing Waves

Hydrophones only record the total pressure field P = U +D, not the desired U field. This
upgoing pressure field is more useful than the total pressure because it is not polluted by
the distorting downgoing ”receiver-side ghost” reflection from the free surface, as shown in
Figure 1.15. Thus it is desirable to extract just the U field from the recorded data P .

To derive the U and D fields from the pressure and particle velocity fields, recall that
if P = U +D then Newton’s law says that the vertical particle W = ẇ in a homogeneous
medium is given by

P = U +D,

W = kz(−D + U)/(ωρ). (1.44)

Solving for D and U gives

U = 1/2(P + ρω/kzW ),
D = 1/2(P − ρω/kzW ). (1.45)

Recent advances in recording now provide the capability of recording both pressure and
vertical particle velocity fields in the same streamer cable. In this case the above equation
can be used to estimate both U and D from the data7.

7An alternative deghosting technology is the over-under acquisition cable, where two cables vertically
separated by small distance are used to record the pressure fields at depths z and z + Δz. In this case the
vertical derivative of P can be estimated by dP/dz ≈ [P (x, z + Δz) − P (x, z)]/Δz; and from this gradient
the vertical particle velocity W can be estimated from Newton’s law. Plugging these field values P and W
in the above equations is an alternative way to estimate U and D.
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Figure 1.16: Bottom row displays U and D shot gathers obtained from the P and W images
along the top row (from Yan and Brown, 2001). Note, the P and W fields contain the
confusing downgoing receiver-side ghosts D from the free surface, while the desirable U
field is free of the receiver-side ghosts.

An example of separating upgoing and downgoing arrivals in synthetic data is shown in
Figure 1.16 (Yan and Brown, 2001). Here, synthetic data were generated for a 2D marine
model where receivers on the sea floor record the wavefields generated by sources near the
ocean surface. In this case both pressure and particle velocity are recorded by OBS receivers
on the ocean floor. Receiver-side free-surface multiples are suppressed in the U field image,
but they still contain source-side multiples.

If the velocity records are not available then there is a theoretical (but not always
practical) method for estimating the velocity records from the pressure field data. Assuming
zero-incidence angle and a flat sea floor then the pressure field can be obtained from the
upgoing field U by

P = U +D, (1.46)

but the D field is a time delayed polarity reversed version of the U field due to the reflection
from the free surface:

D = −Ueikz0, (1.47)

where k = ω/cwater and z0 is the 2-way distance between the hydrophone string and free
surface. Substituting the above equation into equation 1.46 yields

P = [1 − eikz0 ]U, (1.48)
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Figure 1.17: Spectrum of a pressure trace for a 8-meter tow depth (Tenghamn et al., 2007).
A deeper towing depth is desirable because it would reduce the weather-related noise from
the sea surface, but it would introduce more notches into the spectrum.

Similar considerations show that the vertical particle velocity W is

Wcwaterρ = [1 + eikz0 ]U. (1.49)

Setting W̃ = Wcwaterρ and solving for U in the above equation gives

U = [1 + eikz0 ]−1W̃ . (1.50)

Substituting equation 1.50 into equation 1.48 yields the relationship between particle ve-
locity and pressure for vertically incident waves recorded just below the free surface:

W̃ = P [1 + eikz0 ]/[1 − eikz0 ]. (1.51)

According to Tenghamn et al. (2007), the pressure data are Fourier transformed into ω and
kx space, and corrected for oblique angle effects in order for the above equation to be used.
However, this equation cannot easily be used due to notches in the pressure field spectrum,
as explained below.

Practical Decomposition of U from P and W Streamer Records. Reconstructing
W̃ from pressure data recorded by a streamer cannot be performed accurately with equa-
tion 1.51 because of notches in the P records. Notches in the P spectrum are associated
with placing the hydrophone cable at the depth of a node shown in Figure 1.7. The fre-
quencies at which the notch occurs are at f0, 2f0, 3f0, ..., where f0 = cwater/z0 and z0/2 is
the depth of the streamer below the free surface.
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Figure 1.18: Spectrums of pressure and particle velocity traces (Tenghamn et al., 2007)
and the spectrum of the combined data to get the green U = P + αW field. Notice how
the notches are filled with the combined data. Low frequency noise below 20 Hz has been
eliminated by a low-cut filter in the particle velocity data and the resulting gap is filled in
with the pressure data and equation 1.51. The α is the constant in equation 1.45.

As shown in Figures 1.7 and 1.9, notches in the pressure spectrum occur at the anti-
nodes of the particle velocity spectrum. This means that both pressure and particle velocity
records can be combined with equation 1.45 to completely fill the spectrum over a wide range
of frequencies and eliminate the ghosts. Hence, this motivates the simultaneous streamer
recording of both pressure and particle velocity records and the use of equation 1.45 to get
the U field.

However, one of the problems in the particle velocity record is strum noise below 20
Hz. Strum noise is canceled by pressure hydrophones but is quite noticeable on particle
velocity recordings.8. Therefore, a low-cut filter (0-20 Hz) is used to eliminate the noise in
the particle velocity records and this portion of the spectrum is filled in using the pressure
data and equation 1.51.

As an example, a streamer is used to record both P and W and the resulting spectra
are illustrated in Figure 1.18 (Tenghamn et al., 2007). Notice that the notches for the P
records are at different frequencies compared to those of the W spectrum. Combining these
two records gives the upgoing record U , whose spectrum is denoted by the green line. This
combination of W and P to get U will be denoted as deghosting.

8A problem in directly measuring particle velocity with geophones in a streamer is strum noise. Strum
noise is the low-frequency noise generated by transverse mechanical vibrations that propagate along the
streamer’s stress members (Tenghamn et al., 2007).
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ΠP U

Figure 1.19: (Left) Conventional stacked section from P records and (right) stacked section
obtained by combining P and W records (Tenghamn et al., 2007).

This procedure for deghosting the data is applied to stacked marine records, and the
comparison of conventional and deghosted stacked sections is shown in Figure 1.19. Here,
the deghosted section shows higher signal because the ghosts are largely eliminated.

1.6 Energy of Propagating Acoustic Waves

Elastic energy is stored in a cube of acoustic material as it is deformed from equilibrium.
That is, squeeze a cube of acoustic material, release it, and then the cube undeforms to
perform work on the medium. In the deformed state at any instant of time of a propagating
wave the potential energy of a small cube of deformed material, according to Figure 1.20,
shows that the instantaneous work (i.e., area · force/area · distance cube deformed) per-
formed by the surrounding medium on a cube along the z−axis is given by − ∫ (Pdxdy)dz,
where the limits of integration are from the undeformed volume to the deformed volume
at some given time. This figure shows that, using equation 1.3 and 1.2 and κ = c2ρ, the
expression for instantaneous potential energy density is given by

PE = P 2/(2ρc2), (1.52)

which is also called the strain energy. However, the total instantaneous energy density
of an acoustic plane wave propagating along the x-axis in a homogeneous medium is given
by a sum of the instantaneous kinetic energy and potential energy densities:

ε = KE + PE = 1/2ρ[

kinetic energy︷ ︸︸ ︷
‖u̇‖2 +

potential energy︷ ︸︸ ︷
P 2/(ρc)2 ], (1.53)
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where u is the particle displacement along the x coordinate. For a harmonic plane wave
ρc = P/u̇, so this equation becomes:

ε = ρ‖u̇‖2. (1.54)

Substituting the plane wave expression u = ei(kx−ωt) into the above equation yields

ε = ρω2‖u‖2, (1.55)

which says that energy density increases with increasing frequency. This makes sense be-
cause, over the same distance, the snapshot of a harmonic wave passing through a rock
shows more ”strained” distortions at higher frequencies. As one might expect, it takes
more energy to deform denser rock with the same particle velocity compared to distorting
lighter rock.

Finally, the energy flux is a measure of energy passing through a fixed area per unit
time. The energy density is in units of energy per volume, so multiplying the energy density
by propagation velocity c gives the energy flux of a plane wave in a homogeneous medium,
i.e.,

cε = cρω2‖u‖2. (1.56)

We conclude that energy flux is greater for faster waves propagating at higher frequencies
through denser rock. Equivalently, for a fixed energy flux higher frequencies are associated
with smaller amplitudes of particle displacement. This suggests that with broadband earth-
quakes the lower frequencies should tend to shake a house with greater displacement than
at higher frequencies.

R, T, U, and D Exercises

1. Derive the plane-wave reflection coefficient and transmission formulas for particle
displacement at an oblique angle. Compare these formulas to those for a pressure
wave, and explain their differences in polarity for the reflection coefficients.

2. Can a refraction arrival propagate along the free surface for an upcoming plane wave?
Explain your reasoning.

3. Using the appropriate reflection and transmission coefficient formulas for a pressure
field, show that energy flux is conserved for a plane wave normally incident on a hori-
zontal interface that gives rise to a reflected wave with amplitude Rp and transmitted
arrival with amplitude Tp. That is, energy flux from equation 1.52 is |P |2/(ρc) for an
incident wave so prove that 12/(ρc) = R2

p/(ρc) + T 2
p /(ρ′c′) is correct.

4. Same as previous problem except assume an oblique angle of incidence.

5. How does the formula for transmission coefficient in equation 1.35 change for an
oblique incidence angle?

6. If a streamer is at a 16 m depth, what frequencies contain notches over the bandwidth
of 0-200 Hz? Where do the notches occur if the streamer is at a depth of 1 m? Velocity
of water is roughly 1.5 km/s. Which of the above streamer depths is more conducive
to wave noise?
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Figure 1.20: The potential strain energy of a cube of material with volume V deformed
along the z-axis is P 2V/(2ρc2). Therefore the potential strain energy density is P 2/(2ρc2).

7. A valley is filled with soft soil with velocity of 2 km/s and density of 1 g/m3, while
the surrounding bedrock is filled with hard rock of velocity 5 km/s and density of
3 g/m3. How many more times stronger should the particle displacement be in the
valley compared to the bedrock for an incident wave with the same energy? Which is
the best place to build your house, bedrock or valley?

1.7 Geometrical Spreading and Attenuation of Propagating
Acoustic Waves

It is of interest to examine the solution to the wave equation when the source term on the
right hand side of equation 1.14 is a point source:

∇2G(x, t|x′, t′) − 1
c2
∂2G(x, t|x′, t′)

∂t2
= −δ(x − x′)δ(t − t′), (1.57)

where δ(x − x′) is a Dirac delta function that is infinite when the argument is zero (i.e.,
x = x′) and zero otherwise. This says that the source is localized to the point x′ and
only is excited when the source initiation time t′ is equal to the observation time t. The
G(x, t|x′, t′) is known as the impulsive point source response of the medium, also known
as the Green’s function. The spatial and temporal variables to the right of the vertical
bar denote the spatial location and temporal excitation time of the point source and the
variables to the left of the vertical bar denote the receiver variables.

The property of the delta function is that it picks out the value of a function at the time
t and location x. For example, let f(x, t) be a smooth finite-valued function, so that if we
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Figure 1.21: Expanding spherical wave fronts for a point source in a homogeneous medium.

integrate the product f(x, t)δ(x − x′)δ(t − t′) then

f(x′, t′) =
∫ ∞

−∞

∫ ∞

−∞
f(x, t)δ(x, t)dxdt. (1.58)

This ability to evaluate f(x, t) at the variables x′ and t′ is known as the sifting property.
Often we will assume an initiation time of t′ = 0, so that a solution to the above equation

for a homogeneous medium with velocity c is given as (Aki and Richards, 1980)

G(x, t|x′, 0) = −e
i(k|x−x′|−ωt)

4π|x − x′| (1.59)

where 1/|x− x′| = 1/r is the geometrical spreading factor. Note, the numerator is just like
our plane wave solution, except the wavefronts of constant value form concentric spheres
centered about the source point at x′ as shown in Figure 1.21. As time increases the spheres
increase in radius at the propagation speed c, where k = ω/c. The amount of energy E
on this sphere remains constant but the energy density is E/A = E/r2. From the previous
section, the amplitude of the wave is proportional to the square root of the energy density
so the amplitude should fall off as 1/r from the source point. This is exactly the behavior
described by equation 1.59. The 1/r is known as the geometrical spreading factor and is a
characteristic of body waves propagating in three dimensions. As time increases, the radius
of the outwardly propagating sphere increases so that the area of the sphere increases as
Note the weakening of amplitudes in the the shot gather of Figure 1.22.
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Figure 1.22: Shot gather from Saudi Arabia. Note the weakening of amplitudes with in-
creasing time.



34 CHAPTER 1. PHYSICS OF ACOUSTIC WAVE PROPAGATION

Depth (km) 700

Q vs Depth

0

600

0

QQ

Figure 1.23: Different Q vs depth curves obtained from earthquakes.

Attenuation

As a seismic wave deforms the rock, elastic energy is lost to frictional forces within the rock
as the rock is squeezed many times per second. The result is that the seismic amplitude
diminishes with distance from the source as energy is lost to the earth by ”frictional forces”;
i.e., higher frequencies attenuate more quickly than lower frequencies in dissipating the
energy of the seismic wave. An extra term can be incorporated into the Green’s function
in equation 1.59 to account for attenuation:

G(x, t|x′, 0) = −e
(ikr−iωt)e−ωr/(2cQ)

4πr
, (1.60)

where Q is the positive attenuation factor that accounts for frictional losses in the rock
and c is the local velocity. Note, the amplitudes will more rapidly attenuate with smaller
values of Q and increasing distances from the source. Typical Q values for tight granites
are greater than 200 while for young Miocene sedimentary rock in the Gulf of Mexico the
Q values range from 5 to 100 or so. Sometimes Q is absorbed into the wavenumber k to
make it a complex valued function (Aki and Richards, 1980), i.e., k → k + i|k|/Q. A plot
of the Q vs depth from the earth’s surface is given in Figure 1.23.

1.8 Wavefronts and Rays

A wavefront is defined as the contiguous points in model space that have the same phase
for a fixed time. In the case of a propagating plane wave these points fall along a plane
with a normal perpendicular to the direction of propagation. The ray is defined to be the
line that is perpendicular to the wavefront that starts at the source and ends at a specified
point in the medium. For example, the ray associated with the plane wave is a straight
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Figure 1.24: Wavefronts and rays (arrows) for a planar wavefront and a non-planar wave-
front at times T, 2T and 3T .

line as shown in Figure 1.24. For a heterogeneous medium the rays that start out from the
source point and follow a curved trajectory that honors Snell’s law everywhere along the
ray.

In general, the Green’s function in a heterogeneous medium asymptotically can be rep-
resented by the harmonic formula

G(x, t|x′, 0) = −A(x|x′)eiωτxx′ , (1.61)

where τxx′ represents the time9 to go from x′ to x along the curved ray trajectory, and
A(x|x′) is the generalized geometrical spreading term. This Green’s function is valid when
the wavelength λ = ω/c of the local wavefront is at least 3 times shorter than the variation
wavelength of the velocity fluctuation. Here, c is the local velocity of the medium and
this assumption is also called a high-frequency approximation valid for sufficiently smooth
medium. In this case the orientation of the ray must be perpendicular to the constant
traveltime wavefront, i.e., it is parallel to the gradient of the traveltime function τxx′ :

∇τxx′ || ray direction, (1.62)

In fact the direction cosines of the ray are given by

n̂i =
1

|∂τxx′/∂xi|
∂τxx′

∂xi
. (1.63)

9This is not the symbol for the stress tensor.
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and the equations for the ray are given by

dx1

∂τxx′/∂x1
=

dx2

∂τxx′/∂x2
=

dx3

∂τxx′/∂x3
. (1.64)

These equations can be used to trace rays in a heterogeneous medium, and details for
estimating the rays and traveltimes will be discussed in the chapter on the eikonal equation.

1.9 Summary

The basic physics of acoustic wave propagation are described. Plane wave solutions to
the wave equation are derived for a homogeneous medium, and the concepts of frequency
and wavelength were discussed for both 1D and 2D. Snell’s law resulted from imposing
boundary conditions across an acoustic interface. For a two-layered medium, the reflection
and transmission coefficients are derived and showed that a low to high impedance contrast
lead to positive reflection coefficients for the incident pressure field. It is noted that the
reflection coefficient varies as a function of incidence angles, which leads to the concept
of AVO (amplitude vs offset) characterization of lithology. Impedance is defined as ρc for
normal incidence plane waves and is equal to the ratio of the pressure to particle velocity.
It is a measure of rock stiffness, with large impedances corresponding to small particle
velocities that generate large pressures.

The energy of a propagating wave is the sum of the kinetic and potential energies.
For a plane wave in a homogeneous medium propagating in the x direction, this energy
is given as ρu̇2. There are two reasons for amplitude decay in a propagating spherical
wave: geometrical spreading and intrinsic rock attenuation. The latter is also seen in plane
waves but there is no geometrical spreading in plane waves. However, plane waves without
geometrical spreading is a mathematical idealization and not physically possible in practice.

Exercises

1. Identify the direct arrival, air wave, surface waves, refraction arrivals, and reflection
arrivals in the CSG shown in Figure 1.25. Computing the slopes dx/dt of these events,
estimate the apparent velocity in the x-direction Vx and the associated period for each
event. From these calculations determine the wavelengths. Show work.

2. Compute the apparent wavelengths λx of the events in the previous problem by using
the method shown in Figure 1.5. Do these new estimates roughly agree with the
apparent wavelengths computed from slope measurements?

3. Which arrivals have the same apparent velocity as the actual propagation velocity of
that event? Why?

4. The 1-D SH wave equation is the same form as the 1-D acoustic wave equation, except
c becomes the shear wave velocity, P becomes the y-component of displacement v, and
c =

√
(μ/ρ) where μ is the shear modulus. The SH wave equation is

1/c2∂2v/∂t2 − ∂2v/∂z2 = 0 , (1.65)
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where SH (or shear horizontal) refers to the fact that the shear wave particle motion is
perpendicular to the direction of particle motion, and is along the horizontal direction
(in and out of plane of paper). The SH continuity conditions at the interface at z=0
are a). Continuity of y-displacement v+ = v−., b). Continuity of shear traction:
μ∂v/∂z+ = μ∂v/∂z−, where μ is the shear modulus.

Derive the y-displacement reflection and transmission coefficients for a plane SH wave
normally incident on a planar interface in an elastic medium.
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Figure 1.25: Shot gather from Salt Lake valley. The trace interval is 5 feet along the
horizontal axis and the time units along the vertical axis are seconds.



Chapter 2

Signals, Systems, and 1D
Convolutional Modeling

This chapter will present the definitions of signals and linear systems. In general, a linear
discrete system can be represented by a matrix-vector operation; and a special case of a
linear system is that of the operation known as convolution, or linear time-invariant systems
(LTI). The convolution operation is used to generate synthetic seismograms for a layered
earth model, which are then used to understand the actual seismograms recorded in a
seismic experiment.

2.1 Signals

A general continuous signal can be represented by the multi-variate function x(a, b, c, d, ...),
where a, b, c, d, .... are continuous variables. We will now be chiefly concerned with 1-D time
signals represented by x(t), although the time dimension can be replaced by another type of
dimension such as space, frequency, temperature, etc.. Some examples of 1-D time signals
include seismogram recordings from an earthquake, magnetotelluric (MT) recordings, or
ground penetrating radar (GPR) data. If the time variable is a continuous variable then
x(t) is a continuous signal. If the time variable is a discrete variable then x(t) is a discrete
signal. Practically most signals are sampled uniformly in time with a sampling interval of
dt , and the square bracket notation x[n] = x(ndt) is used to represent a uniform sampling
of the continuous signal x(t). Here n belongs to the set of integers.

A discrete signal can be mathematically represented with the aid of the Kronecker delta
function δ[i − j] defined as

δ[i− j] =

⎧⎪⎨
⎪⎩

1 if i = j

0 otherwise

⎫⎪⎬
⎪⎭ , (2.1)

Therefore the discrete signal x[n] is given by

x[n] =
∞∑

i=−∞
x[i]δ[i − n], (2.2)

39
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Figure 2.1: a). Cosine signal with a period of 6 s and its discrete representations at sampling
intervals of b). .5 s, c). 2 s and d). 4. s. If the sampling interval is too coarse (dt ≥ 3s), the
discrete signal is aliased so that a high frequency signal masquerades as a low frequency
signal.

or in vector notation

x = [x[1] x[2]... x[N ]]T , (2.3)

where N is the number of data points in the signal and the superscript T represents trans-
pose. Sometime we represent a sample with the subscript notation xj = x[j].

Note that the process of sampling a continuous signal can distort the character of the
signal as shown in Figure 2.1.

The period of the continuously sampled signal is 6 s, and this period is roughly preserved
with sampling intervals of dt = .5 s and dt = 2.0 s. However, the discrete signal with dt = 4 s
in Figure 2.1d has lost the original character of the cosine signal; in particular it appears
as a lower frequency signal with a period of about 12, rather than 6 s. In other words the
sampling rate of 1 sample/4 time units was too slow to capture the rapidly varying parts of
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the cosine. The discrete signal masqueraded as a lower frequency signal, that is the discrete
signal appeared to be of lower frequency than the actual signal.

The exponential x[n] = |A|ein2pi/12 can be plotted as a sequence of vectors on a cir-
cle in the complex plane for n = 0, 1, 2, 3, ..12; the circle has radius A. In the complex
plane each time sample is complex and can be given as the vector components x[n] =
|A|(real(x[n]), imag(x[n])) = (cos(ωn), sin(ωn)) where the first and second components
are plotted along the real and imaginary axes, respectively. Note that if we were to play
a movie of the vector x[n] then we would see a spinning arrow rotating about the origin
with constant angular speed and length. In fact the angular speed can be determined by
taking the magnitude of the derivative of vector x(t) with respect to t to get ”Aω”. Dividing
through by A gives the angular rate of spinning as ω, or the angular frequency in units of
radians/sec. Larger values of ω correspond to faster spinning arrows.

2.2 Sampling Theorem

At what sampling frequency does the signal become aliased? The following theorem answers
this question.

Sampling Theorem: Let x(t) be a bandlimited signal such that fmax is the maximum
frequency found in the data. We say that x(t) is properly sampled (at the sampling interval
dt) if there are more than two samples per minimum period: 2dt < Tmin, or fmax =
2/Tmin < 1/dt = fsampling. Note that the reciprocal of the minimum period is the maximum
frequency 1/Tmin = fmax. Given these samples x[n] we can perfectly reconstruct the original
continuous signal. In other words the sampling theorem is telling us that the sampling rate
1/dt (i.e., the sampling frequency) should be greater than 1/2 the maximum frequency of
the signal. We define fNyquist = 1/(2dt) as the Nyquist frequency ; in units of radians we
have ωNyquist = π/dt. Another way of stating the Sampling theorem is that the highest
frequency in the data should be less than the Nyquist frequency.

It is not obvious that we can perfectly reconstruct the continuous signal from its samples,
but it is reasonable that for a well-sampled signal we can guess at the period of the original
signal from x[n]. In Figure 2.1c the period is preserved because the sample rate 1/dt was
less than 1/2 the period of the cosine. If the sample rate was exactly at 1/2 the period of
the cosine (i.e., dt = π) then the sampled signal would have no variation at all. That is, it
would appear to have a lower frequency than the original signal.

2.3 Systems

A system is defined to be any process that alters an input signal x(t) to produce an altered
output signal y(t). For example, the input image of Europa on the lens of the Voyager II
spacecraft gets transmitted through the ionosphere of Jupiter, which corrupts the signal
x(t) to yield y(t) = x(t) + n(t). Therefore the ionosphere of Jupiter can be considered as a
system that alters the original signal by adding static noise to the image. Another example
is the input of signal as a transient EM source on the earth’s surface, and the output signal
is the recorded earth response y(t).
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Mathematically the system is represented as an operator H[] that is applied to the input
to yield the output, i.e., y(t) = H[x(t)]. Mathematically we say that the operator H[] maps
the space of single-variate continuous functions to the space of single-variate continuous
functions. Another way of representing this system is by the input/output notation:

x[n] →
[
H
]

→ y[n] (2.4)

For a discrete signal the operator H[ ] maps an N-dimensional vector space (where the Nx1
vector x[n] exists) to an M-dimensional vector space (where the Mx1 vector y[n] exists).

2.4 Properties of Systems

We will be concerned with 7 properties of systems : Linearity, Time Invariance, Stability,
Causality, Invariance, Stability and Invertibility.

1. Scaling: H(αx) = αH(x), where α is an arbitrary scalar and x is an input signal.
Scaling says that if you boost the input signal by the multiplicative factor α then the
output signal will be α times louder. If you double your explosive charge then you will
double the amplitude of the recorded seismograms. Scaling obviously does not work when
non-linear effects come into play. For example, if you increase your explosive source by
a factor of one million then you will not see the same increase in seismogram amplitude
because such a large charge will spend much of its energy pulverizing the rock instead of
just shaking the rock.

Example 1: Scaling property illustrated by explosive input and seismogram
output.

------- ++++++
| | + +

x -----> | Earth | ------> ++++++ + ++++++++++++
boom | | + + Seismic Trace

-------- ++++

++++++
+ +

------ + +
| | + +

2x -----> | Earth | ------> ++++++ + ++++++++++++
BOOM | | + + Seismic trace

------- + + with double amplitude
+ +
+++++

2. Additivity: H(x1 + x2) = H(x1) + H(x2), where x1 and x2 are two input signals.
If you do two separate seismic experiments, one with an input seismic signal using 1 lb
of dynamite and the other with 2 lbs of dynamite, then add the two separate outputs
H(x1)+H(x2) = y1 +y2 gives the same recording as one experiment with 3 lbs of dynamite
H(x1 + x2) = y3.
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Example 2: Additivity property illustrated by explosive input and seismogram
output.

------- ++++++
| | + +

x -----> | Earth | ------> ++++++ + ++++++++++++
boom | | + + Seismic Trace

-------- ++++

|
-----
|

++++++
* +

------ * +
| | * +

2x -----> | Earth | --->+++* + ++++++++++++
BOOM | | + + Seismic Trace with

------- + + doubled amplitude
+ +
+++++

3. Superposition: H(
∑

i aixi) =
∑

i aiH(xi), which is a consequence of the scaling and
additivity properties.

The most general form of a discrete linear system is represented by a matrix-vector
multiplication, i.e.,

y[i] =
N∑

j=1

hijx[j], (2.5)

or in more compact notation y = Hx or

Trace︷ ︸︸ ︷∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1

y2

.

.

yM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

Earth′s impulse response︷ ︸︸ ︷∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h11 h12 ... h1N

h21 h22 ... h2N

. . ... .

. . ... .

hM1 hM2 ... hMN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Source︷ ︸︸ ︷∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1

x2

.

.

xN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.6)
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If the input signal is an impulse that turned on only at time k then xn = δ[n − k] . In
explicit vector notation the impulse looks like:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1

x2

.

xk

.

xN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

.

1

.

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.7)

Plugging equation 2.7 into 2.6 yields:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h11 h12 ...

kth impulse response︷︸︸︷
h1k ... h1N

h21 h22 ... h2k ... h2N

. . ... h3k ... .

. . ... . ... .

. . ... . ... .

. . ... . ... .

hM1 hM2 ... hMk ... hMN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Input impulse at kdt︷ ︸︸ ︷∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

.

1

.

.

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

kth impulse respoinse︷ ︸︸ ︷∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h1k

h2k

.

.

.

.

hMk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.8)

Therefore the kth column vector of the MxN matrix H is the impulse response of the
system for an impulsive input xn = δ[n − k].

4. Time or Shift Invariance. A system is time invariant if a k-shifted input leads to
the original output, except shifted by k units. As an example, the time invariance property
is illustrated by an explosive impulsive input and seismogram output, where the output
seismogram is described by the first column of the system matrix H below.

H =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α 0 0 0

β α 0 0

0 β α 0

0 0 β α

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.9)
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If the input were delayed by one unit then the output would be the 2nd column of H above,
which is a 1-sample shifted version of the first column. Note the physical interpretation of
the indices in hij , it is the observed response at time i to the unit input at the start time j.

Time invariance implies that the elements along any subdiagonal are equal to one an-
other, as illustrated in the above matrix. Therefore the element values only depend on the
subdiagonal location; thus the element values hij can be denoted as hi−j , i.e., the matrix
elements in an LTI system can be represented as

h(i, j) → h(i − j), (2.10)

In terms of a seismic experiment time invariance says that the outcome seismogram of the
experiment is not determined by the day or hour it started, the outcome depends on the
temporal difference between the start time and observation time (i.e., the earth’s impulse
response is time invariant). For example, the seismogram amplitude observed 3 seconds
after I hit the ground is the same whether I hit the ground on a Monday or a Tuesday or
etc..

It now follows that a Linear Time Invariant (LTI) system can be mathematically de-
scribed as

y(i) =
∑
j

h(i, j)x(j) (matrix− vector multiply),

→
∑
j

h(i− j)x(j) (dot− product of reflected− shifted vector),

y = h � x, (2.11)

which � denotes convolution. More generally the upper and lower limits in the equation 2.9
summation extend to plus and minus infinity.

Note that if a system is LTI then the output y is a convolution of x = (...x(−3) x(−2) x(−1)
x(0) x(1) x(2) x(3)...)T with the vector h = (...h(−3) h(−2) h(−1) h(0) h(1) h(2) h(3)...);
this also can be described as a dot product of the shifted vector h with the vector x. If the
shift units are something other than time then the LTI system is usually referred to as a
Linear Shift Invariant (LSI) system.

5. Convolution. The previous section tells us that any LTI system can be represented by
a convolution operation. Convolution is described by equation 2.11, and can be viewed in
a number of different ways:

Convolution is a running ”average” of the elements in the input vector, where the
weighting elements are given by (..h(−1)h(0)h(1)...) and the length of the 1-D averaging
mask is the same as the length of the vector h. For two-dimensional convolution, the input
is a matrix with elements given by x(i, j), and the convolutional filter is a 2-D mask with
elements denoted by h(i, j). The 2-D running average is given by

y(i, j) =
∑
i′

∑
j

h(i− i′, j − j′)x(i′, j′) (matrix−matrix multiply),

or symbolically

y = h � x (double convolution of matrices h and x),
(2.12)
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We say convolution is a shifted-reflected dot product of the vectors h and x because h(−2)
is a reflected version of h(2) across the origin, and h(j − 2) is a rfelcted version of h(2),
except it is shifted by two time samples.

Example 1: Convolve the trace x = [1 − 1 1] with x = [1 − 1 1]T and h = [2 6 9]T .

Multiply Window

Shift=-1 h(2) h(1) h(0) | h(-1) h(-2) h(-3)| |y(-1)|
Shift=0 h(2) h(1) | h(0) h(-1) h(-2)||x(0)| |y(0) |
Shift=1 h(2) | h(1) h(0) h(-1)||x(1)| |y(1) |
Shift=2 | h(2) h(1) h(0) ||x(2)| = |y(2) |
Shift=3 | h(3) h(2) h(1) | |y(3) |
Shift=5 | h(4) h(3) h(2) | |y(4) |

Multiply Window

Shift=-1 9 6 2 | 0 0 0 | |y(-1)| | 0 |
Shift=0 9 6 | 2 0 0 || 1 | |y(0) | | 2 |
Shift=1 9 | 6 2 0 ||-1 | |y(1) | | 4 |
Shift=2 | 9 6 2 ||-1 | = |y(2) | = | 1 |
Shift=3 | 0 9 6 | |y(3) | |15 |
Shift=5 | 0 0 9 | |y(4) | |-9 |

The top row of above matrix-vector equation is not needed
so we have a more compact form of the above:

Shift=0 9 6 | 2 0 0 || 1 | |y(0) | | 2 |
Shift=1 9 | 6 2 0 ||-1 | |y(1) | | 4 |
Shift=2 | 9 6 2 ||-1 | = |y(2) | = | 1 |
Shift=3 | 0 9 6 | |y(3) | |15 |
Shift=5 | 0 0 9 | |y(4) | |-9 |

6. Causality. If the system output reacts prior to the input then the system is acausal. If
the system only reacts during or after an input then the system is causal. Mathematically
the system is causal if

h(n− k) = 0 for all k greater than n. (2.13)

This condition makes sense because n is the observation time of the output and k is the
time at which the input turns on. The output better not turn on prior to the excitation of
the input. Examples of a causal system are non-real time signals that have been previously
recorded, such as your smoothing filter for the Dow Jones Index [f(−1) f(0) f(1)]. Here
the future values of the DJI are used to give a present average DJI value.

7. Stability. A system is stable if its impulse response is absolutely summable:
∞∑

n=−∞
|h(n)| <∞. (2.14)
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Some systems with infinitely long vectors, an IIR or infinite Impulse Response system, are
stable and others are not. A Finite Impulse Response or FIR system is always stable if the
amplitudes are finite.

8. Invertibility. If y = h � x then the system is invertible if x = inv(h) � x. We will learn
more about this property when we cover the least squares deconvolution.

2.5 Seismic Reflection Data as LTI System: s(t) = r(t) �w(t).

The velocity structure of a 1-D layered earth with constant density can be described by v(z),
where v(z) is the propagation velocity as a function of depth. Assuming a uniform sampling
in depth with a sampling interval of dz we have the vector v = [v(0) v(1)....v(N)]T , and the
associated reflection coefficient vector as function of depth r = [r(0) r(1)...r(N)]T where:

r(i) = {v(i) − v(i − 1)}/{v(i) + v(i− 1)}, (2.15)

and the time it takes a plane wave to go from the the i dz depth to the (i + 1)dz depth is
dz/v(i). Thus the 2-way time t(z) that seismic energy takes to go from the surface to the
Kth (i.e., z = dz K) depth level and back up to the surface is:

K BOOM Geophone
+--- --------------------
+ | ^ v(1)

t(K*dz) = + 2*dz/v(j) V |
+ -------------------

+--- | ^
j = 1 V | v(2)

--------------------
.
.
.

--------------------
| ^ v(K)
V |

--------------------

Using t(z) we can get z(t); thus we can convert the reflection coefficent as a function of depth
r(z) to the reflection coefficent as a function of time r(t) = r(z(t)). The physical meaning
of the r(t) is that it is the impulse response of the 1-D layered earth for an impulsive source
and a receiver at the surface. It assumes no multiples, no attenuation and no transmission
losses in the earth.

For example, if the earth model is of uniform velocity v = 1 km/s except for a layer
with reflectivity -.5 at z = 1 km then an impulsive source wavelet with amplitude A δ[n]
launched from the surface will generate the following reflection response:

r(t) = [r(0) r(1) r(2) ...] = [A 0 − .5 � A 0 0 0...], (2.16)
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where dt = 1 s. The first term r(0) = A is the direct wave and the r(2) = −.5 ∗ A is the
primary reflection from the first layer interface.

If we consider the earth’s impulse response as LTI, the time history of the seismic
source wavelet as w(t) , and the synthetic seismogram seismogram s(t) as the output, then
s(t) = r(t) � w(t), where r(t) is the earth’s impulse response. This is known as the 1-D
convolution model of a seismogram. Is the earth really an LTI system? Does the earth
system really satisfy linearity and scaling properties? What experiments can you devise to
test this hypothesis?

An example of computing the seismogram from a synthetic sonic velocity log is is given
in Figure 2.2 and a field data example is given in Figure 2.3.

The mathematical description for describing two-way traveltime as a function of depth
in continuous variables is given by

t(z) = 2
∫ z

0
dz′/v(z′)′, (2.17)

where t(z) is the 2-way propagation time for energy to go vertically downward from the
surface to the horizontal reflector at depth z and back up to the surface in the 1D layered
model. A MATLAB script for this mapping from depth to time is given as

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Finds t(z) from v(z). Assumes
% v(z) starts at free surface.
% v(z) - input- sonic log as function of z
% dz - input- depth sampling interval of sonic log
% t(z) - input- 2-way time as function of z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [time]=depth2time(v,dz)
nz=length(v);time=zeros(nz,1); time(1)=dz/v(1);
for i=2:nz; time(i)=time(i-1)+dz/v(i); end
time=time*2; plot(dz*[1:nz],time);
xlabel(’Depth (ft)’); ylabel(’Time (s)’)
title(’Depth vs 2-way Time’);figure
plot(time,v);xlabel(’Time (s)’);ylabel(’Velocity (ft/s)’)

The velocity model as a function of time v(t) (see Figure 2.2b) is usually unevenly sampled.
To perform convolutional forward modeling, we must convert to an evenly sampled function
in time v(t) = v(t(z))′; the MATLAB code for getting an even sampled function sampled
at the sampling interval dt from an unevenly sampled function is given in Appendix D.

Assuming that the velocity function v(t) is now an evenly sampled function, the evenly
sampled zero-offset (ZO) reflection coefficients as a function of time can be estimated by
r(t) = (ρ(t)v(t) − ρ(t − dt)v(t − dt))/((ρ(t)v(t) + ρ(t − dt)v(t − dt)), which in MATLAB
script becomes for constant density:

y=diff(vpp);nl=length(y);dt=diff(time);add=vpp(1:nl)+vpp(2:nl+1);
rc=y(1:nl)./add(1:nl);stem(time(1:nl),rc(1:nl));
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Figure 2.2: Synthetic (a). sonic log in depth, (b). sonic log in 2-way travel time , c).
impulse response r(t), d). 100 Hz wavelet w(t), e). seismogram s(t) = r(r) � w(t) and f).
associated magnitude spectrum.
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Figure 2.3: Field stacked section on far right and associated logs on left. Synthetic seismo-
grams (derived from well logs) are shown just to the left of stacked section and correlate
well with the recorded seismograms.
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If the density profile is known then the density can be put into the above reflection coefficient
formula.

The bandlimited response of the medium for a plane wave input (with source wavelet
w(t) as shown in Figure 2.2d) into the surface is a combination of arrivals, including primary
and multiple reflections. If attenuation, transmission losses and multiples are excluded then
the 1D convolutional model of the seismogram s(t) is given by

s(t) =
∫ ∞

−∞
r(τ)w(t− τ)dτ, (2.18)

which is the definition of convolution of r(t) with w(t), often abbreviated as s(t) = r(t)�w(t).
The above formula can be derived by taking the special case of the impulse response

where the source wavelet is a Dirac delta function that is excited at time equal to zero:
w(t) = δ(t), where the delta function is defined as δ(t) = 0 if t 	= 0, otherwise δ(t) = 1 in
the sense

∫
δ(t)dt = 1. Plugging this impulse wavelet into the above equation yields:

s(t) =
∫ ∞

−∞
r(τ)δ(t − τ)dτ,

= r(t), (2.19)

which describes the reflection coefficient series shown in Figure 2.2c. Thus, the 1D impulse
response of the earth under the above assumptions perfectly describes the reflection coef-
ficient series as a function of 2-way traveltime. If the source wavelet were weighted by the
scalar weight w(τi) and delayed by time τi then w(t) = w(τi)δ(t − τi) then the delayed
impulse response of the earth would be

s(t)′ =
∫ ∞

−∞
r(τ)w(τi)δ(t − τi − τ)dτ,

= w(τi)r(t− τi), (2.20)

which is a weighted delayed version of the original impulse response in equation 2.18. If we
were to sum these two seismograms we would get, by linearity of integration,

s(t)′ + s(t) = w(τ0)r(t− τ0) + w(τi)r(t− τi), (2.21)

where τ0 = 0 and w(τ0) = 1. By the superposition property of waves (i.e., interfering wave
motions add together), we could have performed these two seismic experiments at the same
time and the resulting seismograms would be identical mathematically to equation 2.21.
More generally, the earth’s response to an arbitrary wavelet w(τ) is given by

s(t) =
∑

i

w(τi)r(t− τi),

≈
∫ ∞

−∞
w(τ)r(t− τ)dτ, (2.22)

and in the limit of vanishing sampling interval dt = τi+1− τi the approximation becomes an
equality (see Figure 2.2e). Under the transformation of variables τ ′ = t− τ equation 2.22
becomes

s(t) =
∫ ∞

−∞
w(t− τ ′)r(τ ′)dτ ′, (2.23)
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which is precisely the convolution equation shown in equation 2.18. The equality of equa-
tions 2.22 and 2.23 also shows that convolution commutes, i.e., s(t) = r(t)�w(t) = w(t)�r(t).
The convolutional modeling equation was practically used by many oil companies starting
in the 1950’s, and is still in use today for correlation of well logs to surface seismic data.

2.5.1 Multiples

Multiples associated with a strong reflector and the free surface can be accounted for in
the 1D modeling equations. For a sea-bottom with depth d and two-way ZO traveltime τw,
the sea-bed impulse response for ZO downgoing pressure waves with a source and pressure
receiver just below the sea surface is given by

Sea−floormultiplepointsrc.response︷ ︸︸ ︷
m(t) = w(t) +

∞∑
i=1

(−R)iw(t− iτw) (2.24)

where R is the ZO reflection coefficient of the sea floor; the -1 accounts for the free surface
reversal of polarity and w(t) is the source wavelet of the airgun modified by the interaction
with the sea-surface reflectivity1. We assume that the propagation time between the surface
and hydrophone streamer is negligible compared to the propagation time from the surface
to the sea floor. See Figure ??a for an example of the water-related multiples, and those
generated by a single primary reflection with 2-way time of τ1.

The upgoing multiples each act as a secondary source on the sea surface, so we can
consider the ”generalized” source wavelet to be m(t). Thus the response of the medium is
given by

s(t) = r(t) � m(t), (2.25)

as illustrated by the single sub-water reflector model in Figure ??b. These multiples tend to
blur the reflectivity response so we should try to deconvolve, i.e., eliminate, the multiples.

2.5.2 Multiple Prediction and Subtraction

The previous section showed how the free-surface multiples can be predicted if the water
bottom topography was known. If there is non-zero offset between the source and receiver
then the multiple associated with the water-bottom can be predicted by ray tracing through
the water layer to generate all useful orders of the water bottom multiple.

These multiple predictions for zero-offset traces can be formed into m(t), as described
by equation 2.24. Therefore m(t) can be used to predict the multiples and then they are
subtracted from the original data to give primary reflections unpolluted by water-bottom
multiples. This assumes that the direct wave δm(t) is excluded from the multiple prediction,
as illustrated in Figure 2.4.

The steps for this procedure are outlined below.

1We implicitly assume upgoing arrivals here and ignore the contributions from the source-side and
receiver-side ghosts.
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Figure 2.4: a). Upgoing multiples m(t) associated with the water bottom, b). upgoing
water-bottom multiples excited by an upgoing primary reflection r(t) = R1δ(t−τ1) arriving
at time τ1 with strength R1 to give the impulse response of m(t) ∗ r(t), and c). prediction
of multiples only by excluding the direct arrival in m(t). If the reflectivity series is given
by the general time series r(t), then the impulse response associated with water-bottom
ringing and primary reflections is given by r(t) �m(t). All free-surface ghosts are neglected
here.
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1. Estimate m(t) for zero-offset traces from equation 2.24. Ray tracing can be used to
estimate the non-zero water-multiple generator. Mute out the direct wave in m(t)
and this function will still be denoted as m(t).

2. For zero-offset traces, convolve m(t) with the recorded data s(t) = r(t) +m(t) to get
m(t) � s(t) = r(t) � m(t) +m(t) � m(t). This is almost a good estimate of the water-
bottom generated multiples r(t) � m(t), except for the errors given by m(t) � m(t).

3. We assume that m(t) � m(t) errors are small and so assume s(t) � m(t) is a good
estimate of the water-bottom multiples. Therefore we use s(t) � m(t) to adaptively
subtract from s(t), i.e., s(t)− s(t) �m(t) ≈ r(t). If this is not a good estimate of r(t)
we use s(t) − s(t) � m(t) as a good starting point to replace s(t) in step 2. Note, in
these steps we have assumed an impulsive wavelet and also that the direct wave δ(t)
in m(t) is muted.

4. If the wavelet is not impulsive (as it always is) then we deconvolve w(t) after each
step. If the traces are non-zero offset then the shot gather traces are given by s(x, t)
and the multiple generator is given by m(x, t), where x is offset from the source. In
this case the prediction strategy is s(x, t) � �m(x, t), where �� denotes both temporal
and spatial convolution. The reason we need spatial convolution is a detail not needed
at this point.

Figure 2.5 illustrate an original shot gather and it’s prediction by a method that roughly
resembles m(x, t) � s(x, t). Figure 2.6 depicts migration images before and after multiple
prediction and subtraction.

2.6 Summary

We introduced the concept of a discrete linear time-invariant system, which is expressed
mathematically as the convolution of the system’s impulse response h[t] with the input
vector x[t]: y[t] = x[t] � h[t]. The MA system produces an output vector that is a weighted
summation of the input values: y = h � x. The AR system produces an output that is a
weighted combination of input values and previous output values: y = f � y.

Seismic data s(t) can be modeled by assuming the 1-D convolutional model of the earth:
s(t) = r(t)�w(t), where w(t) is the wavelet and r(t) is the reflectivity series. This 1-D model
assumes no multiples, no geometric spreading or anelastic losses. The seismic signal must
be sampled according to the Nyquist sampling theorem: dt < 2Tminimum.

Multiples in seismic data blur the valuable information from the primary reflections.
For water-bottom multiples, the strategy is to predict the multiples, and then adaptively
subtract them form the data to get primaries only. The prediction is accomplished by
generating a water-bottom multiple operator m(t) and estimating the primaries by r(t) ≈
s(t) −m(t) � s(t).

2.7 Exercises

1. Your first convolutions.
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Figure 2.5: Illustration of a). a marine shot gather and b). the prediction of the multi-
ples by a process that roughly approximates m(x, t) � �s(x, t), where s(x, t) represents the
seismograms in a shot gather and x represents the source-receiver offset.

Figure 2.6: Migration images before and after multiple prediction and subtraction by the
SRME method (courtesy of Aramco).
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• Plot x[n] = [x(0) x(1) x(2)] = [1 .5 .25]. Now plot x[−n+ 3], x[n− 3], x[−n− 3] and
x[n + 3]; which is the delayed and which is the advanced version of x[n] (make sure
you plot against the correct time values, including negative time if necessary)? Plot
x[−n] and explain why we say x[−n] is a reflected version of x[n]. Explain why we
say that x[n− 3] is a reflected-shifted version of x[n].

• Convolve [h(−1) h(0)] = [−1 1] with x (i.e., y = h � x ).

• Now convolve x with [h(−1) h(0)] (i.e., y′ = x�h ), where the elements of x comprise
the matrix and h is the vector in the matrix-vector multiply. Note that yT = y,
which is true for any LTI system; the property of x � h = h � x is the commutative
property of any LTI systems. Note that, in general, matrix-matrix multiplication is
not commutative.

• How long is the output vector y′? What is the length of the output of convolving an
Nx1 vector x with the Mx1 vector h? Explain.

COMMUTATIVE PROPERTY OF CONVOLUTION

------ ------
I I I I

x -----> I H I ------> y or h -----> I X I ------> y
I I I I
------ ------

• In general, multiplying an Nx1 vector by an MxN matrix costs O(MN) algebraic
operations. Explain why convolving the Mx1 h vector with the Nx1 x vector also
costs O(MN) algebraic operations.

• Convolve [h(−10) h(−9)] = [−1 1] with x (i.e., y = h � x ).

3. Create an electrical or impedance layered model of the earth; make the model thick
enough to be tailored to your interests (Moho?).

• Create synthetic seismograms or MT records associated with your model. Create
the 5 figures associated with Figure 2.2, except use your model (see my Matlab script
pltsonic.m ). Adjust your source wavelet so that its dominant wavelength is about half
the thickness of your thinnest layer. You might want to use a Ricker wavelet for your
source function so examine my rick.m file. Actually, a better source wavelet might
be the derivative of the Ricker wavelet, which can be obtained by using the Matlab
command ”diff(rick)”, which differentiates the ”rick” vector. The system model can
be thought of as inputing a seismic wavelet w(t) into the earth model represented by
r(t) to give s(t) = r � w.

• The geophone has a non-impulsive response represented by g(t) and perturbs the
seismic response according to s(t)′ = s(t) � g(t). Assume that the impulse response of
the geophone is a 50 Hz Ricker wavelet and generate s(t)′.
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• The first layer of your earth model generates multiples that generate a reverberation
time signal

m(t) = (1 0 − r 0 r2 0 − r3 0 r4....). (2.26)

Here m(t) can be considered as the downgoing impulse response of the reverberation
layer. This assumes that it takes 2 time units to go from the surface to the reflecting
layer and back up to the free surface, the reflection coefficient at the interface is r, and
that the free-surface reflection coefficient is -1. Now generate the seismogram with
multiples in it, i.e., s′ = s � m � w � g.

m(0) m(2) m(4) m(6) ..........
---------------------------------------- Free-surface Refl.

| ^ | ^ | ^ | Coefficient = -1
| | | | | | |
1| r | |-r -r^2| |r^2 | |-r^3
V | V | V | V

------------------------------------ Water Table Int. Refl.
Coefficient = r

np=input(’type # points Ricker wavelet. output file=out ’)

fr=input(’type peak frequency of Ricker wavelet’)

clear out

dt=.001;

npt=np*dt;

t=(-npt/2):dt:npt/2;

out=(1-t .*t * fr^2 *pi^2 ) .*exp(- t.^2 * pi^2 * fr^2 ) ;

plot(t,out);

axis([min(t) max(t) min(out) max(out)])

title([num2str(fr),’ Hz Ricker Wavelet at ...

Sampling Interval = ’,num2str(dt),’ sec’])

xlabel(’Time (s)’)

load vpp.mat;load depth.mat;

subplot(321);plot(depth,vpp);xlabel(’Depth (feet)’);

ylabel(’Velocity (ft/s)’);

title(’Sonic Log’);axis([0 800 4000 9000]);

subplot(322);

time(1)=0;for i=2:623;time(i)=2*dz/(vpp(i)) + time(i-1);end;

plot(time(1:623),vpp(1:623)); axis([0 .39 4000 9000])

xlabel(’2-Way Travel Time (s)’);

ylabel(’Velocity (ft/s)’);title(’Sonic Log: Velocity vs Travel Time’)

subplot(323);y=diff(vpp);dt=diff(time);add=vpp(1:622)+vpp(2:623);

rc=y(1:622)./add(1:622);stem(time(1:622),rc(1:622));

axis([0 .39 -.3 .3])

xlabel(’2-Way Travel Time (s)’);

ylabel(’Reflectivity ’);title(’Impulse Response: r(t)’)

x=[0:1:622]*time(622)/622;

subplot(324);delay=0.021101;

w=diff( exp(-62000*(delay-x).^2 )/2 );w=w/max(w);

plot(x(1:622),w(1:622));axis([0 .39 -1 1])

xlabel(’2-Way Travel Time (s)’);

ylabel(’Amplitude ’);title(’100 Hz Wavelet: w(t) ’)

dt=time(300)-time(299);

subplot(325);s=conv(w,rc);s=s/max(s);plot(time(1:622),s(1:622));

xlabel(’2-Way Travel Time (s)’);ylabel(’Amplitude ’);
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title(’Normalized Seismogram r(t)*w(t) ’)

axis([0 .39 -1 1])
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Chapter 1

Finite-Difference Approximation to
the Acoustic Wave Equation

1.1 Introduction

The Kirchhoff migration method relies on a high frequency approximation to estimate the
Green’s function g(x, t|x′, 0) ≈ A(x,x′)δ(τxx′ − t), where the geometrical spreading term
A(x,x′) and traveltimes τxx′ are computed by an efficient raytracing code. This has the
advantage of being computationally efficient, but it typically avoids multiples and turning
waves that can be used to image subsalt. For example, Figure ?? depicts the salt flank
imaged by a single-arrival Kirchhoff migration code and a 1-way wave equation migration
code. Here, the flat portions of reflectors are well imaged but the salt flanks are still
somewhat invisible. In comparison, the 2-way reverse time migration image clearly reveals
the salt flank by migrating the primary reflections from nearly flat layers as well as the
multiple reflections off the flanks (i.e., prism ray). The multiple prism wave reflections
illuminate the salt flank that is mostly invisible to the primary reflections in this experiment.
In this chapter we introduce the finite-difference method for approximating solutions to the
acoustic wave equation. In the limit as the grid spacing becomes small the solutions should
be exact and so include all primary and multiple scattering seen in the actual data. It is
for this reason that the finite-difference method is used in reverse time migration codes.
And the FD method is also uised to compute the band-limited Green’s functions for wave
equation inversion.

1.2 Finite Difference Method

This section discusses how to compute finite-difference solutions to the wave equation.
These solutions provide approximations to the Greens functions for forward and backward
wavefield propagation.

Table 1 contains various finite-difference approximations to 1st- and 2nd-order derivative
operators. The order of accuracy can be estimated by using a Taylor series expansion. For

61
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Kirchhoff Migration 1−Way Wave Equation Migration

2−Way Reverse Time Migration

ray
prism

Final 1−Way Wave Equation Migration

Figure 1.1: Images of salt flank formed by using single-arrival Kirchhoff migration, 1-way
wave equation migration, and a 2-way reverse time migration code. Note the prism ray that
illuminates the salt flank, and is only migrated by the RTM code. Taken from Farmer et
al. (2007, TLE).



1.2. FINITE DIFFERENCE METHOD 63

Table 1.1: Finite Difference (FD) formulae for 1st- and 2nd-order differential operators,
where dx is the difference interval.

Differential FD Approx. FD Name Order of
Operator Accuracy

df(x)/dx [f(x+ dx) − f(x)]/dx Forward FD O(dx)

df(x)/dx [f(x) − f(x− dx)]/dx Backward FD O(dx)

df(x)/dx [f(x+ dx) − f(x− dx)]/2dx Central FD O(dx2)

d2f(x)/dx2 [f(x+ dx) − 2f(x) Central FD O(dx2)
+f(x− dx)]/dx

example, in the forward FD approximation we have:

f(x+ dx) − f(x)
dx

=
f(x) + ∂f(x)/∂x · dx+ 0.5∂2f(x)/∂x2 · dx2 + ...− f(x)

dx
,

=
∂f(x)
∂x

+ 1/2
∂2f(x)
∂x2

· dx+ ....,

=
∂f(x)
∂x

+O(dx), (1.1)

which says that this FD approximation is first-order accurate in the sample interval dx.
Similarly, the central FD approximation to a second derivative ∂[∂f(x)/∂x]/∂x can be
proved by applying a forward FD approximation to the term in brackets and a backward
FD approximation to the outer term.

1.2.1 Finite-Difference Approximation to the Wave Equation

The 2-D acoustic wave equation for a medium with no density variations is given by:

∂2p(x, t)
∂x2

+
∂2p(x, t)
∂z2

− 1
c(x, z)2

∂2p(x, t)
∂2t

= f(x, t), (1.2)

where c(x, z) is the velocity field, p(x, t) is the pressure field and f(x, t) is the inhomogeneous
source term. The continuous wave equation and its solution can be discretized onto an
evenly sampled grid in the space-time domain, i.e.,
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(x, z, t) −−−−− > (i ∗ dx, j ∗ dz, t ∗ dt),
where i, j, t are integers

p(x, z, t) −−−−− > pt
ij,

f(x, z, t) −−−−− > f t
ij,

c(x, z) −−−−− > cij . (1.3)

and for convenience it will be assumed that the vertical gridpoint spacing dz is the same as
the horizontal spacing dx.

It is convenient to visualize wave propagation in a data cube (see Figure 1.2), with two
cartesian axis oriented along the x and z axes and the third axis is for the time variable t.
The depth of the data cube is given by Mdz = D, the width of the cube is Ndx = X, and
the temporal extent of the cube is Ldt = T , where M, N and L are integers.

Pivoting (i.e., evaluating) the pressure field at (i, j, t) and approximating the second-
order derivatives in equation 1.2 by 2nd-order correct central-difference approximations
yields:

pt+1
ij = a[pt

i+1j − 2pt
ij + pt

i−1j ] + a[pt
ij+1 − 2pt

ij

+pt
ij−1] + 2pt

ij − pt−1
ij − dx2af t

ij, (1.4)

where a = (dtcij/dx)2. If the initial conditions are given (i.e., p(x, t = 0) and ∂p(x, t = 0)/∂t
are known for all (x, z) ) then the present panel at t = 0 and past panel at t = −dt can be
used in equation 1.4 to find the panel of pressure field values at t = dt for all (x, z). These
field values at t = dt can then be used in conjunction with equation 1.4 to iteratively find
the pressure field at panels with increasing increments of time, as illustrated in Figure 1.

A transformation of coordinates from t = −t′, i.e., time reversal, will leave the form
of the wave equation equation 1.2 unchanged. Thus, the wave equation is invariant under
a sign reversal in time. The Green’s function of the time-reversed wave equation will be
the same as the original Green’s function, except for a change in the sign of the temporal
variable. Time will flow backward in this case, where the forward light cone in Figure 1.3
will become a backward light cone. The important point is that backward light cones can
be generated with the finite-difference equations by solving backward in time rather than
forward in time.

1.2.2 Stability and Accuracy

The accuracy of the 2-2 (i.e., 2nd-order accurate in time and space) scheme is empirically
found (Kelly et al., 1976) to be acceptable in a homogeneous medium if there are at least
10 points per minimum wavelength. However, 15-20 points per wavelength is usually used
for heterogeneous media. A higher-order FD scheme such as a 2-4 scheme requires about 5
points/wavelength in a homogeneous medium (Levander, 1989), but 10-15 points per wave-
length is needed in an heterogeneous medium. If the gridpoint spacing is too coarse, dipping
interfaces appear as stair-steps, where the edge of each step acts as a strong diffractor.

The CFL (Courant-Friedrichs-Levy) stability condition can be determined by noting
that a FD solution satisfying both the wave equation and the initial conditions at t = 0
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Figure 1.2: Depiction of 2-2 FD stencil for the 2-D acoustic wave equation. The future
value of the pressure at the (i, j) node (open dashed circle) is computed from the present
and past values of the pressure that neighbor the (i, j) node at the present time t. The
stencil can shifted within the t plane to compute the pressure values within the t+ 1 plane.
The pressure values at the boundaries of these planes must be specified.

❇
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Time

Z

Figure 1.3: Depiction of forward light cone generated by a FD solution to the wave equation
for a point source at depth. The Numerical Domain of Influence for the poitn source is alive
within the conical boundaries, but is quiescent outside the cone. Note that the physical
propagation velocity should be slower than the cone velocity in order for the FD solution
to emulate the actual wave phenomenon.
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must have a Numerical Domain of Dependence (DOD) (shown in Figure 1.4) larger than the
Analytical DOD (Mitchell and Griffiths, 1980). Otherwise the FD solution will be partly
ignorant of the initial conditions that influenced the solution at (x0, t0). This ignorance
will lead to an unstable FD solution. To avoid such ignorance the numerical propagation
velocity (defined by dx/dt in 1-D) must be faster than the actual propagation velocity c.
This condition is equivalent to the 1-D CFL stability criterion:

1
c

>
dt

dx
, (1.5)

which in two dimensions takes the form: and the 2-D stability criterion:

1√
2

>
cdt

dx
. (1.6)

Therefore, dx is selected to satisfy the accuracy condition and dt is selected to satisfy the
stability condition.
FD Exercises

1. Using a Taylor’s series, prove that [p(i + 1) − 2p(i)+p(i − 1)]/(dx2) is a 2nd-order
correct approximation to the second derivative.

2. Prove that [−p(i+2)+16p(i+1)−30p(i)+16p(i−1)−p(i−2)]/(12dx2) is a 4th-order
correct approximation to the second derivative.

3. Prove the 2-D stability condition given by equation 1.6. This is a necessary condition
for stability.

4. Prove that the stability condition for a 2-2 scheme in 3-D is the same as that for the
2-D case except the square root of 2 is replaced by the square root of 3.

1.3 Numerical Implementation of 2-2 FD Modeling

MATLAB codes will now be described which can be used for waveform inversion.

1.3.1 2-2 FD MATLAB Code

The MATLAB code for a 2-2 FD solution to the acoustic wave equation is given below.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (NX,NZ,NT) - input- (Horizontal,Vertical) gridpt dimens. of vel
% model & # Time Steps
% FR - input- Peak frequency of Ricker wavelet
% BVEL - input- NXxNZ matrix of background velocity model
% (dx,dt) - input- (space, time) sample intervals
% (xs,zs) - input- (x,z) coordinates of line source
% RICKER(NT) - input- NT vector of source time histories
% (p2,p1,p0) -calcul- (future,present,past) NXxNZ matrices of
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Figure 1.4: (Top) The dashed triangle outlines the region that influences the pressure value
at (x0, t0), and the heavy dashed horizontal line �AB at at t = 0 defines the analytical
domain of dependence (DOD). Here the physical propagation velocity is defined as c. The
dotted triangular region in the bottom left figure defines the region that influences the
pressure field at (x0, t0) computed by a FD scheme. This FD scheme is stable because the
numerical propagation velocity dx/dt is faster than the actual velocity c, or equivalently
the Numerical DOD is wider than the analytical DOD �AB. This is not true for the figure
at the bottom right.
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% modeled pressure field
% (p0,p1) -output- Old and present pressure panels at time NT.
% REALDATA(NX,NT) -output- CSG seismograms at z=2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c=4.0;FRE=20;
NX=300;NZ=NX; dx=c/FRE/20;dt=.5*dx/c;
xs=round(NX/2.3); zs=round(NX/2);NT=600;
t=[0:1:NT-1]*dt-0.95/FRE;RICKER=zeros(length(t));
RICKER= (1-t .*t * FRE^2 *pi^2 ) .*exp(- t.^2 * pi^2 * FRE^2 ) ;
plot([0:NT-1]*dt,RICKER);
title(’Ricker Wavelet’);xlabel(’Time (s)’)
BVEL=ones(NX,NZ)*c;
BVEL(NX-round(NX/2):NX,:)= BVEL(NX-round(NX/2):NX,:)*1.2;
REALDATA=zeros(NX,NT);
p0=zeros(NX,NZ);p1=p0;p2=p0;
cns=(dt/dx*BVEL).^2;
NX=200;NZ=NX;
for it=1:1:NT
p2 = 2*p1 - p0 + cns.*del2(p1);
p2(xs,zs) = p2(xs,zs) + RICKER(it);
REALDATA(:,it) = p2(xs,:)’;
p0=p1;p1=p2;
if round(it/20)*20==it;p00=p0/max(abs(p0(:))+.001);
imagesc([1:NX]*dx,[1:NX]*dx,(p00+BVEL)); colorbar;
pause(.1);end
end;
p1=p0;p0=p2;
title(’Snapshot of Acoustic Waves’)
xlabel(’X (km)’)
ylabel(’Z (km)’)

No absorbing boundary conditions have been included in the above code, but this prob-
lem can be rectified by absorbing boundary conditions (Kelly et al., 1976; Keys, 1985).

1.4 Sponge Absorbing Boundary Conditions

The boundaries along the side of the model reflect incident waves back into the model, and
therefore interfere with the desired waves. To minimize these spurious reflections from the
sides of the model absorbing boundary conditions are applied to the sides of the model. The
simplest absorbing boundary condition is that of a damping zone with thickness of about
50 grid points that are next to the sides of the model. Inside this region an exponential
damping function f(x, y) is applied to the waves at each time step: f(x, y) = e−αr where
f(x, y) = 1 if (x, y) are further than 50 grid points from the sides, and r is the distance
between the grid point at (x, y) and the nearest side boundary. The damping parameter α is
selected to minimize boundary reflections; usually a good value is such that the exponential
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Figure 1.5: Snapshot of an acoustic simulation in a 2-layer medium. The star denotes the
location of the point source.

damping is about .96 at the outer boundary of the model. An example of snapshot of a
propagating wave in a 2-layer medium is shown in Figure 1.5.

ABC Exercises

1. Prove that the stability condition for a 2-2 scheme in 3-D is the same as that for the
2-D case except the square root of 2 is replaced by the square root of 3.

2. Write a MATLAB code that computes a 4th-order finite difference solution to the
acoustic wave equation.

3. Show that the rightgoing propagating plane wave p = eiωx/c−iωt exactly satisfies the
absorbing boundary condition ∂p/∂t + c−1∂p/∂x = 0. Show how a 1-1 FD approxi-
mation to this equation can be used to update the right-hand-side boundary values of
the t+1 panel in Figure 1.2. Describe the absorbing boundary conditions that absorb
upgoing or downgoing or leftgoing plane waves. See Keys (1985) for a generalization
of these absorbing boundary conditions.

4. Make a movie of waves emanating from a buried point source in a 300x200 grid model
with a Ricker wavelet time history for the point source. Let c=5000 ft/s and choose
the dx and the peak frequency of the Ricker source wavelet so that there are about
15 points/wavelength, where the minimum wavelength is twice the peak frequency of
the Ricker wavelet. The code for the zero-phase Ricker wavelet is given below, and
the wavelet is delayed in time to insure causality of the source wavelet.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% NT - input- # points Ricker wavelet
% FR - input- Peak frequency of Ricker wavelet
% dt - input- Temporal sampling interval
% RICKER -output- Time delayed Ricker wavelet
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

t=[0:1:NT-1]*dt-0.95/FR;RICKER=zeros(length(t));
RICKER= (1-t .*t * FR^2 *pi^2 ) .*exp(- t.^2 * pi^2 * FR^2 ) ;

Exercise 1 Apply a 40-point sponge zone to the 2-2 FD code. Find the value of α that
optimizes absorption of waves that enter the sponge zone.

1.5 Absorbing Boundary Conditions

An important absorbing boundary condition (ABC) is obtained by factoring the wave equa-
tion into leftgoing and rightgoing component PDEs that are a weighted sum of 1st-order
space and time derivatives. That is, the 1D wave equation can be recast into the following
form:

rightgoing waves︷ ︸︸ ︷
(
∂

∂x
+

1
c

∂

∂t
)

leftgoing waves︷ ︸︸ ︷
(
∂

∂x
− 1
c

∂

∂t
) P = 0, (1.7)

where a homogeneous velocity c is assumed and P is the solution to the wave equation.
The left-bracketed term above is called a rightgoing wave annihilator because a rightgoing
plane wave P+ = ei(kx−ωt) (for k > 0, ω > 0) exactly satisfies this equation. That is,

rightgoing︷ ︸︸ ︷
(
∂

∂x
+

1
c

∂

∂t
)P+ = i(k − ω/c)P+ = 0. (1.8)

In a similar fashion, the other bracketed term in equation 1.7 exactly annihilates leftgoing
waves P− = ei(kx+ωt) such that

leftgoing︷ ︸︸ ︷
(
∂

∂x
− 1
c

∂

∂t
)P− = i(k − ω/c)P− = 0. (1.9)

Therefore, we can apply the 1st-order rightgoing wave operator to the rightside boundary
of the computational grid and expect perfect annihilation of a plane wave that is purely
rightgoing. A similar procedure can be used for the leftside boundary except we use a FD
approximation to the leftgoing annihilation operator1. These operators can be approximated
by one-sided FD approximations to the first-order spatial derivative. The one-sided nature

1For the bottom of the model the dowgoing wave annihilator is (∂/∂x− 1/c∂/∂t) for decreasing z in the
depth directions.
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of the FD approximation insures that the FD stencil does not need field values outside the
grid.

As an example, the FD approximation to the rightgoing operator in equation 1.7 is

(
∂

∂x
+

1
c

∂

∂t
)P ≈ P t

i+1 − P t
i

Δx
+

1
c

P t+1
i+1 − P t

i+1

Δt
= 0 (1.10)

where the spatial pivot point is at the i + 1 gridpoint along the x axis. Here, a 1st-order
forward differencing in time (pivoted at time t) is used along with a backward differencing
in space (pivoted at spatial gridpoint i+ 1).

The unknown field value P t+1
N at future time t + 1 can be solved for at the rightside

boundary labeled as i+ 1 = N to get

P t+1
N = −cΔtP

t
N − P t

N−1

Δx
+ P t

N . (1.11)

Note, the field values at time t are assumed to be known everywhere within the computa-
tional model. Here, the spatial index numbers increase for points from left to the right with
the last computational gridpoint number denoted as N . A similar argument shows that the
leftgoing operator applied to the leftside boundary is given by

P t+1
1 = cΔt

P t
2 − P t

1

Δx
+ P t

1 , (1.12)

except the 1st-order spatial derivative is replaced by a forward difference approximation
pivoted at the number 1 gridpoint.

What happens if the wave, e.g., P+ = ei(kxx+kzz−ωt) is traveling obliquely to the hor-
izontal axis? In this case we see that the rightgoing operator does not exactly satisfy the
wave equation:

(
∂

∂x
+

1
c

∂

∂t
)P+ = i(kx − ω/c)P+ 	= 0. (1.13)

In this case the only way the equation can be satisfied at the boundary is if a left going
wave with reflection strength R is generated at the boundary. That is, at the boundary, a
combination of a rightgoing and leftgoing waves

P+ =

rightgoing︷ ︸︸ ︷
ei(kxx+kzz−ωt) +

leftgoing︷ ︸︸ ︷
Rei(−kxx+kzz−ωt), (1.14)

are superimposed to exactly satisfy the rightgoing wave operator. The value of R increases
with increasingly oblique angles of incidence. This can be shown analytically by plugging
equation 1.14 into equation 1.8 and solving for R.

To annihilate waves at several incidence angles Keys (1985) showed that the wave equa-
tion could be decomposed into

rightgoing waves︷ ︸︸ ︷
(∇ +

a
c

∂

∂t
) ·

leftgoing waves︷ ︸︸ ︷
(∇− a

c

∂

∂t
) P = 0, (1.15)
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Artificial reflections

  a).         R vs Incidence Angle                        b).      Shot Gather with no ABC        c). Shot Gather & Normal Incid. ABC     

Figure 1.6: a). R vs incidence angle graph for incidence angles |θ| equal to 15 degrees and
45 using the ABC in equation 1.17, b). shot gather using no ABC along left and right
sides of model, and c). shot gather using an ABC tuned to annihilate plane waves normally
incident on the boundary.

where a is selected to absorb waves at several incidence angles. In this case the rightgoing
wave operator will annihilate a rightgoing plane wave P+ = ei(kxx+kzz−ωt) if a/c is equal to
k = (kx, kz), which is parallel to the oblique direction of k. This can easily be seen since
∇P+ = ikP+, which when plugged into the rightgoing operator in equation 1.15 gives

∇P+ − a
c

∂P+

∂t
= i(k − a

c
) = 0, (1.16)

if a/c = k. A slight adjustment of this ABC increases its capability to absorb plane waves
in two directions parallel to either k1 and k2. This adjusted ABC is given by

a1 · (∇P+ − a2

c

∂P+

∂t
) = 0, (1.17)

where one of the perfect absorption directions is parallel to a2 and the other is at (a1 +
a2)/|a1 + a2|2. Figure 1.6a depicts the reflection strength |R| vs incidence angle for waves
reflecting from a boundary with the equation 1.17 ABC. Here, the ABC is designed to
perfectly annihilate waves incident at angles of plus/minus 15 and 30 degrees. Figures 1.6b-
c depict shot gathers before and after application of ABCs along the side boundaries. Note
the improvement in reducing artifacts from the model boundaries after application of the
ABC.

Since waves are typically traveling in all directions at a model boundary then some
artificial reflections are generated for non-normal incidence angles, even for the equation 1.6
ABC. Thus we get artificial unwanted reflections generated at the boundaries that propagate
into the interior part of the grid. If such artificial reflections are strong then they can spoil
the accuracy of the simulation. For this reason a combination of 1st-order ABC’s and
absorbing sponges are used in some FD codes.

2Note, a rogue plane wave traveling in a direction not parallel to a2 will not zero out the term in
parentheses in equation 1.17; instead it will leave a predictable residual vector denoted by r. In this case we
can choose a1 to be perpendicular to r so this rogue plane wave will be annihilated.
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1.6 Summary

A 2-2 finite difference scheme is used to simulate wave propagation in an arbitrary velocity
model of constant density. The method can be used to migrate reflected arrivals in RTM, or
estimate the velocity distribution for waveform inversion. Stability and accuracy conditions
are described, and absorbing boundaries should be applied to the model to minimize spu-
rious reflections. The more modern approach is to use much higher order finite-difference
stencils, with recommendations of up to 8th-order in space and 4th-order in time. This will
enhance the accuracy but slow down the computation time.
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Chapter 2

Traveltime Calculation by Solution
of Eikonal Equation

This chapter introduces the eikonal equation, and shows how to solve it by a finite-difference
method. The output is the first-arrival traveltime field for a smoothly varying inhomoge-
neous velocity model. These traveltimes are used for both traveltime tomography and
reflection migration.

Section 1 describes the derivation of the eikonal equation, followed by section 2 which
presents the algorithm for computing traveltimes by a finite-difference solution to the eikonal
equation.

2.1 Eikonal Equation

The acoustic isotropic wave equation from chapter 1 can be expressed in terms of the particle
displacement vector u:

ρ
∂2u
∂t2

= ∇(κ∇ · u), (2.1)

where κ is the bulk modulus.
For a harmonic plane wave source oscillating at angular frequency ω and a scatterer

embedded in a medium with smoothly varying velocity, it is reasonable to assume that
scattered far-field first arrivals can be approximated by a free-space Green’s function, i.e,

u(r, ω) ∼ A(r)eiωτ , (2.2)

where the scatterer is at the origin, τ is the traveltime from the scatterer to the interrogation
point r, and A(r) is a displacement vector that accounts for scattering and geometrical
spreading losses. This displacement vector is parallel to the direction of wave propagation,
as a P body wave should behave.

Equation 2.2 can be used as an ansatz or trial solution to the wave equation. The
unknowns A and τ can be found by plugging equation 2.2 into equation 2.1 to yield a
quadratic equation in ω. At high frequencies, the geometrical spreading term is governed
by the transport equation:

−ρA + κ(A · ∇τ)∇τ = 0. (2.3)

75
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This equation is true by choosing ∇τ to be parallel to A to give

|∇τ |2 = ρ/κ = vP
−2, (2.4)

where vP is the P-wave velocity. This equation is valid for smoothly varying velocities where
the dominant wavelength of the velocity medium is at least 3 times larger than that of the
source wavelength (Bleistein, 1993).

Equation 2.4 is the P-wave eikonal equation whose solution can yield the traveltime
of the first P- arrival everywhere in an inhomogeneous velocity medium. This equation
also leads to the traveltime integral which is used to calculate the traveltimes of rays that
traverse the medium. For an elastic medium with both P and S body waves the eikonal
equations are derived in the appendix.

2.1.1 Finite Difference Solution To The Eikonal Equation

The traveltime field can be computed by a finite-difference solution to the eikonal equation
(Qin et al., 1992). For the refraction tomography example in Figure ??, the finite difference
algorithm is given in the following steps:

1. Project the slowness field s(x) onto a rectangular grid of nodes as shown in Figure ??,
and assume a constant slowness value si in the ith cell.

2. Calculate the first arrival traveltime from the source point to its nearest eight neigh-
boring nodes by simple ray tracing or a simple finite-difference approximation to the
eikonal equation. In the Figure 2.1a example, the traveltime tB1 at point B1 is calcu-
lated by tB1 = Δx s( �B1), where Δx is the distance between the source and the point
B1. The other seven gridpoints are timed in a similar fashion. The outer ring of timed
gridpoints represents the computational wavefront at a particular iteration; and the
computational wavefront expands along with the physical first arrival wavefront. Ray
tracing is used until the computational wavefront is at least 5 points from the source
point (see Qin et al., 1992).

3. Approximate the eikonal equation by a finite difference formula (Vidale, 1990); e.g.,
in Figure 2.1b the finite-difference approximation centered at point c becomes

((te − tw)/2h)2 + ((tn − ts)/2h)2 = s(�c)2 (2.5)

If the known traveltimes are at points w, n, and s then the unknown traveltime at
point e can be found from the above equation to give

te = tw + 2h
√

(s̄2 − (tn − ts)2/4h2). (2.6)

The gridpoints at or next to the corner points are timed by the stencils shown in
Figure 2.1b.

4. Search for the minimum traveltime point along the computational wavefront and, from
this minimum traveltime point, expand the solution to its nearest outer neighbor. For
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Figure 2.1: The finite-difference grid and differencing stencils associated with the discrete
approximation to the eikonal equation. The stencils are shown for the (a). source point
region and (b). away from the source point region. In Figure (a), point A is the source
point and the points shown as filled or dashed circles are about to be timed. In Figure (b),
the dashed circles are about to be timed.
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example, the dotted circle in Figure 2.2 is assumed to belong to the minimum travel-
time so the solution is expanded (using a formula similar to that in equation 2.6) from
X to its nearest neighbors (open circles along perimeter in Figure 2.2b) . Update the
computational wavefront by including the 3 newly timed points shown in Figure 2.2c.

5. Step 4 is repeated until all of the gridpoints in the model have been timed. Expanding
outward from the minimum traveltime point insures that the computational wavefront
stays nearly coincident with the physical wavefront of first arrivals. This prevents
violation of causality (Qin et al., 1992).

Note that the above procedure times new points along and ”expanding wavefront”.
This is superior to that of an ”expanding square” because an ”expanding square” solution
will violate causality, as shown in Figure 2.3. The problem with this ”expanding square”
strategy is that it is invalid for models with moderate to large velocity contrasts. It is
because causality, that is ”the time for the part of the ray path leading to a point must be
known before the time of the point can be found” (Vidale, 1990), is violated in some cases.
This can lead to negative values inside the square root resulting in completely erroneous
traveltimes. Figure 2.3 is a sketch to show the difference between the actual wavefronts and
those calculated by the ”expanding square” method. The miscalculation of the head waves
is clearly seen. The above procedure can be quite expensive because each gridpoint will
initiate a minimum traveltime search along its associated computational wavefront of O(N)
points. Thus, the computational cost to time the entire grid will be O(N3) operations for
a square model of NxN gridpoints. To reduce this cost to O(N2) operations, Qin et al.
(1992) suggest that the perimeter search for the minimum traveltime point be reinitiated
only after the computational wavefront expands over some fixed time interval, say δt. Prior
to the next perimeter search at, say t+ δt, the solution is expanded in the same pointwise
order as determined by the previous perimeter search at t. Larger δt values will lead to less
traveltime accuracy, so there is a tradeoff between accuracy and computational efficiency.

The advantages of the calculating traveltimes by a finite-difference method compared
to raytracing are (Vidale, 1990) that traveltime fields can be computed in shadow zones,
some multipathing events are included and the entire grid is efficiently timed. Knowing
the traveltimes at all gridpoints can facilitate applying traveltime tomography to the data
(Nolet, 1987). The disadvantage is that only first arrivals can easily be computed. See
Figure 2.4 for an example of traveltime contours computed by a finite difference solution of
the eikonal equation for a low velocity cylinder model.

Raypaths are computed by either tracing rays normal to a wavefront, or by invoking
the traveltime reciprocity equation

τrs = τrx + τxs, (2.7)

where τxs, τrx and τrs are the first arrival traveltimes, respectively, from the source point
s to x, from the receiver point r to x, and from the source point to the receiver point.
The first arrival raypath between s and r is described by the locus of points x that satisfy
equation 2.7.
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Figure 2.2: Figure illustrating the ”expanding wavefront” method. (a) The solution region
and the minimum traveltime point (filled dot inside an open circle ). The dashed curve
represents the actual wavefront. (b) The solution region is expanded to the points (open
circles along perimeter) adjacent to the minimum traveltime point. The finite-difference
stencils used to time the new points are shown above the solution region. (c) New solution
region and new minimum traveltime point among the new perimeter points.
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Figure 2.3: A sketch to show the differences between (a) the actual wavefront and (b) the
wavefront calculated by the expanding square method for a 2 layer model. Note that the
expanding square wavefront is incorrect if the critical angle θc is less than sin−1(V1/V2) =
45◦ ( or V1/V2 < 0.7071 ).
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Figure 2.4: (Top) First arrival traveltime contours for a source located on the left side of a
low velocity cylinder. (Bottom) First arrival traveltime contours for a source located at the
star position on left side of the cylinder. All traveltimes computed by a Finite Difference
solution to the eikonal equation.
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Figure 2.5: Langan velocity model adapted from a Southern California well log and rays
computed by a shooting method. Note the failure of rays to penetrate into the shadow
zones.
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2.2 Traveltime Integral

The traditional means for solving the eikonal equation is by a shooting ray trace method (Aki
and Richards, 1978). While useful, the shooting method can be expensive when the entire
grid of traveltimes is needed, and can be difficult to implement when there are numerous
shadow zones as shown in Figure 2.5. Here we describe a simple algorithm for tracing rays
via the shooting method.

The first step is to pound the eikonal equation into a traveltime integral. We do this
by defining the unit direction vector d̂l = ∇τ(x)/|∇τ(x)| which depends on the slowness
medium s(x). Therefore the eikonal equation can be cast into the form

d̂l · ∇τ(x) = s2(x), (2.8)

or rearranging and defining dτ(x)/dl = ∇τ(x) · d̂l we get

dτ(x)
dl

= s(x)2/|∇τ(x)| = s(x). (2.9)

Integrating this one-dimensional ODE with respect to the raypath differential length we get
the traveltime integral

τ(x|s) =
∫

raypath
s(x)dl, (2.10)

where we have introduced the traveltime notation τ(x|s) to account for the initial conditions
that the ray starts out at the source coordinates s and ends at the observer point x. The
traveltime computed by the above integral is the time it takes for energy to follow Snell’s
law and propagate from s to x given some starting ray angle at s. It is a high frequency
approximation valid for a slowness medium whose dominant wavelength (take a 2D spatial
Fourier transform of model and highest wavenumbers kx and ky in the model spectrum
define the shortest wavelengths in the slowness mdoel) is about 3 or more times longer
than the dominant frequency in the source wavelet (Bleistein, 1984). The problem with the
traveltime integral is that it is non linear with respect to the slowness field because both the
raypath and the integrand depend on the slowness field. The next section will show how
to linearize this modeling equation so that we can invert traveltime data for the slowness
field. This inversion procedure is often refered to as traveltime tomography.

The procedure for solving the traveltime integral is sketched in rough psuedo-code.

[x(1),z(1)]=[1,1]*dx;angle=pi/6;m=sin(angle)/cos(angle);
z(2)=z(1)+m*(dx+x(1));
for i=2:L
[gradx,gradz]=grad(s,x(i),z(i)); % Find gradient of

% slowness field s at [x,z].
[dlx,dlz]=[gradx,gradz]/(sqrt(gradx^2+gradz^2));
% [dlx,dlz] is the unit vector perpendicular to flat interface
% Write a subroutine that finds angle of transmitted ray across this
% flat interface that satisfies Snell’s law for incident ray with
% slope=[z(i)-z(i-1)]/(x(i)-x(i-1)]. This transmitted ray has a new
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% slope we define as m, which is used in next calculation statement.
z(i+1)=z(i)+m*(dx+x(i));
x(i+1)=x(i)+dx;
end

The above pseudo code needs to be regularized to avoid zeros in the denominators, e.g., the
slowness gradient calculation, and assumes a ray that monotonically moves to the right.

2.3 Perturbed Traveltime Integral

The eikonal equation can be used to derive the traveltime integral associated with a per-
turbed slowness medium. This integral is the keystone equation by which the slowness
model can be efficiently updated in traveltime tomography.

Let the slowness perturbation from a background slowness field s(x) be given by δs(x),
and let the corresponding perturbed traveltime field be given by t(x) + δt(x). Here, t(x) is
the unperturbed traveltime field and δt(x) is the traveltime perturbation. The perturbed
traveltime field honors the eikonal equation

|∇t(x) + ∇δt(x)|2 = |∇t(x)|2 + 2∇δt(x) · ∇t(x) + |δt(x)|2

= s(x)2 + 2δs(x)s(x) + δs(x)2. (2.11)

Subtracting equation 2.11 from the unperturbed eikonal equation we get

2 ∇t(x) · ∇δt(x) + |δt(x)|2 = 2δs(x)s(x) + δs(x)2, (2.12)

and neglecting the terms second order in the perturbation parameters this becomes

∇t(x) · ∇δt(x) = |∇t(x)| dl̂ · ∇δt(x)

= δs(x)s(x), (2.13)

where dl̂ is defined to be the unit vector parallel to the unperturbed ray direction, so that
∇t(x) = |∇t(x)| dl̂.

Defining the directional derivative along dl̂ to be d/dl = dl̂ · ∇ (note, this direc-
tional derivative is determined by the background slowness distribution, not the perturbed
medium), and dividing equation 2.13 by |∇t(x)| = s(x) gives

dδt(x)/dl = δs(x). (2.14)

Multiplying both sides by dl and integrating along the old raypath finally yields the per-
turbed traveltime integral

δt(x) =
∫

raypath
δs(x′)dl′, (2.15)

which is correct to first order in the perturbation parameters. Equation 2.15 says that
the traveltime perturbation due to a slowness perturbation is given by an integration over
the old raypath weighted by the slowness perturbation. This can be quite cost efficient



2.4. TRAVELTIME TOMOGRAPHY 85

because the traveltime perturbation calculation uses the old raypaths and does not require
the retracing of rays through the perturbed slowness model.

Replacing the perturbation parameters in equation 2.15 by the unperturbed traveltimes
and slownesses gives the traveltime integral

t(x) =
∫

raypath
s(x′)dl′. (2.16)

The traveltime integral represents the integral equation solution to the unperturbed eikonal
equation.
This is a non-linear equation because both the raypath and integrand depend on the slowness
model s(x′).
Parameterization of Slowness Model. The slowness perturbation field s(x) can be
discretized into N cells of constant slowness so that the jth cell has slowness perturbation
δsj . Equation 2.15 then reduces to a summation

δti =
N∑
j

lijδsj (2.17)

where δti is the ith traveltime perturbation and lij is the segment length of the ith ray in
the jth cell. If there are M equations then these form a system of equations represented by

�δt = L�δs, (2.18)

where L is the MxN raypath matrix with elements lij, �δs is the Nx1 slowness vector,
and �δt is the Mx1 traveltime perturbation vector. If the slowness perturbations are zero
everywhere except in the kth cell, then equation 2.17 becomes

δti = likδsk,

or dividing by the segment length
δti/δsk = lik. (2.19)

δt(x)i/δsk is known as the Frechet derivative, or the change in the ith traveltime data with
respect to a change in the kth model parameter. When convenient, the perturbation symbol
δ will be replaced by the partial derivative symbol ∂. Smoother parameterizations can be
used such as piecewise continuous spline functions.

2.4 Traveltime Tomography

To solve for the slowness distribution from the observed traveltimes in the non-linear equa-
tion 2.16 we first linearize it to get equation 2.15, solve this equation and update the slowness
model. We then repeat this process until convergence.

1. Set initial model s(0) and find predicted times t(0) = Ls(0). Set nit = 0.
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2. Find traveltime residual δt(nit), which is the difference between predicted and observed
traveltimes. Find perturbed slowness δs(nit) = LTL−1LTδt(nit). The matrix inversion
is sometimes too expensive so we solve for δs(nit) by some type of iterative method
such as a limited number of iterations in a conjugate gradient method or steepest
descent method.

3. Update slowness s(nit+1) = s(nit) + δs(nit) and then find updated predicted traveltimes
t(nit+1) = Ls(nit+1).

4. Set nit = nit+ 1 and repeat steps 2-4 until convergence.

2.5 Summary

The eikonal equation is derived from the wave equation, and is used to compute both rays
and traveltimes for high frequency waves propagating through a smooth velocity medium.
In practice, this means that the characteristic wavelength of the velocity fluctuations must
be more than three times longer than the source wavelength (Bleistein, 1984). The finite-
difference solutions to the eikonal equations are computed and used to compute traveltimes
and rays for traveltime tomography. Computing the traveltimes for every grid point is
very convenient for refraction tomography where there is dense source-receiver coverage in
exploration surveys.

2.6 Exercises

1. Prove equation 2.23. State the conditions under which it provides a correct kinematic
description of wavefield propagation.

2. Sketch out a rough MATLAB code that solves the 2-D eikonal equation for an arbitrary
velocity model.

2.7 Appendix: Eikonal equations for elastic wave equation

The elastic isotropic wave equation is given by

ρ
∂2ui

∂t2
=
∂τij
∂xj

, (2.20)

where

τij = λδij
∂uk

∂xk
+ μ(

∂ui

∂xj
+
∂uj

∂xi
), (2.21)

where τij represents the stress tensor (see chapter on elastic wave propagation). Here,
repeated indices indicate summation from 1 to 3, uk corresponds to the kth particle dis-
placement, ρ is density, and λ and μ are the Lame’s constants.
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For a harmonic plane wave source oscillating at angular frequency ω and a scatterer
embedded in a homogeneous medium, it is reasonable to assume that scattered far-field
first arrivals can be approximated by a free-space Green’s function, i.e,

�u(r, ω) ∼ �A(r)eiωτro , (2.22)

where the scatterer is at the origin, τso is the traveltime from the scatterer to the interroga-
tion point r, and �A(r) is a displacement vector that accounts for scattering and geometrical
spreading losses.

Equation 2.22 can be used as an ansatz or trial solution to the wave equation. The
unknowns A and τ can be found by plugging equation 2.22 into equation 2.20 to yield a
quadratic equation in ω. At high frequencies, the geometrical spreading term is governed
by the transport equation:

−ρ �A+ (λ+ μ)(A · ∇τ)∇τ + μ|∇τ |2A = 0. (2.23)

This equation is true either by:

1. choosing A · ∇τ = 0 which implies

|∇τ |2 = ρ/μ

= vS
−2, (2.24)

2. or choosing ∇τ to be parallel to A to give

|∇τ |2 = ρ/(λ+ 2μ)

= vP
−2, (2.25)

where vP and vS are the P- and S-wave velocities, respectively.

Equations 2.24 and 2.25 are the S- and P-wave eikonal equations, respectively, whose solu-
tions yield the traveltimes of the first P- and S-wave arrivals everywhere in an inhomoge-
neous velocity medium.
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Chapter 1

Least Squares Optimization and
Traveltime Tomography

1.1 Introduction

Sometimes the best way to quickly understand a topic is to use an example, particularly
one that is both simple and practically interesting. Here I present the example of traveltime
tomography. Many of the key ideas in this simple example reinforce the central principles
of seismic optimization, where other books provide greater details and depth of analysis.

We will introduce a special type of optimization, least squares inversion (Nolet, 1987; Gill
et al., 1981;Fletcher, 1987; Nemeth et al., 1997). In this case, a misfit function is formed
by summing the squared traveltime residuals and the solution is the one that minimizes
the misfit function. The traveltime residual is the difference between the observed and
predicted traveltimes. The obtained solution is the starting model for the next iteration
because typical geophysical problems are strongly non-linear.

We will first review the main characteristics of an overconstrained system of equations,
and then show how such systems characterize traveltime tomography problems. This exam-
ple will illustrate the three features of a well-posed inverse problem: existence of a solution,
uniqueness, and stability (Groetsch, 1993).

1.2 Least Squares Minimization

An overconstrained system of linear equations has more equations than unknowns. For
example, the 3x2 system of equations symbolized by Ls = t is given by⎡

⎢⎣ 1 0
1 1

0.7 0.7

⎤
⎥⎦ ·
(
s1
s2

)
=

⎛
⎜⎝ 1

2
2

⎞
⎟⎠ . (1.1)

Note, these equations are inconsistent, i.e., no one solution can simultaneously satisfy all
of the equations. For example, the second and third equations conflict with one another.

A physical example related to equation 1 is the tomographic imaging experiment shown

91
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Figure 1.1: Imaging experiment related to equation 1. The data are the measured travel-
times, the segment lengths are denoted next to the segment, and the goal is to reconstruct
the slowness value in each cell. Note, the total traveltime is the sum of the segment travel-
times (i.e., (segment length)xslowness) in a ray.

in Figure 1.1. The traveltime for each curved ray is governed by the traveltime integral:

t(x, y) =
∫

raypath
s(x, y)dl, (1.2)

where t(x, y) is the traveltime for waves to propagate from the source along the raypath
to the observer point at (x, y), s(x, y) = 1/c(x, y) is the slowness and dl is the incremental
change in distance along the raypath. The velocity model is discretized into N cells of
unknown constant slowness, the traveltime integral becomes approximated by a summation

ti =
∑

lijsj (1.3)

over the subsegment lengths lij of the ith ray that intersect the jth cell, and there are
M equations. This results in a MxN system of equations, denoted as Ls = t, where t
represents the measured Mx1 traveltime data vector, and s is the Nx1 vector of unknown
slownesses in the cells. The MxN matrix L contains the segment lengths of the rays. The
Appendix derives this integral starting from the wave equation.

The goal is to solve the system of equations 1.3 and find the unknown slowness values
si in each cell. The solution to this overconstrained system of equations gives the slowness
tomogram s. Physically, the traveltime equations are inconsistent because the data contain
traveltime picking errors and/or because the physics used to model the data is incomplete.

Geometrically, the three equations in 1.1 plot as straight lines shown in Figure 1.2a,
and no common intersection point means that the equations are inconsistent. Although
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Figure 1.2: (a). Lines associated with equation 1, where the equations are inconsistent so
there is no common intersection point. (b). Error surface associated with misfit function.
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there is no exact solution to equation 1.1, we would be happy with an approximate solution
”close” to the points of intersection. Such a compromise is the least squares solution which
minimizes the following misfit functional:

ε = 1/2 [Ls− t ]T · [Ls − t ],

= 1/2
3∑

i=1

2∑
j=1

(lijsj − ti)2,

= 1/2
3∑

i=1

r2i , (1.4)

where ri is the ith residual, i.e., the difference between the ith component of the predicted t
and the actual RHS vector t. If the rays bend then the matrix components in equation 1.1
depend on the unknowns s. This means that the above system of equations should be
replaced by their linearized approximation represented by Loδs = δt, as discussed in a later
section. Here, δs = so − s, where so is the background slowness model.

Plotting the misfit value against s1 and s2 yields the error bowl shown in Figure 1.2b. It
is obvious that the bottom of this error bowl is directly over the optimal solution s∗, which
will also be considered the least squares solution. There is a bottom to the error bowl, so
we now know there exists a least squares solution.

Plotting out the error surface to find the optimal solution may be convenient for sys-
tems of equations with just a few unknowns, but is impractical for many unknowns. A
more systematic approach is to recognize that at the bottom of the error bowl the partial
derivatives ∂ε/∂si = 0 are simultaneously zero. That is,

∂ε/∂sk =
3∑

i=1

2∑
j=1

[(lijsj − ti)lij∂sj/∂sk + (lijsj − ti)sj∂lij/∂sk],

≈
3∑

i=1

2∑
j=1

(lijsj − ti)lijδjk, (1.5)

where δjk = 1 if j = k, otherwise it is equal to zero. The far-right term sj∂lij/∂sk(
∑

j lijsj−
ti) is often neglected partly because it is too expensive to compute and partly because
∂lij/∂sk is really small when the background slowness model is sufficiently close to the
actual model. Of course, if the rays were straight then Tik is identically zero because
straight rays do not change with slowness perturbations. Therefore,

∂ε/∂sk =
3∑

i=1

(liksk − ti)lik,

= [LT (Ls− t)]k = 0 k = 1, 2. (1.6)

This is exactly the gradient for the small residual Gauss-Newton method derived in Fletcher
(1987) or Gill (1981). The extra term of second derivatives is not present because the
starting equations were assumed to be linear.
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Figure 1.3: The least squares solution finds the optimal s∗ so that the residual Ls∗ − t is
orthogonal to the predicted traveltimes given by Ls∗.

1.2.1 Normal Equations

Equation 1.6 can be more compactly written as

LTLs∗ = LT t∗, (1.7)

and are called the normal equations. In this case, LTL is a symmetric 2x2 matrix and
the two unknowns s1 and s2 can be solved by inverting the above matrix to give the least
squares solution denoted as s∗. These two constraint equations were obtained by setting
to zero the misfit derivative along each of the si coordinates. Note, we assume a system of
linear equations, otherwise the derivative w/r to si would also be applied to the lij terms.

For a general MxN system of linear equations, equation 1.7 is used to solve for the
least squares solution that minimizes the sum of the squared residuals. These are called the
normal equations because equation 1.7 can be rearranged and multiplied by sT to give

(Ls,Ls − t) = 0, (1.8)

which says that the residual vector r = Ls − t is normal to the predicted RHS vector Ls,
as shown in Figure 1.3.

What kind of matrix L is associated with the diagram in Figure 1.3? The answer is
L= [a b; c d; 0 0], because Ls = t can be expressed as a sum of column vectors⎡

⎢⎣ a
c
0

⎤
⎥⎦ s1 +

⎡
⎢⎣ b
d
0

⎤
⎥⎦ s2 =

⎛
⎜⎝ t1
t2
t3

⎞
⎟⎠ , (1.9)

where each column vector is one of the column vectors in L. The last component of these
column vectors is zero, so no weighted linear combination of them can create a component
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that lives in the t3 dimension shown in Figure 1.3. In other words, the columns of L
only span the horizontal plane formed by the t1 and t2 basis vectors. This is another
interpretation of inconsistent traveltime equations: they predict data vectors t that cannot
live in the same space as the observed data vector.

Exercises

1. The column span of the MxN matrix L is the ensemble of Mx1 vectors that are
linear combinations of the L column vectors. What plane is spanned by the 3x1
column vectors in L = [1 1; 1 0; 1 0]? Is that plane closer to the observed 3x1 vector t
than the t1xt2 plane in Figure 1.3? The Mx1 t vector represents data, so the column
vectors of L are said to span a region of data space.

2. Can every region in three-dimensional space be spanned by the column vectors in
L = [1 1; 1 0; 1 0]?.

3. What geometrical object, line or plane, is spanned by the column vectors in L =
[1 2; 1 2; 1 2]? Are these two column vectors in data space linearly independent?

4. Linear combinations of slowness vectors span a model space. For the example L =
[1 2; 1 2; 1 2], show that there is more than one 2x1 slowness vector s that yields the
same predicted traveltime equations. This means that the solution is non-unique.

5. The vectorso such that Lso = (0 0 0)T is known as a null space vector. Any null space
vector added to a solution of L(s+s0) = t will also satisfy the traveltime equations. In
other words, there are non-unique solutions. The space spanned by these null vectors
define the model null space. What geometrical object is spanned by the model null
space vectors for L = [1 2; 1 2; 1 2]? This space is known as the model null space, and
is characterized by zero eigenvalues of LTL.

6. Show that the model null space vector for L = [1 2; 1 2; 1 2] is the same as the
eigenvector of LTL associated with a zero eigenvalue.

7. Insert a new ray that is parallel to ray 3 in Figure 1.1, and call it ray 4. Show that
the three traveltime equations associated with rays 2, 3 and 4 in Figure 1.1 give rise
to a non-empty null space. What does this say about the ability of a straight ray
crosswell experiment to resolve lateral velocity variations? A crosswell experiment is
one in which the receivers are along a vertical well and the sources are along another
vertical well offset from the receiver well.

1.2.2 Poorly Conditioned Equations and Regularization

The condition number of LTL can be large and therefore many different solutions can give
rise to nearly the same value of ε. This is an example of an unstable or ill-conditioned
inverse problem. To clarify this statement, we define a system of equations as⎡

⎢⎣ κ1 0
0 κ2

κ1 0.

⎤
⎥⎦ ·
(
s1
s2

)
=

⎛
⎜⎝ 1

1
3

⎞
⎟⎠ , (1.10)
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Figure 1.4: Poorly conditioned LTL leads to long valleys in the contoured misfit function.
Equivalently, many different models can equally account for the data.

where κ1 >> κ2. The corresponding normal equations are[
2κ2

1 0
0 κ2

2

]
·
(
s1
s2

)
= LTt. (1.11)

It is clear that if κ1 >> κ2 then the condition number (ie., maximum eigenvalue/minimum
eigenvalue or cond = 2κ2

1/κ
2
2) is very large. This means that quite different values of s2

give about the same value of ε. Equivalently, the misfit function shown in Figure 1.4 is
characterized by the long narrow valley along the s2 axis where ε is somewhat insensitive
to large changes in the parameter value of s2.

In fact, if κ2 = 0 then the null space of LTL is non-empty and is spanned by the null
space vector (0 1)T . Any scaled value of this null space vector will not change the residual
value and therefore contaminate the solution with unrealistic model features. This is an
example of non−uniqueness in the inverse problem. To avoid non-uniqueness we introduce
an extra constraint in the misfit function, i.e.,

ε = 1/2||Ls − t||2 + 0.5λ||s − s0||2, (1.12)

where λ is a small damping parameter and s0 is an a priori guess to the solution. The
constraint says that we wish to find s that minimizes the sum of the squared residuals and
is also close to the a priori guess at s0. The degree of closeness is determined by the value
of λ.

The normal equations associated with this constrained misfit function is obtained by
differentiating ε to give

∂ε/∂sk =
3∑

i=1

2∑
j=1

(lijsj − ti)lij∂sj/∂sk + 0.5λ∂||s − s0||2/∂sk,



98 CHAPTER 1. TRAVELTIME TOMOGRAPHY

=
3∑

i=1

2∑
j=1

(lijsj − ti)lijδjk + λ(sk − so
k) = 0, (1.13)

or more compactly

[LTL + λI]s = Lt + λs0, (1.14)

and is sometimes known as the Levenberg-Marquardt solution. In the case of equation 1.11,
the solution becomes s1 = [LT t]1/(2κ2

1 + λ) and s2 = [LT t]2/(κ2
2 + λ) if s0 = 0. Note, the

condition number is improved with damping where cond = (2κ2
1 + λ)/(κ2

2 + λ), at the cost
of somewhat diminished accuracy.

Other constraint equations include a smoothness constraint which incorporates the gra-
dient raised to the nth power ||∇ns||2. Zhang and Toksoz (1998) compare the performance
of these roughness constraints and show that n = 2 or n = 4 provide superior performance
compared to n = 0.

1.2.3 Synthetic Traveltime Tomography Example

We will now apply the Gauss-Newton method with small residuals to the traveltime to-
mography problem. The example is that of a transmission experiment where the model is
gridded into a 20 by 20 grid of cells with unknown slowness. There are 20 sources evenly
distributed along the bottom boundary of the model, and each source shoots a straight ray
into each of the 20 evenly distributed receivers along the top boundary of the model. This
gives rise to 400 traveltimes that are used as input data into the least squares Gauss-Newton
method. The model and data are linearly related because straight rays are employed.

The damped least squares solution resulted in the reconstructed models shown Fig-
ure 1.5. In this case the vertical-layered model was best resolved while the horizontal
layered model was least resolved. This is because the best resolution is achieved for rays
that are perpendicular to the direction of velocity variations, so that the nearly vertical
rays are best at resolving nearly vertical interfaces.

For example, simply dividing the raypath length by the traveltime for a vertical ray
passing through one vertical layer will yield the exact velocity of that layer. Hence, a
sequence of vertical layers (i.e., model with strictly horizontal velocity variations) can be
uniquely reconstructed by inverting traveltimes associated with vertical rays. Conversely,
if the model were purely horizontal layers then the lengths divided by the traveltimes will
only yield the average velocity of the layers.

If errors are added to the data, then least squares inversion can adequately handle Gaus-
sian noise. As an example, Figure 1.6 depicts the Gauss-Newton solutions for standard and
reweighted least squares inversion (Bube and Langan, 1994) when the traveltime data are
contaminated with zero-mean 1 percent Gaussian noise. Reweighted least squares becomes
important when large non-Gaussian outliers are added to the noise, as shown in in Fig-
ure 1.7. The top figure is the image from damped least squares while the bottom figure is
from a reweighted least squares method (Bube and Langan, 1995). It is obvious that the
large outliers have been suppressed by the reweighted least squares method.
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Figure 1.5: Top two figures depict the two-layer vertical model and its damped least squares
reconstruction. Bottom two figures are the same except the model is a two-horizontal layer
model with a graben along the interface. Note, the ray directions are mostly oriented
along the vertical axis, so the vertical-layer model with layering parrallel to the rays is best
resolved (courtesy of Min Zhou).
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Figure 1.6: Reconstructed models for (top) standard and (bottom) reweighted least squares
inversion for the vertical-layer model in Figure 1.5. The traveltime data are contaminated
with 1 percent zero-mean Gaussian (courtesy of G. Waite).
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Figure 1.7: Same as previous figure except large outlier errors (about >500 percent) have
been added to six of the traveltime picks (courtesy of G. Waite).
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Linearization

The earth’s velocity distribution varies in space, so the shortest traveltime path between
a source and receiver is not a straight line. The ray is curved, as shown in Figure 1.8.
Consequently, the raypath geometry depends on the slowness model so the raypath lengths
in equation 2 also depend on the slowness model. Thus, the traveltimes in equation 2
depend non-linearly on the slownesses. To linearize this equation, we choose a background
slowness model so that is very close to the actual model s. ”Close” means that the raypaths
for so are nearly the same as those for s. In this case, we have the background traveltime
equation given as to = Loso so that Lo ≈ L. The original traveltime equation is t = Ls,
and subtracting it from the background traveltime equations give:

t − to = Ls − Loso,

= Lo(s − so). (1.15)

Setting δs = s − so and δt = t− to, we get the linearized traveltime equations:

δt = Loδs, (1.16)

where δs is known as the traveltime residual and δs is slowness perturbation. Often we will
not use the subscript in Lo. The strategy is to solve for δs = [LTL]−1LTδt, and find the
new update for the slowness field by

s′ = so + α[LTL]−1LTδt, (1.17)

where α is a scalar quantity 0 < α ≤ 1 known as the step length. It is selected by trial and
error to insure that the misfit function decreases after each iteration. The slowness field s′ is
used as the new background slowness, and a new traveltime residual is found δt′ = t−Ls′.
Here, Ls′ is the predicted traveltimes using the updated slowness and t is the observed
traveltime vector.

More generally, a regularization parameter is introduced (see equation 1.14 and set
s0 = 0) and the updating is repeated in an iterative manner:

s(k+1) = s(k) + α[LTL + λI]−1LTδt, (1.18)

where k is the iteration index and it is assumed that the [LTL + λI]−1LTδt is computed
using the kth slowness model.

1.2.4 Steepest Descent

In real applications, the earth model is gridded so that there can be anywhere from several
thousand unknowns to more than a million unknown slownesses. This means that the cost
of storing and direct inversion of [LTL] is prohibitive. Thus, an indirect iterative method
such as conjugate gradients is used, where only matrix-vector multiplication is needed. A
simpler cousin of the conjugate gradient method is steepest descent, and has proven useful
in a multigrid mode (Nemeth et al., 1997).
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Figure 1.8: Diagram of jth ray through a discretized earth model, where the ith cell has a
constant slowness si. For this ray, the segment length in the ith cell is given by lij.

The regularized steepest descent formula is obtained by approximating the inverse to
[LTL] by the recipricol of its diagonal elements:

[LTL + λI]−1 ≈ 1/[LTL + λI]iiδij , (1.19)

where δij is the Kronecker delta function. Substituting this approximation into equa-
tion 1.18 yields the steepest descent formula

s
(k+1)
i = s

(k)
i + α/[LTL + λI]ii[LTδt]i, (1.20)

where si denotes the constant slonwness in the ith cell. Note, only matrix-vector multipli-
cation is needed (cost=O(N2)) compared to direct inversion which costs O(N3) algebraic
operations. Equation 1.20 is sometimes called a preconditioned regularized steepest descent
because of the diagonal matrix approximation. It is closely related to the SIRT method
(Nolet, 1987).

The 1/[LTL]ii = 1/
∑

j l
2
ij term is the squared sum of the segment lengths of rays that

visit the ith cell. Thus cells that do not get visited frequently are given roughly the same
weight as frequently visited cells.

Example: One ray and only one slowness perturbation. Assume a single jth ray
and a single slowness anomaly in the ith cell that leads to the traveltime residual δtj .
Equation 1.18 reduces to

s
(k+1)
i = s

(k)
i + αlijδtj/(lij2 + λ). (1.21)

This says that the slowness in the ith cell is updated by smearing the weighted jth residual
δtj into the ith cell visited by the jth ray, where the weight is αlij/(lij2+λ) ≈ 1/lij for small
λ and α = 1. Thus, the slowness update δsi = δtj/lij makes sense because it accounts for
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the traveltime residual strictly caused by the slowness anomaly in this ith cell. However,
this residual is erroneously smeared along other cells visited by the jth ray, which had
the correct slowness. Further iterations and more data (i.e., rays) are needed to correct
for these errors, and if we are lucky then the regularized preconditoned steepest descent
method should converge to the correct answer.

1.3 Summary

For most overconstrained systems of equations in seismic imaging no exact solution exists.
The usual remedy is that seek a least squares solution that minimizes the sum of the squared
residuals denoted by ε = 0.5

∑
i r

2
i . In this case, the non-linear GN solution s(k+1) =

sk−H−1g(k), yields the Hessian given by H =
∑M

i=1 Tiri + LT L, where Ti contains second
derivatives of the residuals and L contains the first derivatives of the residuals. Invoking
a small residual assumption, the second derivative term is neglected, so that s(k+1) =
sk − [LTL]−1LT δt.

If the LTL are poorly conditioned then many different models can account for the data,
i.e., the solution is unstable. The partial remedy is to impose equations of constraint to
regularize the system of equations. If the system of equations is highly inconsistent because
of outlier errors in the traveltime picks then an l1 method can be used, otherwise known as
reweighted least squares. In practice, the system of equations is usually too large to find
the direct inverse to LTL, so iterative solution methods are used, as discussed in Fletcher
(1987), Gill (1981) and Nolet (1987).

1.4 Appendix

A microscopic view of the bent raypath in Figure 1.8 would reveal a straight ray, where the
associated wavefronts are straight and perpendicular to this straight ray. In this microscopic
zone, a small peeble or velocity inhomeogeneity appears as a limitless ocean of homogeneous
velcoity. Consequently, for really small wavelengths the wave equation is solved by the plane
wave solution eiω(kxx+kyy−ωt). At the point (x, y) and its small neighborhood the medium
is effectively constant c(x, y) = ω/k for very high frequencies f , i.e., small wavelengths
λ = c/f . Thus, the following dispersion relationship is true in this neighborhood:

k2
x + k2

y = (2π/cT )2, (1.22)

where T is the period of the source wavelet. Recalling that kx = 2π/λx and ky = 2π/λy ,
where λx and λy are the horizontal and vertical apparent wavelenths, respectivey, equa-
tion 1.22 becomes after multiplying by (.5T/π)2:

(T/λx)2 + (T/λy)2 = (1/c)2. (1.23)

But, for a plane wave, T/λx = ∂t(x, y)/∂x and T/λy = ∂t(x, y)/∂y so that the above
equation reduces to the eikonal equation:

(∂t(x, y)/∂x)2 + (∂t(x, y)/∂y)2 = (1/c)2. (1.24)
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The eikonal equation is more compactly expressed as |∇t(x, y)| = 1/c(x, y), where ∇t(x, y)
is the gradient of the traveltime field, which points perpendicular to the wavefront. We can
replace this compact representation by the directional derivative

|∇t(x, y)| = dt(x, y)/dl = 1/c(x, y), (1.25)

where the direction perpendicular to the wavefront is denoted by l̂ and a small incremental
change of raypath length along this direction is denoted by dl. Multiplying through by dl
and integrating the raypath length from the source to the observation point (x, y) yields
the traveltime integral:

t(x, y) =
∫

raypath
dl/c(x, y),

=
∫

raypath
s(x, y)dl, (1.26)

which is the modeling equation for traveltime tomography, a high frequency method for
inverting the earth’s velocity distribution from measured traveltime data. Note that this is
a non-linear integral equation with respect to slowness s(x, y) because both the integrand
and raypath geometry depend on s(x, y).



Chapter 2

Case History: 3D Refraction
Tomography

To demonstrate the capabilities of traveltime tomography, researchers at the University of
Utah carried out seismic experiments over the Washington fault in southern Utah. The
goal of these 2D and 3D seismic experiments in 2008 was to provide a good estimate of the
location of faults and colluvial wedges buried beneath the Washington fault escarpment;
such information could be used to optimize the design and placement of a trench survey
that would take place in the spring of 2009. Figure 2.1 shows the seismic survey site and
the proposed trench site and the next two sections describe the details of these experiments.

2.0.1 2-D Seismic Survey

In March 2008, UTAM researchers carried out a 2-D high resolution seismic survey perpen-
dicular to the Washington fault scarp near the Arizona-Utah border (see Figure 2.1). The
2-D seismic data were collected using 96 vertical-component geophones spaced 1 m apart
for a total line length of 95 m (see Figure 2.1). Figure 2.2 shows the source and receiver
lines, and the fault strike direction. Seismic sources, using a 16-lb sledgehammer striking a
small metal plate, were initiated at every second geophone and stacked five times for each
hammer (i.e., shot) position to improve the signal-to-noise ratio of each record. Recording
of traces was carried out with a 120-channel Bison data recorder. Table 2.1 summarizes the
acquisition and source-receiver parameters of the 2-D and 3-D seismic surveys.

2.0.2 3-D Seismic Survey

A 3-D seismic survey was carried out at the same location as the 2-D survey in October
2008 in order to obtain higher resolution images of the subsurface. The 3-D acquisition
geometry consisted of six parallel lines, where there were 80 in-line receivers with a 1 m
spacing near the fault scarp and a 2 m spacing far away from the fault scarp. The cross-line
spacing was 1.5 m. Shots were also activated at every other geophone, and the experiment
geometry is shown in Figure 2.3.

105
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Table 2.1: Parameters for the 2-D and 3-D seismic surveys.

Survey 2-D 3-D
Source 16-lb sledgehammer 10-lb sledgehammer
Recording instruments one 120-channel BISON two 120-channel BISONs
No. of shots 48 40/line (6 lines)
No. of receivers 96 80/line (6 lines)
Shot spacing 2 m (Figure 2.3)
Receiver spacing 1 m (Figure 2.3)
Survey length 95 m 119 m
No. of traces 4,608 115,200
Sampling interval 0.25 ms 0.25 ms
Record length 1.0 sec 1.0 sec
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Figure 2.1: The map of the Washington fault and the survey site. The location of the
survey site is 5 km south of the Utah-Arizona border. A trench will be excavated by UGS
personnel in the same location, marked on the map, sometime in the late spring of 2009.
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Figure 2.2: View of the Washington fault scarp and 2-D seismic survey line. The yellow line
represents the fault strike direction, and the green line represents the 2-D seismic survey
line.
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Figure 2.3: Survey geometry for the 3-D experiment. The open circles denote the locations
of sources, the solid dots denote the locations of receivers, and the dashed black line denotes
the location of the fault scarp. The crossline spacing is 1.5 m, the inline spacing of coarsely
spaced receivers (far from the fault scarp) is 2 m, and that of finely spaced receivers (near
the fault scarp) is 1 m. The sources are activated at every other receiver.
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2.1 Traveltime Tomography

Traveltime tomography is a standard methodology for reconstructing the subsurface velocity
distribution from first-arrival traveltimes (Nolet, 1987; Lutter et al., 1990; Aldridge and
Oldenburg, 1993; Ammon and Vidale, 1993; Nemeth et al., 1997 and many others), where
velocities are updated by an iterative method such as the SIRT technique (Gilbert, 1972).
The tomography method consists of a number of steps. First, an initial velocity model
is estimated from the x-t slope of the first-arrival in the seismograms. The traveltimes
are then computed from the starting model by a finite-difference solution to the eikonal
equation (Qin et al., 1992). The result is a velocity model of the P-wave velocity, where
smaller velocities correspond to more unconsolidated; experiments along the Wasatch fault
show that colluvial wedges are typically characterized by 10 to 20 percent slower velocities
(Morey and Schuster, 1989) than the surrounding soil, and faults can sometimes be indicated
by sharp horizontal changes in velocity (Ann+Bruhn, 19??; Sheley et al, 19??; Buddensiek
et al., 2008). A more definitive indicator of faults is the reflection section (Morey and
Schuster, 1998).

2.1.1 Methodology

Traveltime tomography is a standard methodology for reconstructing the subsurface velocity
distribution from first-arrival traveltimes (Nolet, 1987; Lutter et al., 1990; Aldridge and
Oldenburg, 1993; Ammon and Vidale, 1993; Nemeth et al., 1997 and many others), where
velocities are updated by an iterative method such as the SIRT technique (Gilbert, 1972).
The tomography method consists of a number of steps. First, an initial velocity model
is estimated from the x-t slope of the first-arrival in the seismograms. The traveltimes
are then computed from the starting model by a finite-difference solution to the eikonal
equation (Qin et al., 1992). In this case, the data misfit function can be defined as:

ε =
1
2

∑
i

(tobs
i − tcal

i )2, (2.1)

where the summation is over the ith raypaths, tobs
i is the associated first-arrival traveltime

pick, and tcal
i is the calculated traveltime. The jth gradient γj of the misfit function is

defined as:

γj =
δε

δsj
=
∑

i

δti
δti
δsj

=
∑

δtilij , (2.2)

where δti is the traveltime residual, δsj is the slowness in the jth cell and lij is the segment
length of the ith ray that visits the jth cell. The slowness model is iteratively updated by a
gradient optimization method (e.g., steepest descent).

2.1.2 Traveltime Picking and Quality Control

The first step in tomography processing is to pick first-arrival traveltimes. Approximately
4,608 and 115,200 traveltimes are picked, respectively, from the original 2-D and 3-D Wash-
ington fault data using ProMAX software. A shot gather of the 2-D data with the picked
first-arrival traveltime is shown in Figure 2.4.
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Figure 2.4: A common shot gather from 2-D Washington fault data set and first-arrival
traveltime picks are denoted by the red star.
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Before computing the traveltime tomogram, a quality control of the traveltime picks is
required for a reliable inversion. An important method for the quality control of traveltime
picks is a reciprocity test. For traveltime pairs tij and tji , where tij represents the first-
arrival traveltime pick for a source at the ith position and a receiver at the j th position,
and tji represents the reciprocal traveltime pick of tij , if the reciprocity condition tij = tji
is not satisfied to within a tolerance of 3 milliseconds, the traveltime pairs are rejected.
For the 3-D data, 29,750 traveltime picks are rejected by failing the reciprocity test. The
remaining traveltimes are inverted using the SIRT algorithm described in 2.2.1.

2.1.3 Smoothing Filter

Due to irregular raypath coverage in some parts of the velocity model, a rectangular smooth-
ing filter is applied after each iteration in the inversion process (Nemeth et al., 1997). Table
2.2 gives a listing of smoothing schedules for the synthetic data and field data in this paper.
The reconstructed velocity model is initially smoothed with a 10 m x 5 m x 5 m smoothing
filter. After six iterations the smoothing filter size is halved, which results in a better spatial
resolution. The final smoothing filter is iteratively reduced to a volume of 2 m x 1 m x 1
m.

Table 2.2: Smoothing schedule for synthetic and field data. The smoothing sizes are given
in number of cells. The iteration number is 6 for each schedule.

Experiment 2-D synthetic 3-D synthetic 2-D actual 3-D actual
test test data data

Grid size 0.5 m 0.5 m 0.5 m 0.5 m
No. of effective unknowns 4,800 72,000 4,800 72,000
No. of traveltimes 3,200 115,200 2,687 85,450
Smoothing size 1 20 x 10 20 x 10 x 10 20 x 10 20 x 10 x 10
Smoothing size 2 12 x 6 12 x 6 x 6 12 x 6 12 x 6 x 6
Smoothing size 3 8 x 4 8 x 4 x 4 8 x 4 8 x 4 x 4
Smoothing size 4 4 x 2 4 x 2 x 2 4 x 2 4 x 2 x 2
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2.2 2-D CDP Reflection Processing

The goal of common depth point (CDP) reflection processing is to transform the seismic
reflection data into an approximate reflectivity image of the subsurface. Because near-
surface scattering, statics, and surface waves are dominant in the shallow seismic data,
the following processing flow (Figure 2.5) is required to obtain reflectivity images (Yilmaz,
1987).

2.2.1 Data Sorting and Geometry Defining

The first step in CDP data processing is to convert the data format from Bison seismograph
format to SEG-Y format so processing can be performed with ProMAX. Then the survey
geometry is defined according to the field survey, including the shot and receiver locations,
shot and receiver offsets, CDP locations, and other known parameters that affect the data
processing.

2.2.2 Elevation Statics

The statics problem is defined to be static time shifts introduced into the traces by, e.g., near-
surface velocity anomalies and/or topography. These time shifts distort the true geometry
of deep reflectors. For the Washington experiment, large static time shifts are introduced
by the large elevation changes in the topography. Thus, an elevation statics correction is
applied to the data, so that the data appear to have been collected on a flat datum plane.
The final datum elevation is the same as the highest topographic point, and the replacement
velocity is 500 m/s for correcting the traces to the new datum.

2.2.3 Bandpass Filter

To remove the low-frequency noise (such as surface waves), 40-200 Hz bandpass filtering
was applied to the traces. The low frequency surface waves are mostly suppressed by this
filter.

2.2.4 NMO and Stacked Section

The seismic data are sort into 190 common midpoint gathers (CMG) with 0.5 meter spacing.
Two or three near zero-offset traces of each CMG were selected for stacking.

2.2.5 Poststack Migration

In order to move dipping reflectors into their correct positions and collapse diffractions,
poststack migration was applied to the stacked data, where the maximum dip angle is
limited to be no more than 30 degrees. The migration method selected was Kirchhoff
migration.
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Figure 2.5: Chart for reflection processing of the 2-D Washington fault data set. Here, AGC
= automatic gain control, NMO = normal moveout correction, CMP = common midpoint.
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2.3 NUMERICAL RESULTS FOR SYNTHETIC DATA

Typically a series of synthetic tests are used to assess the tomogram accuracy for any specific
field geometry of sources and receivers. Towards this goal synthetic tests were carried out
for 2D and 3D traveltime tomography of synthetic traveltime data with source-receiver
geometries similar to that of the Washington fault experiments. The results suggest that
the faults and LVZs can be clearly imaged by seismic methods, and 3-D tomograms are
more accurate and have fewer artifacts than 2-D tomograms in delineating fault structures.

2.4 Traveltime Tomography of the Synthetic Data

To understand the sensitivity of the tomography method in delineating fault structures, both
2-D and 3-D synthetic tests are carried out. The input model is a 3-D fault model, and has
the same dimension as the area investigated with the 3-D Washington fault experiment.
The model was constructed by defining the background velocity to be similar to that of the
actual 3-D Washington fault tomogram. The velocity at the ground surface is defined to
be 500 m/s and the vertical velocity gradient is assigned as 110 m/s/m, and the depth of
bedrock is about 15 m below the surface with the velocity 2400 m/s. There is no variation
of velocity in the Y direction. An X-Z velocity slice of the fault model is shown in Figure
3.1a. The source and receiver geometry for the synthetic test are identical to that of the
3-D Washington fault experiment, shown in Figure 2.3. Approximately 115,200 first-arrival
traveltimes are generated by solving the 3-D eikonal equation with a finite-difference method
(Qin et al. 1992), and the traveltimes taken from the 1st source line and receiver line (Y=0
m) are used for 2-D traveltime inversion. Table 2.1 summarizes the model and acquisition
parameters for the synthetic tests.
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Table 2.3: Model and acquisition parameters for the synthetic tests.

Survey 2-D 3-D
Model size 117 m x 30 m 117 m x 7.5 m x 30 m
Grid size 0.5 m 0.5 m
No. of shots 40 40 x 6
No. of receivers 80 80 x 6
Shot/receiver spacing (Figure 2.3) (Figure 2.3)
Survey length 117 m 117 m
No. of traveltimes 3,200 115,200

The first-arrival traveltimes are inverted to obtain the P-wave velocity distribution, and
a gradient model with velocities ranging from 500 m/s at shallow depths to 2,400 m/s at
depth are used for the initial model. The reconstructed velocity model is initially smoothed
with a 10 m x 5 m x 5 m smoothing filter, and the smoothing filter is iteratively reduced to
a volume of 2 m x 1 m x 1 m. Table 2.2 gives the inversion and smoothing filter parameters
(Nemeth et al., 1997).

A comparison between the 2-D and 3-D tomograms is shown in Figures 3.1b and 3.1c.
Both of the tomograms are along the 1st receiver line (Y=0 m), and the images obtained
from 2-D and 3-D tomography are comparable at low wavenumbers. The fault surfaces in
the model are characterized by a smooth down drop of the velocity contours in both of the
tomograms. This is not surprising since previous studies (Buddenseik, et al., 2007) empiri-
cally showed that the tomogram is a smoothed version of the actual velocity, where faults
are characterized by a smooth downdrop in tomographic velocities. Another observation is
that the 3-D tomogram seems to have fewer artifacts than the 2-D tomogram. This should
not be too surprising because rays in the the 3-D survey are characterized by a greater
diversity of ray angles, which leads to better model resolution. In addition, the radio of
unknowns to traveltime equations (see Table 2.2) is smaller for the 3-D tomogram and sug-
gests a more stable and overdetermined solution. In Figure 3.2, the velocity and gradient
profiles at X=26 m (Fault 1), X=48 m (Fault 2) and X=74 m (Fault 3) are compared. The
faults are identified as large positive gradient values of velocity, and the fault structures de-
lineated in the 3-D tomogram are more accurate than those in the 2-D tomograms. Figure
3.1d depicts the 2-D raypath density image, which displays the number of rays visiting each
cell of the tomogram. For the normal-slip fault (F1, F2 and F3), the rays focus near the
fault plane, which results in fewer raypaths visiting the hanging wall side, and the LVZ (48
m< X <75 m) has lower raypath coverage than other regions.

To assess the convergence of the iterative solution, a plot of RMS traveltime residual
vs. iteration number is shown in Figure 3.3. It demonstrates that the iterative solutions
converge within ten iterations. The final traveltime residual is about 0.3 ms, which is close
to 0, since no picking errors are added.



2.4. TRAVELTIME TOMOGRAPHY OF THE SYNTHETIC DATA 117

Offset (m)

D
ep

th
 (

m
)

X−Z Slice of 3−D Traveltime Tomogram 

 

 
m/sb)

0 20 40 60 80 100

0

5

10

15

20

25

30 0

500

1000

1500

2000

Offset (m)

D
ep

th
 (

m
)

X−Z Slice of 3−D Velocity Model

 

 
m/s

F1
F2

F3

a)

0 20 40 60 80 100

0

5

10

15

20

25

30 0

500

1000

1500

2000

Offset (m)

D
ep

th
 (

m
)

2−D Traveltime Tomogram

 

 
m/sc)

0 20 40 60 80 100

0

5

10

15

20

25

30 0

500

1000

1500

2000

Offset (m)

D
ep

th
 (

m
)

2−D Raypath Density Image

 

 
#raysd)

0 20 40 60 80 100

0

5

10

15

20

25

30 0

50

100

150

200

250

300

Figure 2.6: Results of 2-D and 3-D traveltime tomography test. a): an X-Z slice of the
linear gradient velocity model with 3 normal faults. b): an X-Z slice of the 3-D tomogram
along the first receiver line (Y = 0 m). c): 2-D traveltime tomogram along the first receiver
line (Y = 0 m). d): raypath density image obtained from 2-D traveltime inversion.
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Figure 2.7: Velocity and gradient profile comparison at 3 different locations for the synthetic
test . Left panels are the velocity profiles, and right panels are the velocity gradient profiles.
In the velocity gradient profiles, the faults are identified by large positive gradient values
and LVZs are identified by large negative gradient values.
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Figure 2.8: 2-D and 3-D RMS traveltime residual vs. iteration number. The iterative
solutions converge after about ten iterations. The final traveltime residual is about 0.3 ms,
which is close to 0, since no picking errors are added.
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2.5 CDP Reflection Processing of the Synthetic Data

To locate the fault positions, CDP reflection processing is carried out. The velocity model
is the same as the 2-D model in Section 3.1, and Figure 3.4a shows the reflectivity image
computed from the velocity model. To make the processing simple, the sources and receivers
are distributed evenly at 1 m spacing for a total line length of 117 m. A 2-4 finite-difference
solution to the acoustic wave equation is used to generate the zero-offset seismograms, and
Table 3.2 gives the model and acquisition parameters for the synthetic tests. Figure 3.4b
shows the stacked seismic section with the horizontal axis in offset and the vertical axis
in time. Figures 3.4c and 3.4d show the migration images using the true velocity and the
velocity obtained from the tomogram, respectively. Although there are some artifacts in
the migration image using the tomographic velocity, where the layers around X < 15 m are
tilted and the layers around X > 90 m undulate, the fault locations are clearly identified
with the correct dip angles.

Table 2.4: Model and acquisition parameters for the synthetic tests.

Model size 117 m x 30 m
Grid size 0.25 m
No. of shots 118
No. of receivers 118
Shot/receiver spacing 1 m
Source 100 Hz Ricker wavelet
Recording length 0.2 s
Sampling interval 0.02 ms
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Figure 2.9: Stack and migration images. (a): the reflectivity image computed from the
velocity model. (b): the stacked seismic section with the horizontal axis in offset and the
vertical axis in time. (c): the migration images using the true velocity. (d): the migration
images using the inverted velocity from tomography.
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2.6 NUMERICAL RESULTS FOR FIELD DATA

The 2-D and 3-D tomographic results and the 2-D migration images are computed for
data recorded from the Washington fault experiment and analyzed in this section. My
interpretation suggests that there are four faults and two large LVZs. These LVZs are likely
to be colluvial wedge packages, as they appear to be associated with the faulting.

2.6.1 2-D Tomographic Results

One 2-D survey line is taken from the original 3-D data. The first-arrival traveltimes
are picked from 3,200 traces, where 513 traveltime picks were rejected because they did
not satisfy the reciprocity condition within a tolerance of 3 milliseconds. The remaining
traveltimes are inverted to obtain the P-wave velocity distribution. Figures 4.1a depicts the
velocity tomogram presented as contours of seismic velocity in depth along the profile, and
Figure 4.1b displays the raypath density through each cell in the tomogram. Based on the
synthetic tests in section 3.1, two criteria are used to identify a fault in the tomogram: (1)
Focusing of rays in the raypath density image (the fault is not exactly located at the greatest
raypath density area, but is located at the low-density side near the plane, (see Figure 3.1).
(2) a sharp change in the velocity gradient (see Figure 3.2). Combining the tomogram,
velocity gradient profile, raypath density distribution and migration image (discussed in
Section 4.2) together, four faults are interpreted, numbered from F1 to F4. Four LVZs
are outlined with ellipses in the traveltime tomogram. In the raypath density, the LVZs
correspond to the zones of low raypath density, marked with ellipses as well. A plot of RMS
traveltime residual vs. iteration number is shown in Figure 4.2. The final RMS traveltime
residual is about 2.4 ms, which is slightly smaller than the estimated picking error of 3 ms.

2.6.2 3-D Tomographic Results

The first-arrival traveltimes are picked from 115200 traces in the original data set, where
29750 traveltime picks are rejected because they failed the reciprocity test or were deemed
unpickable. The 3-D velocity tomogram is inverted from these picks and is shown in Figure
4.3. Four X-Z slices spaced every 2 m along the Y direction are shown in Figure 4.4. This
tomogram clearly delineates three large LVZs. The one denoted as LVZ1 is located at X=20-
35 m, LVZ2 is located at about X=50-65 m, and LVZ3 is located along the near surface
at X= 35-65 m. All of the LVZs are parallel to the fault scarp. The main fault (F3, see
Figure 4.8) interpreted from the migration image and the raypath density image, is located
at the offset of 45 m, and suggests that LVZ2 is possibly the colluvial wedge generated by
surface rupture events on the Washington fault. The LVZ 3 is possibly another colluvial
wedge package and is the youngest of the LVZs.Comparing the 2-D tomogram with the 3-D
tomogram, both have similar structures at low wavenumbers; but, the 3-D tomogram has
fewer artifacts than the 2-D tomogram. To access the accuracy of the predicted traveltimes,
a plot of RMS traveltime residual vs. iteration number is shown in Figure 4.5. The final
RMS traveltime residual is about 3.2 ms, which is almost the same as the estimated picking
error of 3 ms.



2.7. REFLECTION RESULTS 123

2.7 Reflection Results

The 3-D Washington fault data has less observable reflection energy seen in the seismogram.
This is because only a 10-lb sledgehammer was used in the 3-D experiment compared to the
16-lb sledgehammer in the 2-D experiment; and the 2-D experiment had a shorter survey
length. Here, only the 2-D seismic data are used for reflection stacking. The common shot
gathers (CSG) are sorted into 190 common midpoint gathers (CMG) with 0.5 meter spacing,
and two or three near zero-offset traces of each CMG were selected for stacking. Figure 4.6
shows the stacked seismic section with the horizontal axis in offset and the vertical axis in
time. It shows more than two shallow horizons, which are mostly continuous, except for the
region around X = 14 m. From the stacked profile, it is difficult to determine the locations
of the fault planes. To delineate the fault structures clearly, the stacked data are migrated.
Figure 4.7 shows the final migration image, and using the migration images of the synthetic
data as a guide, the layered horizons are discontinuous at the fault plane. Here, four faults
(F1-F4) are interpreted, combined with the tomogram and raypath density image, where F3
is possibly the main fault, and F4 is the antithetic fault. The dip angles of the four faults
are estimated from the migration image to be about 80+/-10 degree. This is consistent
with the description of the Washington fault by Higgins, 1998.
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Figure 2.10: 2-D traveltime tomogram and raypath density image. (a): the 2-D traveltime
tomogram with the fault interpretation. (b): the raypath density image.
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Figure 2.11: RMS traveltime residual vs. iteration number. The solution converges after
about twenty iterations, and final RMS traveltime residual is about 2.4 ms.
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Figure 2.12: The volume of the 3-D velocity tomogram. Two large LVZs are clearly delin-
eated in the tomogram.
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Figure 2.13: X-Z slice of 3-D velocity tomogram. (a): slice at Y = 0 m. (b): slice at Y = 2
m. (c): slice at Y = 4 m. (d): slice at Y = 6 m.
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Figure 2.14: RMS traveltime residual vs. iteration number. The solution converges after
about fifteen iterations, and the final traveltime residual is about 3.2 ms.
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2.8 Interpretations

Figure 4.8 presents a summary of the tomographic results and the migration image. From
the 2-D and 3-D traveltime tomogram and 2-D migration images, we can identify the
following features:

(1) Three LVZs (LVZ1, LVZ2 and LVZ3) have been imaged with both 2-D and 3-D
traveltime tomography. To establish their identity, age, and the estimated frequency of
past earthquake occurrence, a much cheaper alternative than trenching is to drill a well
over the areas ( 20 m< X <35 m and 50 m< X <65 m).

(2) F3 is likely to be the main fault, which is consistent with geomorphology data, and
F4 is a possible antithetic fault.

(3) The depth of the bedrock is estimated to be about 15 m with the velocity larger
than 2200 m/s.

(4) The four faults have an apparent dip of approximately 70-80 degrees.
(5) From the 3-D tomogram, the thickness of the LVZ1 and LVZ2 is about 5 m, and the

thickness of LVZ3 is about 2 m.
Four faults and three LVZs are interpreted in Figure 4.9, and Table 4.1 summarizes the

features interpreted from Figures 4.8 and 4.9. The thickness of LVZs can be considered as
an approximation of the fault vertical slip. Combining the fault slip rate from paleoseismic
data with the fault slip inferred by tomography, the age of the fault can be speculatively
estimated. Earth Sciences Associates (1982) state that the slip rates for the Washington
fault are 0.003 mm/yr for the past 1.5 kyr, and a minimum slip rate of 0.03-0.12 mm/yr for
the past 10 to 25 kyr. If these estimates are correct, then I estimate that the fault activity
started later than 16 kyr.

Table 2.5: List of the features from the interpretation of Figure 4.8 and 4.9. The letters ’h’,
’d’, ’w’ indicate the thickness, depth and width of the LVZs, respectively.

Location Features
F1 15 m 80 degrees
F2 35 m 80 degrees (possibly not exist)
F3 42 m 80 degrees (main fault)
F4 76 m 70 degrees (antithetic fault)
LVZ1 20-35 m h= 5 m, d= 3 m, w= 15 m
LVZ2 50-65 m h= 5 m, d= 7 m, w= 15 m
LVZ3 35-65 m h= 2 m, d= 0 m, w= 30 m
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Figure 2.17: Summary of tomographic results and migration image, and interpretation.
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Figure 2.18: Final interpretation.
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2.9 Summary

To demonstrate the ability of 3D tomography in imaging colluvial wedges, seismic experi-
ments were conducted across the Washington fault with the goal of imaging the shape and
location of colluvial wedges. The 3-D data consisted of 115,200 traces of which 85,450 trav-
eltimes were picked and inverted to estimate the 3-D velocity structure of the Washington
fault over a volume of 116 m x 7.5 m x 30 m. Reflectivity images from the 2-D seismic data
provided information on the fault zone that was used, in conjunction with information from
the 3-D tomogram, to estimate fault and colluvial wedge package locations associated with
a prehistoric earthquake along the Washington fault.

The results of processing the 2-D and 3-D seismic surveys over the Washington fault
show consistent images that appear to be faults and LVZs to a depth of about 30 m. From
the 2-D and 3-D traveltime tomograms and the 2-D migration images, we can identify the
following consistent features:

(1) Three LVZs (LVZ1, LVZ2 and LVZ3) are imaged with both 2-D and 3-D traveltime
tomography.

(2) F3 is likely to be the main fault, which is consistent with geomorphology data, and
F4 is the possible antithetic fault.

(3) The depth of the bedrock is estimated to be about 15 m, the velocity of which is
larger than 2200 m/s.

(4) The four faults have an apparent dip of approximately 70-80 degrees.
(5) From the 3-D tomogram, the thickness of the LVZ1 and LVZ2 is about 5 m, and the

thickness of LVZ3 is about 2 m.
(6) Combining the fault slip rate from paleoseismic data with the fault slip inferred by

tomography, the age of the fault is estimated to be younger than 16 kyr.
I have demonstrated that seismic tomographic images can reveal the shape and depth of

LVZs, which are possibly colluvial wedge packages associated with normal-fault earthquakes.
This result is now used by UGS personnel to optimally design a trenching survey over this
area. A much cheaper alternative is to drill into the LVZs to establish their identity, age,
and the estimate the frequency of past earthquake occurrence. A future task is to compare
the tomogram with the trench log (soon to be recorded by UGS in 2009), and analyze the
accuracy of my interpretation.
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Part IV

Physics of Elastic Wave
Propagation

135





Chapter 1

Physics of Elastic Wave
Propagation

We now introduce the equations of motion for a rock that has non-zero shear strength,
i.e., it resists a twisting motion. This is an elastic rock, which is more representative of
waves propagating through the earth compared to the acoustic approximation of Chap-
ter 1. The most significant difference is that elastic wave propagation consists of a new
type of wave, namely the shear or S wave (see Figure 1.1). Other wave types are now
possible, including ground roll which consists of surface waves such as Rayleigh waves
and Love waves. The shear wave is a body wave characterized by particle motion per-
pendicular to the wave propagation direction and has a propagation velocity that is half
or less than that of the P wave. Other new modes include the surface Rayleigh wave,
which is a strong source of noise in exploration records. See the movie (http://www.ndt-

ed.org/EducationResources/CommunityCollege/Ultrasonics/Physics/wavepropagation.htm) of particle motion for a prop-
agating shear wave. Although most of our treatment of exploration seismology will assume
the acoustic approximation, we will need to acknowledge the underlying physics of elastic
wave propagation when dealing with surface waves and shear waves in our data.

1.1 Elastic Strain and Stress

If the medium has non-zero shear strength then there can be shear strains supported by
the rock. This means that the shape of a cube can be distorted into a, e.g., trapezoidal-
like shape after application of a shear stress on the cube. Unlike an acoustic cube where,
e.g., water molecules do not resist sliding past one another, an elastic cube will resist the
shearing of it into a trapezoidal shape so it has shear strength. Similar to acoustic rocks,
increasing strength of an elastic rock will lead to an increase in the shear velocity speed.
We now describe the general theory of stress and strain for an elastic rock, which can be
used to derive the elastodynamic equations of motion.

1.1.1 Simple and Pure Shear Strain

It is important to establish the physical meaning of shear strain compared to compressional
strain. As discussed in Chapter 1, compressional strain changes the volume of the acoustic

137
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P−Wave vs S−Particle Motion
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Figure 1.1: Snapshots of particle motions for (top) P and (bottom) S waves, which are
parallel and perpendicular, respectively, to the direction of wave propagation from left to
right.
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cube. This volume change can be estimated by drawing two perpendicular lines within the
cube and comparing the change in area (or volume for a 3D deformation) after deformation,
as shown in Figure 1.2a. If the angles between the two perpendicular lines change then it is
likely that simple shear strain is involved, as shown in Figure 1.2b. If the area (or volume
in 3D) does not change but the angles do change as illustrated in Figure 1.2c, then this is
denoted as pure shear strain.

To quantify the measure of shear strain we can define the end point vectors of two
points (small filled circle and square) of a box as r and r + dz in Figure 1.3a. After shear
deformation, these two points have been displaced by the respective displacement vectors
u(r) and u(r + dz) shown in Figure 1.3b. The displacement vector u has components in
3D as u = (u, v,w), but often we will use the index notation ui where u1 = u, u2 = v, and
u3 = w.

To reduce notational clutter we simplify the Figure 1.3b diagram to that in Figure 1.3c,
and see that the deformation vector du(r + dz) represents the change of the line’s end
point (small filled box) location relative to the beginning point (small filled circle). In this
example, the ratio du/dz is equal to the tangent of the deformation angle θ, and will increase
with increasing shear forces that deform the box. This measure du/dz of shear deformation
is defined as the shear strain, and is unitless just like the compressional (or longitudinal)
strain defined in Chapter 1. Similar to Hooke’s law that linearly related the compressional
force that changed the volume of a box, experiments show that that the shear forces can
be linearly related to the shear strains as

τxz = μdv/dz, (1.1)

as long as the infinitesimal strain limit is satisfied dv/dz < 10−5. Here, τxz is known as the
simple shear stress component and has units of force/unit area. The ratio (shear stress)
/(shear strain) = μ is known as the shear modulus, with stiffer rocks having larger values
of μ. For now we will naively define τxz as the z-component of deformational force the outer
media acts on the cube along the face normal to the x-axis.

1.1.2 S Waves Shear Rocks

But what does shear strain have to do with the propagation of S waves seen in Figure 1.1?
Figure 1.4 depicts the deformations of boxes associated with a snapshot of propagating P
and S waves. Obviously the P waves only change the volume of the boxes while the S wave
changes both volume and the angle between two perpendicular lines. Therefore we conclude
that shear waves must be strongly associated with shear stains while compressional waves
are associated with dilatational strains (i.e., volume changing). The next section describes
how to quantify the stress-strain relationship in an elastic medium.

1.1.3 Stress Tensor

Equation 1.1 loosely defined the shear stress as proportional to the shear strain, and it has
units of force/area. The generalization of this concept is needed because the deformational
forces acting on a planar area depends on the orientation of the plane. For example, the
building in Figure 1.5 has a large compressional stress τzz on the horizontal plane at the
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Figure 1.4: Snapshots of particle motions for (top) P and (bottom) S waves, which are
parallel and perpendicular, respectively, to the direction of wave propagation. The height
of the sinusoidal curve above the x axis represents the amplitude of particle motion.
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Figure 1.5: Building where the deformation forces depend on the orientation of the plane
located at the solid circle. The enlarged infinitesimal cube on the right defines the compo-
nents of the traction vector as the stress tensor components. For example, τij is the jth
component of the traction vector on the face perpendicular to the ith coordinate axis.

solid circle. But if we rotate this plane by 90o to the vertical (at the solid circle) there
are negligible shear and compressional forces τxz = τxx = 0 acting on this vertical plane.
This seems strange, the body force at a point remains the same yet the deformation forces
depend on the orientation of the plane.

To mathematically describe these deformation forces, an infinitesimally small 3D cube
can be extracted from the building as shown and the traction vector T(n̂) is defined to be
the force per unit area exerted by the exterior media (i.e., the contiguous material that lies
just outside the small cube) on a plane with normal n̂. The normal points to this source of
the exterior force. If this plane is perpendicular to the ith unit vector then the x, y and z
traction components are the stresses τix, τiy, and τiz:

T(n̂i) = τixî + τiy ĵ + τizk̂, (1.2)

where n̂i represents the unit vector along the ith coordinate axis (e.g., n̂1 = î). If the
cube is in static equilibrium then it makes sense that the sum of the components on the six
faces of the cube are zero. As the opposite faces with normals parallel to k̂ become closer
this implies that the τ+

zz component on the top face is equal and opposite to τ−zz along the
bottom face. It also says that the τ+

zx component on the top face is equal and opposite to
τ−zx along the bottom face. To prevent rotation of the cube then the shear stress tensors
must be symmetrical so that τxz = τzx, as shown in Figure 1.6.

The symmetry argument above was based on a cube in static equilibrium. The same
argument can be used for a cube dynamically deformed by a passing wave by noting that
the cube’s inertial component of force dx3ρü along the x direction can be equated to the
net sum of the deformational forces dx2(τ+

xx − τ−xx + τ+
xy − τ−xy + τ+

xz − τ−xz). As dx → 0 the
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Symmetry of Shear Tensors Imply no Rotation

Figure 1.6: No rotation implies symmetry of shear stresses, e.g., τxz = τzx.

inertial force terms shrinks to zero faster (i.e., cubically in dx), compared to the traction
terms (i.e., they shrink to zero quadratically in dx). Therefore for small enough dx, we can
set the deformational force components to zero, i.e., τ+

xx − τ−xx + τ+
xy − τ−xy + τ+

xz − τ−xz = 0.
This condition is equivalent to the static equilibrium condition that the sum of traction
components on a cube is equal to zero.

We call τij a tensor because it is invariant under a coordinate transformation; this
means that the deformation forces on any one face are independent of the orientation of the
mathematical coordinate system.

1.1.4 Stress and Strain Definitions

We now borrow some intuitive definitions of strain and stress from Steven Dutch’s WWW
page (http://www.uwgb.edu/DutchS/structge/strsparm.htm). This will help us make the
connection between the familiar geological definitions of stress and strain and the geophysi-
cist’s definitions.

• Stress is defined as force per unit area. It has the same units as pressure, and in
fact pressure is one special variety of stress. However, stress is a much more complex
quantity than pressure because it varies both with direction and with the surface it
acts on.

• Compression. Stress that acts to shorten an object.

• Tension. Stress that acts to lengthen an object.
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• Normal Stress. Stress that acts perpendicular to a surface. Can be either compres-
sional or tensional.

• Shear Stress that acts parallel to a surface. It can cause one object to slide over
another. It also tends to deform originally rectangular objects into parallelograms.
The most general definition is that shear acts to change the angles in an object.

• Hydrostatic Stress (usually compressional) that is uniform in all directions. A
scuba diver experiences hydrostatic stress. Stress in the earth is nearly hydrostatic.
The term for uniform stress in the earth is lithostatic.

• Directed Stress. Stress that varies with direction. Stress under a stone slab is
directed; there is a force in one direction but no counteracting forces perpendicular
to it. This is why a person under a thick slab gets squashed but a scuba diver under
the same pressure doesn’t. The scuba diver feels the same force in all directions.

• Traction. Vector of force acting per unit area across an internal interface. It quan-
tifies the contact force between particles along one side of the plane acting on the
particles on the other side.

In geology we never see stress. We only see the results of stress as it deforms materials.
Even if we were to use a strain gauge to measure in-situ stress in the rocks, we would not
measure the stress itself. We would measure the deformation of the strain gauge (that’s
why it’s called a ”strain gauge”) and use that to infer the stress.

Strain is defined as the amount of deformation an object experiences compared to its
original size and shape. For example, if a block 10 cm on a side is deformed so that it
becomes 9 cm long, the strain is (10-9)/10 or 0.1 (sometimes expressed in percent, in this
case 10 percent.) Note that strain is dimensionless.

• Longitudinal or Linear Strain. Strain that changes the length of a line without
changing its direction. Can be either compressional or tensional.

• Compression strain. Longitudinal strain that shortens an object.

• Tension. Longitudinal strain that lengthens an object.

• Shear Strain that changes the angles of an object. Shear causes lines to rotate.

• Infinitesimal Strain. Strain that is tiny, a few fraction of a percent or less. Allows a
number of useful mathematical simplifications and approximations. All acoustic and
elastodynamic equations of motion in this book assume infinitesimal approximations
to linearize the relation between stress and strain.

• Finite Strain. Strain larger than a few percent. Requires a more complicated
mathematical treatment than infinitesimal strain.

• Homogeneous Strain. Uniform strain. Straight lines in the original object remain
straight. Parallel lines remain parallel. Circles deform to ellipses. Note that this
definition rules out folding, since an originally straight layer has to remain straight.
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• Inhomogeneous Strain. How real geology behaves. Deformation varies from place
to place. Lines may bend and do not necessarily remain parallel.

1.1.5 Strain Tensor

The stress tensor was introduced in the previous section, so it is time to introduce the
generalized definition of the strain tensor. The starting point is to recognize that the
components of the net deformation vector du(r+dr) (for the line segment with end points
at r and r + dr) can be expanded in a Taylor series about the particle at r:

du(r + dr)i = u(r + dr)i − u(r)i =
3∑

j=1

∂ui

∂xj
dxj +O(dx2), (1.3)

where higher-order terms in dxj are neglected under the infinitesimal approximation. The
above equation can be rearranged into strain and rigid rotation terms to give

du(r + dr)i = 1/2
3∑

j=1

strain tensor︷ ︸︸ ︷
(
∂ui

∂xj
+
∂uj

∂xi
) dxj + 1/2

3∑
j=1

rigid rotation︷ ︸︸ ︷
(
∂ui

∂xj
− ∂uj

∂xi
) dxj , (1.4)

where it can easily be shown that the rigid rotation term corresponds to ∇× u × dx. The
rigid rotation term can be neglected assuming infinitesimal strains that do not undergo
rotations (Aki and Richards, 1980).

The definition of the curl ∇u in terms of a line integral is given in Figure 1.7.
The notation for the shear strain is εij = 1/2(∂ui/∂xj + ∂uj/∂xi), which says that

a shear strain exists if there is a non-zero gradient of displacement that is perpendicular
to the direction of displacement. We can also use Einstein index notation so that εij =
1/2(ui,j + uj,i), where the index following a comma indicates a partial derivative with
respect to that index’s coordinate and common index symbols in a term imply summation
over the values of the index, i.e., equation 1.4 reduces to

du(r + dr)i = 1/2(
∂ui

∂xj
+
∂uj

∂xi
)dxj ,

= εijdxj, (1.5)

where the rigid rotation term is assumed to be zero and the strain tensor is defined to be
εij = 1/2( ∂ui

∂xj
+ ∂uj

∂xi
). It is interpreted as the change of the ith component of the deformation

vector du(r + dr) with respect to the derivative along the jth coordinate.
The term εii = 1/2(∂u1/∂x1 +∂u2/∂x2 +∂u3/∂x3) is proportional to the volume change

of the deformed cube, as discussed in Chapter 1. Therefore, εii is denoted as the dilatational
strain tensor and plays an important role in describing compressional wave propagation. On
the other hand, the strain tensor εij = 1/2(∂ui/∂xj + ∂uj/∂xi) accounts for shear strains
when i 	= j. See Figure 1.3 for the case when i = 1 and j = 3 so that ε13 = 1/2∂u/∂z.
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Figure 1.7: Definitions of curl ∇u× k̂ as the limit of a line integral and the divergence ∇·u
as an area integral. Here, k̂ is the unit vector pointing out of the page and the line integral
circles counterclockwise around the box. The area integral is along the surface of the cube
on the right. If the box in the left panel is undergoing pure rotation then the projection
of the vector u on the sides of the box, i.e., u · ds, will always be positive, leading to a
large value of curl. If the vector u represents the vector of water velocity flow then large
positive curl means fast counterclockwise rotation of a paddle wheel placed in the middle
of the box. In contrast, if the velocity field u has zero projection onto the surface then the
curl is zero and the paddle wheel does not turn, as shown in the middle diagram in the left
panel. Divergence is only non-zero if there is a net water flow in or out of the cube, i.e., the
net projection of velocity vector onto the normals is non-zero as shown in the right panel.
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1.2 Generalized Hooke’s law

Laboratory experiments can establish the linear relationship between the stress on an elastic
rock and its resulting deformation. These experiments might confine a block of rock and
press forward in the z direction, measuring the longitudinal deformation in the z (i.e.,∂w/∂z)
and have constraints so that the lateral directions are not deformed. Another experiment
might allow for deformation of the rock in the x-direction responding to a downward normal
stress on the horizontal face. Since there are 9 different strains and 9 different types of
stresses, then there will 9x9 = 81 proportionality constants to determine. Therefore, the
generalized Hooke’s law is given by

τij = cijklεij , (1.6)

where cijkl constitute 81 parameters and are called elastic constants. Fortunately, symme-
tries (Aki and Richards, 1980) in the stress (i.e., τij = τji) and strain tensors (i.e., εij = εji)
and conservation considerations reduce the number of unknowns from 81 to 21 independent
constants. In the acoustic case these constants reduce to one independent constant known
as the bulk modulus.

For an elastic isotropic material, there are only two independent elastic constants (Aki
and Richards, 1980):

τij = λδijεkk + 2μεij, (1.7)

where τij is the stress tensor that denotes the force/area imposed by the outside medium in
the ith direction along the face with normal j. Also, μ is the shear modulus and λ is Lame’s
constant. Appendix 1 provides a listing of elastic stiffness coefficients and their relationship
to one another.

1.3 Elastic Wave Equation

We now discuss the case where a transient source is excited in an elastic medium to generate
elastic waves. Similar to the acoustic case, the elastic form of Newton’s law can be found
by summing the body and deformation forces within a small cube and equating the result
to the inertial forces. That is, Newton’s law is given by

ρüi = ∂τi1/∂x1 + ∂τi2/∂x2 + ∂τi3/∂x3 + fi = τij,j + fi, (1.8)

where Einstein notation says that repeated indices indicate summation over all three com-
ponents. Here, fi is the ith component of the body force vector.

Inserting equation 1.7 into equation 1.8 gives the elastic wave equation in terms of strains
for a homogeneous medium:

ρüi = λ
∂ekk

∂xj
δij + 2μ

∂εij
∂xj

. (1.9)

But εkk = ∂uk/∂xk = ∇·u and εij = 1/2(∂ui/∂xj +∂uj/∂xi) so the above equation becomes

ρüi = λ
∂∇ · u
∂xi

+ μ
∂

∂xj
(
∂ui

∂xj
+
∂uj

∂xi
),
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= λ
∂∇ · u
∂xi

+ μ[∇ · ∇(ui) +
∂∇ · u
∂xi

],

= (λ+ μ)
∂∇ · u
∂xi

+ μ∇ · ∇(ui), (1.10)

or in vector notation we have the vectorial wave equation

ρü = (λ+ μ)∇(∇ · u) + μ∇ · ∇u. (1.11)

The above partial differential equations is tedious to use when a boundary value problem
needs to be solved, such as finding the reflection coefficients in a layered medium. It is much
easier to solve these types of problems when the governing equation of motion is a simple
scalar equation, as demonstrated in Chapter 1 with the acoustic wave equation in terms of
the pressure field. Fortunately, for a homogeneous medium, the elastic wave equation 1.11
can be transformed into two simpler equations by equating the vector field u into a sum of
potentials:

u = ∇φ+ ∇× ψ, (1.12)

where φ is a scalar potential and ψ is a vector potential. We have an extra degree of
constraint we need because we are equating a 3-component vector u into an expression with
4 unknowns. The extra constraint that will be useful is that ∇ · ψ = 0.

Plugging this expression for u∇φ+ ∇× ψ into equation 1.11 yields

ρ(∇φ̈+ ∇× ψ̈) = (λ+ μ)∇(∇ · [∇φ+ ∇× ψ]) + μ∇ · ∇[∇φ+ ∇× ψ]. (1.13)

We know that ∇ · ∇ × ψ = 0 so the above expression becomes

ρ(∇φ̈+ ∇× ψ̈) = (λ+ μ)∇[∇2φ] + μ∇2[∇φ+ ∇× ψ]. (1.14)

We can separate the φ terms from the ψ terms by multiplying both sides of the above
equation by ∇·, recalling the constraint ∇ · ψ, and noting the commutative property of ∇2

when applied to a ∇ or ∇× operation:

ρ∇2φ̈ = (λ+ μ)∇2[∇2φ] + μ∇2∇2φ. (1.15)

Rearranging gives

∇2[ρφ̈− (λ+ 2μ)∇2φ] = 0, (1.16)

which implies

ρφ̈− (λ+ 2μ)∇2φ = 0. (1.17)

This last expression is the wave equation for the scalar potential. Similar to the acoustic
wave equation in Chapter 1, it is satisfied by plane waves that propagate with velocity
cp =

√
(λ+ 2μ)/ρ.

The wave equation for the vector potential can be derived in a similar manner except
we multiply equation 1.14 by ∇× (remembering the identity ∇×∇φ = 0) to give

ρψ̈ − μ∇2ψ = 0. (1.18)
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and the shear velocity is given by cs =
√
μ/ρ.

In summary, we have the wave equations for the scalar and vector potentials

φ̈ = c2p∇2φ; ψ̈ = c2s∇2ψ, (1.19)

where we use the identities ∇·∇×ψ = 0, ∇×∇φ = 0, and ∇2ψ = ∇(∇·ψ)−∇× (∇×ψ).
These potential equations are much more simple compared to the elastic wave equation,
and can be used to more easily solve for boundary value problems.

1.4 P, PSV, and SH Waves

We can examine a plane wave solution to the elastic wave equation and deduce that there can
be three types of waves in an elastic medium: P, SV, and SH waves. The SV and SH waves
are shear waves with particle motion perpendicular to the direction of wave propagation,
and P waves have particle motion parallel to the direction of wave propagation.

The starting point in the derivation is to recall the Chapter 1 expression for a propa-
gating plane wave u = ei(k·x−ωt)s in a homogeneous medium, except we now include the
particle displacement vector s. Here, k is the wavenumber vector that points in the direction
of propagation. For a homogeneous medium and plane wave, the s particle motion vector
is parallel to a fixed line and describes the motion of the medium’s particles affected by the
passing wave. Plugging this plane-wave expression into the vector wave equation 1.11 we
get

ρω2s− (λ+ μ)(s · k)k − μk2s = 0. (1.20)

Applying the dot product of the above equation with s gives

ρω2|s|2 − (λ+ μ)(s · k)2 − μk2|s|2 = 0, (1.21)

which is a quadratic equation in |s| with two solutions. One of the solutions is found by
setting the particle motion to be perpendicular to the propagation direction s ·k = 0, which
reduces the above equation to the dispersion equation for S waves:

ω/k =
√
μ/ρ = cs. (1.22)

We can also choose the particle motion vector s to be parallel to the wave propagation
vector k so that s || k. This gives us the dispersion equation for P waves:

ω/k =
√

(λ+ 2μ)/ρ = cp. (1.23)

The above analysis says that S waves propagate perpendicular to the particle motion in a
homogeneous medium while the particle motion is parallel to the propagation direction for
P waves. Comparing equation 1.23 to equation 1.22 says that the cp > cs, and in practice
the P-wave velocity is about twice or more faster than the S-wave velocity. For a layered
medium, there can be two types of S waves, SV waves where the particle motion is parallel
to to the vertical plane and SH waves where the particle motion is parallel to the horizontal
plane. For a layered medium, the SH can get trapped between the free surface and a layer
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Figure 1.8: Love wave particle motion.

interface that seperates a low-velocity layer from its faster layer underneath it. The motion
diagram for Love waves is shown in Figure 1.8.

If a plane wave is propagating parallel to the plane of this page in a layered medium
with horizontal interfaces, then SH waves will honor the scalar wave equation

ψ̈y = c2s∇2ψy, (1.24)

in each layer with shear velocity cs. In contrast, the associated PSV plane waves will honor
the equations

ψ̈x = c2s∇2ψx; ψ̈z = c2s∇2ψz, (1.25)

where the y−coordinate axis is perpendicular to this page.

1.5 Reflection Coefficient at the Free Surface

The reflection coefficients will now be derived for a plane P wave incident from below on
the free surface in Figure 1.9a. Here we assume the particle motion of the plane P wave to
be restricted to be along the vertical plane. There are two reflected waves in Figure 1.9a, a
PP and a SV wave. The SV wave is needed in order to satisfy the equations of constraint
at the free surface, namely that τzz = 0, τzx = 0 at z = 0 along the free surface. Two
equations of constraint mean that there must be two unknowns, the reflection coefficients
PP and PS. Here, symmetry considerations say that only a PP wave and a SV wave are
reflected from the surface and not a SH wave which has particle motion in and out of the
page and no component along the vertical plane.

The starting point for deriving the unknown reflection coefficients PP and PS in Fig-
ure 1.9a is to write the total traction components as

T = (τzx, τzy, τzz), (1.26)
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Figure 1.9: Plane wave impinging upon a horizontal interface at the a). free surface and b).
along a 2-layer interface.The double-sided arrows indicate the direction of particle motion.

where τzy = 0 because there is no PSV particle motion along the y axis, so there is no strain
εyz; no strain means no shear stress τzy = 0.

1. The next step is to write the stress components in terms of the P-wave displacement
u in equation 1.7, and then rewrite the displacements in terms of potentials (i.e.,
(u, 0, w) = (∂φ/∂x, 0, ∂φ/∂z) in equation 1.12 to get the traction components in terms
of the P-wave potential:

TP = (2μ∂2φ/∂z∂x, 0, λ∇2φ+ 2μ∂2φ/∂z2). (1.27)

2. Similarly the stress components ( where (u, 0, w) = (−∂ψ/∂z, 0, ∂ψ/∂x)) for the SV
wave are given as

TSV = (μ(∂2ψ/∂x2 − ∂2ψ/∂z2), 0, 2μ∂2ψ/∂z∂x). (1.28)

3. The plane wave forms for the total potential wavefields is given as

φ =

incident P−wave︷ ︸︸ ︷
ei(kxx+kzz) +

reflected PP−wave︷ ︸︸ ︷
PPei(kxx−kzz) ,

ψ =

reflected PS−wave︷ ︸︸ ︷
PSei(κxx−κzz) , (1.29)

where κ is the wavenumber vector for the PS wave. The unknowns we wish to solve
for are the reflection coefficients PP and PS. To solve for two unknowns we need two
linear equations of constraint.

4. The boundary conditions at the free surface

TP + TS = (0, 0, 0), (1.30)
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provide two non-trivial equations of constraint. Plugging equations 1.27-1.29 into
equation 1.30 gives two linear equations with the two unknowns PP and PS. These
unknowns can be solved for to give the free-surface reflection coefficients (Aki and
Richards, 1980):

PP =
4β4p2cos(i)cos(j)/(αβ) − (1 − 2β2p2)2

4β4p2cos(i)cos(j)/(αβ) + (1 − 2β2p2)2
,

PS =
−4β2pcos(i)(1 − 2β2p2)/α

4β4p2cos(i)cos(j)/(αβ) + (1 − 2β2p2)2
, (1.31)

where α, β, and ρ indicate P-wave velocity, S-wave velocity and density respectively. The
p slowness vector is equal to k/ω; and the angles i and j correspond to the PP and PS
reflection angles, respectively, measured with respect to the vertical axis.

1.6 Reflection Coefficients for a Two-Layer Medium

Figure 1.9b depicts a plane P wave impinging upon a horizontal elastic interface. Here,
there are 4 different wave types to consider because reflected and transmitted converted
shear waves can be generated at the interface, as well as a reflected and transmitted P
wave. The shear waves have particle motion that is perpendicular to the propagation
direction while the compressional components are parallel to the direction of propagation.
Imposing continuity of vertical and horizontal particle velocity and normal τzz and shear
stress τzx tractions provide four equations of constraint. Similar to the acoustic case, we
can solve these four equations for the unknown amplitudes PP,PS, PS′, and PP ′. The
PP reflection coefficient is given in Aki and Richards (1980):

PP = [(bcos(i1)/α1 − ccos(i2)/α2)F − (a+ dcos(i1)cos(j2)/α1β2)Hp2]/D, (1.32)

where a, b, c, d,and D are constants defined in Aki and Richards (1980). The subscripts 1
and 2 refer to the top and bottom layers respectively and j corresponds to the angle of the
converted S waves.

1.7 Rayleigh Waves at the Free Surface

For a SV plane wave incident on the free surface in Figure 1.10a, it produces reflected body
waves SP and SS. The vertical wavenumber components of these reflected waves are given
as

kz =
√
ω2/α2 − k2

x; κz =
√
ω2/β2 − k2

x; (1.33)

where kx = sinθ/β and θ is the incidence angle of the SV wave measured with respect to
the vertical. Since α > β, there will be incidence angles where kx ≥ ω/α, which leads to
vertical wavenumber components that are purely imaginary. This means that the SP plane
wave represented by φ = ei(kxx+kzz) = e(ikxx−|kz|z) will have a decaying component in the
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z direction and a propagating component in the horizontal x direction1. This is similar to
the case of refraction arrivals discussed in Chapter 1, except now the propagation is along
the free surface. Working through this boundary value problem here in the same manner
as the previous section shows this inhomogeneous wave to have unusual properties. It is
known as a Rayleigh wave and has the following characteristics.

1. The Rayleigh wave has retrograde ellipitical motion as shown in Figure 1.10b. An
actual recording is shown in Figure 1.11.

2. For a homogeneous medium it has a velocity about 0.9β.

3. Rayleigh waves spread along the planar free surface rather than a 3D medium, so
the attenuation due to geometrical spreading is not strong compared to body waves.
Consequently, the surface waves have much stronger amplitudes than body waves as
shown in Figure 1.13.

4. Earthquakes deep in the earth are strong generators of surface waves because they are
efficient in generating shear waves (faults tear or shear, not compress) along a fault
plane. See Figure 1.12 for an illustration of 4 types of fauilts. Shallower earthquakes
generate stronger shear waves.

5. The shear wave propagation velocity of Rayleigh waves is very sensitive to the shear
velocity distribution, but not the P-wave velocity distribution. Consequently they are
inverted by seismologists for S wave distributions.

6. Rayleigh wave amplitudes decay exponentially with depth, and become insignificant
deeper than two wavelengths. Thus, low-period surface waves probe to deep depths
of about 1 or 2 wavelengths while high-frequency Rayleigh waves are only sensitive to
shallow velocity structures.

1.8 AVO Effects

The variation of reflection and transmission coefficients with incident angle and thus offset
is commonly known as offset-dependent reflectivity. The Zoeppritz equations (1919) de-
scribe the reflection and transmission coefficients as a function of incident angle and elastic
media properties (density, P-wave velocity, and S-wave velocity), of which the PP Zoeppritz
equation is given in equation 1.32. They apply to a reflection of plane-waves between two
half-spaces, and do not include wavelet interferences due to layering. Furthermore, am-
plitudes are a measure of the reflection coefficient only when effects that cause amplitude
distortions have been removed. Thus, preprocessing to remove transmission loss, source
and receiver effects, spherical divergence, multiples, and so on, is essential to the successful
recovery of the reflection coefficients. The last 20 years has seen the practical use of AVO
effects as a direct hydrocarbon indicator.

1If all the wavenumber components are real this type of wave is known as a body wave. If at least one of
the wavenumber components is imaginary then this is known as an inhomogeneous or interface wave.
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Figure 1.10: At critical SV incidence angles, the converted SP wave in b). propagates
parallel to the free surface. This situation produces an inhomogeneous wave that decays in
depth and only propagates along the lateral direction. For this example, the surface wave
is a Rayleigh wave with retrograde ellipitcal particle motion.

P      S
Surface Waves

Minute Mark

Figure 1.11: Actual seismogram showing the first arrival as the P wave and the secondary
arrival of the S wave followed almost immediately by the Rayleigh wave and other surface-
related modes. Recall, surface waves have less geometrical spreading than body waves.
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extension shortening

Figure 1.12: Four types of faults that are observed along the earth’s surface.

An example of a a shot gather collected in Saudi Arabia is shown in Figure 1.13. Here,
the surface waves (primarily Rayleigh waves) propagate much with a much slower apparent
velocity than do the reflected PP arrivals. The reflection events fall along a hyperbola curve
in x − t space, and the first arrivals are refraction events. A reflecting event of interest is
identified (e.g., the events along the hyperbola with time intercept at approximately 1 s in
Figure 1.13) and the amplitude of this event is picked and displayed as a function of offset
parameter x. For young sedimentary rocks such as Tertiary sands in the Gulf of Mexico, the
amplitude vs offset (AVO) behavior can often distinguish brine-filled sands from gas sands
(Ostrander, 1984). To simplify the analysis, an approximation based on small changes in
elastic parameters is used to approximate equation 1.32.

1.8.1 Small Angle Approximation to Reflection Coefficients

A modified version of Ekert’s AVO report is given below.
For a two layered medium separated by a horizontal interface the PP reflection coefficient

for small jumps in the medium parameters are given by

(C. Ekert, SEP Report http://sepwww.stanford.edu/public/docs/sep96/paper_html/node34.html)

R(θ) =
1

2 cos2 θ
Ip − 4γ2 sin2(θ)Is + (2γ2sin2θ − tan2 θ)D (1.34)

where

Ip = (Δvp/vp + Δρ/ρ); Is = (Δvs/vs + Δρ/ρ);D = Δρ/ρ; (1.35)
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Figure 1.13: Shot gather from Saudi Arabia.
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with

Δvp = vp2 − vp1;Δvs = vs2 − vs1;Δρ = ρ2 − ρ1;
vp = (vp2 + vp1)/2; vs = (vs2 + vs1)/2; ρs = (ρs2 + ρs1)/2; (1.36)

The first angle-dependent term in equation 1.34 significantly contributes for 0 < θ < 30
degrees, while the second starts to significantly contribute for θ > 30 degrees. The term γ is
the background vs/vp estimate.

The reflectivity curves corresponding to either a unit perturbation in P-impedance con-
trast (Ip = 1, Is = 0,D = 0), S-impedance contrast or density contrast can be seen in
Figure 1.14. For a unit perturbation in relative P-impedance contrast, the P-impedance
inversion curve dominates at small angles of incidence and increases with increasing off-
set. For a unit perturbation in relative S-impedance contrast, the S-impedance inversion
curve is zero at normal incidence and is increasingly negative with increasing offset. Over
the conventional range of surface reflection data acquisition geometry illumination, which
is typically 0

◦
to 35

◦
, the density inversion curve is not significant, as most of the density

contrast contributes to the reflection AVO through the impedance contrasts alone. As the re-
flection amplitudes are mostly a combination of the P- and S-impedance contrast inversion
curves, reflectors with P- and S-impedance contrasts of the same polarity and magnitude
are expected to show approximately constant amplitude versus offset. On the other hand,
reflectors with P- and S-impedance contrasts of opposite polarities, indicating a transition
zone of changing rock pore fluid properties, should show increasing amplitudes versus offset.
Reflectivity data can be inverted for changes in P- and S-impedance across an interface and
therefore for possible pore fluid transitions.

For θ < 30 degrees, geophysicists will use the small angle approximation to equation 1.34:

R(θ) ≈ A+B sin2 θ, (1.37)

and plot up crossplot curves (Foster et al., 1997) to assess geology. Shuey showed that
linearization of the fluid factor (Shuey, 1985)

A = R0;B = 1/2Δvp/vptan
2θ, (1.38)

where tan2 θ ≈ sin2 θ for small angles.
For example, Figure 1.15 depicts the crossplot of A and B pairs taken from a well log.

These A and B pairs can be obtained by estimating the density and P- and S-wave velocities
from the sonic log at each depth point, plug in these values into equation 1.34 to estimate
R(θ) for a particular depth level, and find A and B from equation 1.37. The resulting A-B
plot shows a linear trend, and the idea is that any deviations from this trend represent
a significant change of geology such as oil or gas bearing rocks. The departures can be
estimated by finding A and B pairs from the R(θ) vs θ curves estimated from the seismic
reflection amplitudes along a horizon of interest.

In detail, AVO analysis might bbe carried out using the following steps.

1. Take a common midpoint gather, identify a reflection of interest, and plot its ampli-
tude vs offset A midpoint gather is a collection of traces where the source and receiver
for any trace has the same midpoint. Often the data are redatumed down to the
reflector of interest.
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Figure 1.14: Theoretical P, S, and Density impedance inversion curves (from Ekert, SEP) .

2. Pick R(θ) from the data and plot on a graph. Find the slope and the intercept of the
best fit lines as a function of angle using the above formula. That is, find A and B.

3. Plot A vs B for different midpoints as shown in the crossplot of Figure 1.15.

4. The most interesting midpoint is where the oil or gas fluids have a marked signature
in the crossplot shown in Figure 1.16. Simms et al. (2000) writes the following.

AVO crossplots are a simple and elegant way of representing AVO data. Offset varia-
tions in amplitude for reflecting interfaces are represented as single points on a cross-
plot of intercept and gradient. The advantage of this type of plot is that a great deal
of information can be presented and trends can be observed in the data that would be
impossible to see with a standard offset (or angle) versus amplitude plot. The cross-
plot is an ideal way of examining differences in AVO responses that may be related to
lithologic or fluid-type variations. Commonly used techniques for revealing these dif-
ferences include color-coding samples from the crossplot and using this as an overlay
to a seismic display or creating weighted (or ”equivalent angle”) stacks (i.e., linear
combinations of intercept (R0) and gradient (G).
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Figure 1.15: Crossplot of slope (B) and intercept (A) pairs using well log data from the
North Sea. The dashed line corresponds to the fluid line for α/β = 1.9. The A and B pairs
tend to lie on a trend that is consistent with the fluid line. Note, the fluid line assumes a
constant density, the actual density profile is used to compute A and B.

1.9 Practical Aspects of AVO.

Simm et al. (2000) writes that The early literature approached AVO crossplots from the
point of view of rock properties. A central concept that emerged from this work was the ”fluid
line,” a hypothetical trend based on a consideration of brine-filled rock properties together
with simplifications of the reflectivity equations (Figure 1). If the intercept is plotted on
the x axis and the gradient on the y axis, then for consolidated sand/shale rocks the top
and base reflections form a trend from the upper left to the lower right quadrant of the
crossplot that passes through the origin. When it was realized that data points for equivalent
hydrocarbon-filled rocks plot to the left of this line, it became clear that normalizing the data
against the fluid line might provide an optimum AVO indicator. A real data plot is given
in Figure 1.17.

Details for implementing this AVO (i.e., Amplitude vs Offset) procedure are non-trivial
because much data processing must be performed before the A and B pairs can be picked.
Nevertheless, significant oil and gas deposits have been discovered by the AVO method.

The following is copied from Simms et al. (2000). Consider a single point in the lower right
quadrant on a crossplot (Figure 1.18). This point was generated from the AVO attributes
(derived by least squares regression) associated with the maxima of a single zero-phase re-
flection on a synthetic gather with no noise. It represents a class I response from the top of
a brine-filled consolidated sand at the boundary with an overlying shale, i.e., the amplitude
is decreasing with offset. This representation might be called a ”horizon crossplot” as it
relates to a single reflecting interface.

If data from several gathers with the same reflection are crossplotted, then the crossplot
signature is of course the same?a single point on the plot. However, if random noise is added



1.9. PRACTICAL ASPECTS OF AVO. 161

Figure 1.16: Schematic of crossplot of slope (B) and intercept (A) pairs. A fluid line for
α/β = 2.0 was assumed. Different classes of rock will plot in different quadrants of the plot
(Simm et al., 2000).

uniformly across the gathers (such that the S/N decreases with offset), the crossplot response
becomes an oval distribution of points around the real location (Figure 1.18b). This is due to
the sensitivity of the gradient estimation to noise. Hendrickson has termed this the ”noise
ellipse.” This noise trend is easily recognized on real data, for example by crossplotting a
limited number of samples from the same horizon from a seismic section. The extension of
the trend parallel to the gradient axis is an indication of the amount of noise in the data.
On real data the noise trend usually has a slope of about ?5 or more. The effects of other
types of noise (such as RNMO) will not be dealt with here.

Cambois indicated that the slope of the noise trend is dependent on two-way traveltime,
velocity structure, and offset. On real data the general position of a data cluster (such as
that shown in Figure 1.18b) is dependent on the relative scaling of R0 and G (and may
be affected by residual moveout or uncorrected amplitude decay). However, the slope of the
noise trend is independent of this scaling.

Although random noise appears to be the principal component of noise on AVO cross-
plots, other types of noise can have an influence on the observed trends (such as RNMO).

Porosity and shale content. A change in lithology can be modeled by varying the poros-
ity of the sand or the shale content. Increasing the porosity has two effects?to decrease the
AVO gradient (i.e., the Poisson ratio contrast with the overlying shale has been reduced)
and to decrease the intercept (owing to a decrease in the impedance contrast). The decrease
in intercept gives rise to a low-angle porosity trend that intercepts the gradient axis.

Changing the porosity of the sand in the model (but still maintaining the criteria of
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Figure 1.17: A real data example. (a) Stacked section illustrating a bright spot with a top
sand pick in green. (b) Time-window crossplot generated from a 40-ms window around the
top-sand pick. (Simm et al., 2000).
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noninterfering reflections) results in a crossplot that shows a series of ellipses aligned at an
angle to the gradient axis (Figure 1.18c). The trend imposed by the eye on this data cluster
would be somewhere between the porosity trend and the noise trend.

A change in lithology due to increasing shale content of the sand also lowers the gradient
and intercept, but the trend is steeper than the porosity trend. It may even be close to the
noise trend. In the case where the shale component in the sand is different from the overlying
shale (as might be found at a sequence boundary), then the ”lithologic trend” would have a
nonzero intercept value.

This discussion illustrates that a given area might not have one background trend but a
possible variation, depending on the relative contributions of shale and porosity which, in
turn, are determined by sedimentary facies. This is a moot point, however, given that in
practice noise obscures the lithologic trend.

The gas effect. Figure 1.18 shows the effect of fluid substituting the sands of varying
porosity (again the reflections are separate and noninterfering). The effect of the hydrocar-
bon is not so much to define a trend as to create a separate data cluster occupying a position
to the left of the brine-bearing data points. The greater the effect of the hydrocarbon on the
VP/VS ratio of the sand, the further the data points will plot away from the brine-filled
data points.

In these models, the optimum discriminator can be determined statistically (Figure 1.18).
This will depend on the amount of noise, the lithologic variation, and the magnitude of the
gas effect. This trend may or may not pass through the zero point. In the real-world case,
knowledge of the noise trend could be used to model the optimum discriminator (assuming
all other effects on R0 and G could be accounted for). If the lithologic variation is not large,
a range of trends may exist that would discriminate equally well.

So far, discussion has centered on the horizon crossplot. If samples from a time window
are incorporated into the crossplot, the horizon sample points, together with reflections from
the base of the sand (plotting in the upper left quadrant), are included in an ellipse of points
centered on the origin (Figure 1.18f). The organization of data around the origin does not
have a physical significance; it is simply the result of the fact that the mean of seismic data
is zero. Noise related to sampling parts of the waveforms other than the maxima is infilling
the area between the two data clusters.

Cambois has shown that the slope of what might be called the ”time-window” trend (i.e.,
a line drawn through the data which passes through the origin) is dependent on the S/N of
the data. The lower the S/N, the steeper the trend. This trend may be close to the optimum
discriminator or it may not. The noisier the data, the closer this time-window trend will
be to the noise trend.

In the case where S/N is very high, it could be argued that the line derived from a time-
windowed crossplot is equivalent to an average rock property trend (call it the fluid line if
you must) that can be inferred from a crossplot derived from well data. Given the general
level of S/N of most seismic data, this occurrence is likely to be rare.

Crossplots in practice. It is clear that the authors see little value in time-window cross-
plots, owing to the effects of noise. However, these crossplots have successfully recognized
hydrocarbon-related AVO anomalies, usually related to gas where the change in crossplot
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Figure 1.18: The anatomy of AVO crossplots. (a) A single class I reflection. (b) The noise
associated with the measurement of gradient on numerous gathers. (c) The porosity effect.
(d) The gas effect. (e) The optimum discriminator. (f) The time-window crossplot. (Simm
et al., 2000).

position is dramatic. Oil-related anomalies are usually well hidden in the noise of the plot.
Figure 1.17 shows an example of a time-window crossplot related to a bright spot and its
correlative reflector. The samples from the bright spot are clearly anomalous in terms of
their AVO behavior.

On the other hand, the horizon crossplot clearly targets the reservoir of interest and
helps determine the noise trend while revealing the more subtle AVO responses. Figure ??
shows the horizon crossplot for the portion of reflector marked in Figure ??. The responses
are characterized by negative reflections and positive gradients (i.e., a class IV response).
The nonbright part of the reflector has a high angle slope shown on the near/far crossplot
to be almost totally due to noise. The bright spot has a lower-angled slope on the crossplot
(owing to higher S/N), and it is possible to see the noise trend as a second-order effect.

Horizon crossplots can be generated from maps created from AVO attributes or partial
stack 3-D interpretations. These crossplots need to be made in a number of locations to make
sure that an adequate sample has been analyzed. In practice it may not be easy to identify
an optimum discriminator from the crossplots, but the noise trend is usually straightforward
to determine.

AVO anomaly maps can be created from linear combinations of R0 and G. These com-
binations are usually of the form R0 +Gx, where x = −G/R0 and is determined from the
slope of the trend on the crossplot. Considering that the reflection amplitude is described
by Rc = R0 +G sin 2θ, x represents an ”effective” angle. Any slope on an AVO crossplot is
an ”effective angle stack.” However, which trend should be used to create the AVO anomaly
map?
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Figure 1.19: Horizon crossplots. (a) R0/G crossplot for the pick shown in real data Figure
and illustrating the different trends associated with the bright spot and the ”background”
reflectivity. (b) Near/Far crossplot illustrating that the background trend on the R0/G
crossplot is related to noise and not to lithology. (Simm et al., 2000).
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The answer (as in many issues in seismic interpretation) is that it is impossible to
be definitive. Although crossplots are useful to determine which equivalent stack is likely
to be most discriminatory in terms of fluids, they are only a one-dimensional view of a
limited amount of seismic data. The real interpretation issue is whether the anomalous
responses represent porosity or hydrocarbon effects, and the only way to determine which
interpretation to make is to analyze the relationship of the anomaly to mapped structure.
In some cases, the equivalent angle stacks representing the noise trend, the time-window
trend, and the optimum discriminator may give similar results, owing to the fact that the
hydrocarbon effect is a displacement at a high angle to all these trends.

Probably the best approach to the use of crossplots in interpretation is to be published
by Hendrickson (in press). He illustrates the use of a range of equivalent angle stacks in
an interpretation, examining the amplitude conformance to structure on each stack as well
as recognizing their significance in terms of the AVO crossplot. Interpretation is a question
of ”covering all the angles” so to speak. Further Reading. ”AVO attributes and noise:
pitfalls of crossplotting” by Cambois (SEG 1998 Expanded Abstracts). ”Framework for AVO
gradient and intercept interpretation” by Castagna et al. (GEOPHYSICS, 1998). ”Prin-
ciples of AVO crossplotting” Castagna and Swan (TLE, 1997). ”Another perspective on
AVO crossplotting” by Foster et al. (TLE, 1997). ”Stacked” by Hendrickson, (Geophysical
Prospecting, 1999). ”Yet another perspective on AVO crossplotting” by Sams (TLE, 1998).

1.10 Summary

The stress-strain relations are introduced for an elastic medium, and the resulting equations
of motion are derived. There are two types of solutions to this equation, P waves and S
waves. Solving a boundary value problem for a layered medium reveals the analytic formula
for PP and converted PS reflection waves. These formula show the existence of two types
of S waves, SV and SH waves. Particle motions of S waves is perpendicular to the direction
of wave propagation, and the S-wave velocity is typically slower by a factor of two or more
compared to P waves. The analytic expressions for the PP reflection coefficient reveals
that the AVO curves can be used to distinguish gas-filled sands from sediment-brine-filled
sands. AVO analysis applied to real data is typically implemented by picking R(θ) values
from horizons of interest in CMPs, estimating and plotting the associated A-B curves,
and searching for deviations of points from the fluid line. Deviations can sometimes be
associated with gas plays, or other types of lithologies. The fluid line is found by predicting
the R(θ) curves from the density and velocity values in a well log devoid of gas shows. In
practice AVO analysis appears to work best for young sand-shale sediments, and not work
so well for older consolidated rocks such as limestones or older stiff sands. This is because
the stiffness of the rock is primarily controlled by the hard rock matrix (such as limestone)
and not by the fluid filling its pores. In this case, filling pores with gas or brine should not
greatly change the impedance properties.
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1.11 Problems

1. Identify the direct arrival, air wave, surface waves, refraction arrivals, and reflection
arrivals in the CSG shown in Figure 1.13. Estimate the apparent velocity in the
x-direction Vx and the associated period for each event. From these calculations
determine the wavelengths. Show work.

2. Which arrivals have the same apparent velocity as the actual propagation velocity of
that event? Why?

3. The 1-D SH wave equation is the same form as the 1-D acoustic wave equation, except
c becomes the shear wave velocity, P becomes the y-component of displacement v,
c=sqrt(mu/rho) where mu is the shear modulus, and the SH wave equation is

1/c2∂2v/∂t2 − ∂2v/∂z2 = 0 (1.39)

SH (or shear horizontal) refers to the fact that the shear wave particle motion is
perpendicular to the direction of particle motion, and is along the horizontal direction
(in and out of plane of paper). The SH continuity conditions at the interface at z=0
are a). Continuity of y-displacement v+ = v−., b). Continuity of shear traction:
μ∂v/∂z+ = μ∂v/∂z−, where μ is the shear modulus.

Derive the y-displacement reflection and transmission coefficients for a plane SH wave
normally incident on a planar interface in an elastic medium.

1.12 Appendix 1: Elastic Parameters

Some elastic parameters are are described below by Professor Steven Dutch in his
course notes at http://www.uwgb.edu/dutchs/structge/strsparm.htm.

Elastic material deforms under stress but returns to its original size and shape when
the stress is released. There is no permanent deformation. Some elastic strain, like in
a rubber band, can be large, but in rocks it is usually small enough to be considered
infinitesimal. Many elastic materials obey Hooke’s Law behavior: the deformation is
proportional to the stress. This is why spring balances work: twice the weight results
in twice the deformation.

For materials, Hooke’s Law is written as: Stress = E Strain. Alternatively, the re-
lationship is sometimes written E = Stress/Strain. This is the reverse of the way
the law is written in most physics texts. In physics, we can often apply the stress in
a controlled way and we are interested in predicting the behavior of the spring, for
example, how it oscillates. In materials science and geology, we often know the strain
and want to know what stress produced it. The two versions are equivalent; the only
difference is which side the constant is written on. The constant E is called Young’s
Modulus. Because strain is dimensionless, Young’s Modulus has the units of pressure
or stress, i.e. pascals.
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1.12.1 Physical Meaning of Young’s Modulus

If strain = 1, stress = E, then Young’s Modulus can be considered the stress it would
take (theoretically only!) to result in 100 percent stretching or compression. In reality,
most rocks fracture or flow when deformation exceeds a few percent, that is, at stresses
a few percent of Young’s Modulus.

The seismic P- and S-wave velocities in rocks are proportional to the square root of
E. For most crystalline rocks, E ranges from 50-150 Gpa, averaging about 100. If we
take 100 Gpa as an average, and consider one bar (100,000 pa) of stress, we have:
105 = 1011 Strain, or Strain = 10-6. Thus, rocks typically deform elastically by 10-6
per bar of stress. This is a useful quantity to remember. Elastic strain in rocks is
tiny - even ten kilobars typically results in only one percent deformation - if the rock
doesn’t fail first.

1.12.2 Poisson’s Ratio

When a material is flattened, it tends to bulge out at right angles to the compression
direction. If it’s stretched, it tends to constrict. Poisson’s Ratio is defined at the ratio
of the transverse strain (at right angles to the stress) compared to the longitudinal
strain (in the direction of the stress).

Note that the ratio is that of strains, not dimensions. We would not expect a thin
rod to bulge or constrict as much as a thick cylinder. For most rocks, Poisson’s Ratio,
usually represented by the Greek letter nu (ν averages about 1/4 to 1/3). Materials
with ratios greater than 1/2 actually increase in volume when compressed. Such
materials are called dilatant. Many unconsolidated materials are dilatant. Rocks can
become dilatant just before failure because microcracks increase the volume of the
rock. There are a few weird synthetic foams with negative Poisson’s Ratios. These
materials are light froths whose bubble walls collapse inward under compression.

1.12.3 Shear Modulus

Poisson’s Ratio describes transverse strain, so it obviously has a connection with shear.
The Shear Modulus, usually abbreviated G, plays the same role in describing shear
as Young’s Modulus does in describing longitudinal strain. It is defined by G = shear
stress/shear strain. G can be calculated in terms of E and v: G = E/2(1 + ν). Since
v ranges from 1/4 to 1/3 for most rocks, K is about 0.4 E.

1.12.4 Bulk Modulus

The bulk modulus, K, is the ratio of hydrostatic stress to the resulting volume change,
or K = pressure/volume change.

It’s easy to show the relationship between K, E, and Poisson’s ratio (ν Consider the
effects of pressure P acting on a unit cube equally along the x- y- and z-axes. The
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Figure 1.20: Compressing a box in one direction elongates it in the perpendicular direction.
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Figure 1.21: Table of elastic constants. Only two of the constants are independent in an
isotropic medium.

pressure along the x-axis will cause the cube to contract longitudinally by an amount
P/E. However, it will also bulge to the side by an amount vP/E, in both the y- and
z-directions. The net volume change just due to the component in the x-direction is
(1 - 2ν P/E. The minus sign reflects the fact that the bulging counteracts the volume
decrease due to compression. Similarly, compression along the y- and z- axes produces
similar volume changes. The total volume change is thus 3(1 - 2ν P/E. Since K =
P/volume change, thus K = E/(3(1 - 2ν Since v ranges from 1/4 to 1/3 for most
rocks, K ranges from 2/3E to E.

Physically, K can be considered the stress it would take to result in 100 per cent
volume change, except that’s physically impossible and elastic strain rarely exceeds a
few percent anyway.

If ν = 1/2, then K becomes infinite - the material is absolutely incompressible. Ob-
viously real solids cannot be utterly incompressible and therefore cannot have ν =
1/2.

1.12.5 Relations Between Elastic Parameters

There are really only two independent quantities, so if we know any two quantities
E, ν, G and K, we can calculate any others. The relations are shown in Figure 1.21.
Find the two known parameters and read across to find the other two.

1.12.6 Viscous Deformation

Viscous materials deform steadily under stress. Purely viscous materials like liquids
deform under even the smallest stress. Rocks may behave like viscous materials under
high temperature and pressure.
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Viscosity is defined by N = (shear stress)/(shear strain rate). Shear stress has the
units of force and strain rate has the units 1/time. Thus the parameter N has the
units force times time or kg/(m-sec). In SI terms the units are pascal-seconds. Older
literature uses the unit poise; one pascal-second equals ten poises.
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