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SUMMARY

We apply the incomplete Gauss-Newton full-waveform inver-
sion (TDIGN-FWI) to Gulf of Mexico (GOM) data in the
space-time domain. In our application, iterative least-squares
reverse-time migration (LSRTM) is used to estimate the model
update at each non-linear iteration, and the number of LSRTM
iterations is progressively increased after each non-linear iter-
ation. With this method, model updating along deep reflection
wavepaths are automatically enhanced, which in turn improves
imaging below the reach of diving-waves. The forward and
adjoint operators are implemented in the space-time domain
to simultaneously invert the data over a range of frequencies.
A multiscale approach is used where higher frequencies are
down-weighted significantly at early iterations, and gradually
included in the inversion.
Synthetic data results demonstrate the effectiveness of recon-
structing both the high- and low-wavenumber features in the
model without relying on diving waves in the inversion. Re-
sults with Gulf of Mexico field data show a significantly im-
proved migration image in both the shallow and deep sections.

INTRODUCTION

For deep subsurface imaging, waveform inversion (Tarantola,
1984a) should invert deeper reflections and later-arrival refrac-
tions. Unfortunately, standard FWI has low sensitivity to wave-
form residuals related to relatively weak deeper reflections com-
pared to the stronger amplitude diving waves. The conse-
quence is slow and often inadequate FWI convergence for re-
constructing deep portions of the slowness model. To enhance
the effectiveness of FWI for deeper reflections, we use a linear-
inversion scheme instead of reverse-time-migration (RTM) (Baysal
et al., 1983) for calculating slowness updates. Using this lin-
ear inversion, sharp boundaries are incorporated into the slow-
ness model so that they implicitly enhance the model updat-
ing along the reflection wavepaths at subsequent iterations.
This linear inversion is least-squares reverse-time migration
(LSRTM) (Tarantola, 1984b; Plessix and Mulder, 2004; Dai
et al., 2012).

Using LSRTM, a slowness-perturbation model is computed
based on the Born approximation, where the background slow-
ness is fixed during the linear inversion. The slowness model
is then updated with the inverted slowness-perturbation model.
After that, the linear inversion is repeated with the updated
slowness model as a background slowness. Each linear-inversion
and updating of the slowness model constitutes a non-linear it-
eration. This combined linear and non-linear inversion proce-
dure is cyclically repeated until acceptable convergence.

The above procedure is a variation of Gauss-Newton optimiza-
tion for FWI (Akcelik, 2002; Akcelik et al., 2002; Erlangga
and Herrmann, 2009; Virieux and Operto, 2009). To avoid

high computational and memory costs, the linear inversion is
computed by an iterative conjugate gradient (CG) solver. The
number of CG iterations is increased after each non-linear it-
eration, and is essential for an accurate model reconstruction.
The algorithm is implemented in the time-space domain, and
a multiscale approach is used to invert the data for a band of
frequencies (Bunks et al., 1995; Boonyasiriwat et al., 2010);
starting from a narrow band of low frequencies, and progres-
sively including higher frequencies into the inversion.

In this paper, we review the algorithm, and illustrate its effec-
tiveness on synthetic data that do not contain diving waves.
Then, the inversion is applied to Gulf of Mexico (GOM) data.
The resulting tomograms show significant improvements in the
deeper section compared to the starting model.

THEORY

Newton’s method (Pratt et al., 1998; Nocedal and Wright, 2006)
for minimizing the residual difference r between the calculated
and observed data can be written algebraically as

sk+1 = sk−H−1
f (sk)∇ f (sk) , (1)

where sk is the slowness model, H f is the Hessian matrix
and ∇ f (sk) is the gradient of the objective function f (sk) =
1
2 ‖r(sk)‖2

2 at the k−th iteration. By approximating the Hes-
sian as

H≈
(

J†J
)
,

where J is the Jacobian matrix, we get the Gauss-Newton op-
timization formula

sk+1 = sk−αk
(

J†
kJk
)−1

J†
krk. (2)

A line search is used to estimate the step length αk because
the approximation of the Hessian might not be an accurate es-
timate of the curvature for the non-linear misfit function. In-
stead of inverting the Hessian matrix, we iteratively solve the
overdeterimined system of equations

Jkgk = rk, (3)

using the same slowness model to get the search direction g. In
other words, LSRTM is used to compute the search direction
g instead of RTM. Once the search direct direction g and the
line-search parameter α are computed, the slowness model is
updated using

sk+1 = sk−αkgk, (4)

and the Jacobian operator and the Hessian matrix are also up-
dated according to the new slowness model. In the following
section, we review the implementation of the Jacobian opera-
tor and its adjoint.
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Time-domain implementation of the Jacobian and its ad-
joint

We follow a similar procedure to that of Dai et al. (2012) in
deriving a time-domain implementation of applying the Jaco-
bian matrix J to the slowness perturbation vector4s. We will
describe our procedure for a single frequency, with the under-
standing that the method is fully implemented in the space-
time domain. Each row of the matrix operation4p = J4s for
calculating the wavefield perturbation4p (indexed by receiver
position xr and frequency ω) from the slowness perturbation
4s (indexed by the spatial position x) for a given source at po-
sition xs with a source wavelet q(ω) is a discretization of the
integral equation

δ p(xr,ω) = 2
ˆ

ω2s0 (x)δ s(x) p0 (x,ω)G0 (x|xr,ω)dx,

(5)

where ω is the frequency, s0 is the background slowness, δ s is
the slowness perturbation, p0 is the background incident wave-
field from the source, and G0 is the Green’s function. This
equation is the solution to the following system of partial dif-
ferential equations

(
∇2 +ω2s2

0
)

p0 (x,ω) = −δ (x−xs)q(ω) , (6)
(

∇2 +ω2s2
0
)

δ p(x,ω) = −2ω2s0δ s(x) p0 (x,ω) , (7)

which indicate that we can evaluate the integral in equation 5
by having two wave-propagation simulations.

Similarly, for the adjoint operation4s= J†4p each row-vector
multiplication is the discrete approximation to the integral

δ s(x) = 2
¨

ω2s0 (x) p0 (x,ω)×

G0 (x|xr,ω)δ p∗ (xr,ω)dxrdω. (8)

To evaluate this integral, two wavefields are simultaneously
simulated by solving the two wave equations:
(

∇2 +ω2s0 (x)2) p0 (x,ω) = −δ (x−xs)q(ω) , (9)
(

∇2 +ω2s0 (x)2)R∗ (x,ω) = −δ (x−xr)2ω2δ p∗ (xr,ω) .

(10)

The solution to equation 10 is

R∗ (x,ω) = 2
ˆ

ω2G0 (x|xr,ω)δ p∗ (xr,ω)dxr. (11)

By taking the zero-lag correlation and scaling by the back-
ground slowness, we get the integral in equation 8, i.e

δ s(x) =
ˆ

s0 (x)R∗ (x,ω) p0 (x,ω)dω =

2
¨

ω2s0 (x) p0 (x,ω)G0 (x|xr,ω)δ p∗ (xr,ω)dxrdω. (12)

Similar to the forward modeling operator, the integral in equa-
tion 8 can be computed by conducting two wave-propagation

simulations and applying the zero-lag cross-correlation to the
two wavefields. The above equations are implemented in the
space-time domain for the applications in the following sec-
tions.

Physical interpretation of TDIGN-FWI

In this section, we develop by example an intuitive reasoning
that explains why TDIGN-FWI provides more accurate tomo-
grams than standard FWI. Figure 1a shows a block-velocity
model which contains one deeper reflector to constrain the
shallow velocity anomalies. Because the deep layer has a slower
velocity than the shallow layer, it will not generate refractions.
Frequencies below 5 Hz are absent from the data as shown in
Figure 1b, and the maximum source-receiver offset of 3 km is
used for the synthetic data. The initial velocity model is ho-
mogeneous with a constant velocity of 2000 m/s. The shallow
rectangular anomalies are larger in size than the minimum ef-
fective wavelength.

The block model does not generate refractions from the deep
interface so that only the reflections from the deeper inter-
face will be employed to reconstruct the square-shaped anoma-
lies. FWI relies on reflections for reconstructing the shallow
anomalies, and the velocity updates are attributed to the re-
flection wavepaths associated with the deep reflector and the
boundaries of the anomalies. The construction of reflection
wavepaths is dependent on the presence of sharp reflectors in
the velocity model. Without the sharp boundaries, standard
FWI fails to reconstruct the shallow anomalies as shown in
Figure 1c.

LSRTM is known to focus reflections and diffractions into a
sharp interfaces in the subsurface model. If such sharp inter-
faces are incorporated into the velocity model as is the case for
TDIGN-FWI, these highly resolved reflectors and diffractors
generate the wavepaths needed for reconstructing the shallow
anomalies. As shown in Figure 1d, TDIGN-FWI make use
of reflections, diffractions, multiples and prism waves to con-
struct the anomalies and delineate the boundaries with high
resolution. The mispositioning of the deeper reflector due to
the shallow velocity error is reduced and the reconstructed re-
flector is nearly flat. In contrast, the reflectors in the standard
FWI tomogram in Figure 1c are more distorted because the
deeper reflections are not fully utilized for the same number
of iterations. A prohibitively large number of iterations would
be needed to accomplish the same results using a non-linear
steepest descent optimization method.

APPLICATION TO GOM STREAMER DATASET

The TDIGN-FWI is applied streamer data from the Gulf of
Mexico. There are 515 shots with a 37.5 meter shooting in-
terval, and the source-receiver offsets are from 198 meters to
6 kilometers, with a 12.5 meter receiver spacing. The trace
length is 10 seconds with a 2 ms sampling interval. Prior to
inversion, the data spectra are filtered by

√
i/ω and gained

by
√

t in the time domain to transform 3D to 2D geometric
spreading. The source wavelet is estimated by stacking early
arrivals from the near-offset traces.
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b) Source Wavelet Spectrum
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c) Standard FWI Tomogram
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d)  TDIGN−FWI Tomogram
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Figure 1: a) Test velocity model, b) the source wavelet spec-
trum for forward-modeling the synthetic data and inversion,
c) steepest descent FWI and d) TDIGN-FWI tomograms. The
starting velocity model is a constant velocity model with the
velocity 2000 m/s, and both of the inversion results have the
same computational cost.

We start the inversion with the data bandpass-filtered from 0-4
Hz, because there is reliable signal at 4 Hz. At later iterations,
we widened the band of data frequencies to 10 Hz, and Fig-
ure 3 shows the initial velocity model and the final tomogram.
The grid size for the tomograms is 301 by 1600 grid points in
the vertical and horizontal directions, respectively, and the grid
spacing is 12.5 meters. Figure 2 shows the convergence curve
after the last reset, where the data residual decreases by more
than 60 percent.

Figure 4 shows the migration images using the initial veloc-
ity model and the TDIGN-FWI tomogram. The TDIGN-FWI
image is more focused. The spliced common-image-gathers
(CIG) are flat in the final image, while the CIG’s are not flat
for the initial image. This highlights the significant improve-
ment to the velocity model. Figure 5 shows two shot gathers
from the observed and calculated data and the match is gener-
ally good for early arrivals and most of the deeper reflections.

LIMITATIONS AND FUTURE IMPROVEMENTS

A problem with our approach is that the density is assumed
to be a constant so that the TDIGN-FWI will introduce sharp
velocity boundaries with the wrong velocity values. Those
boundaries still help in updating the background velocity, which
will improve the migration image. Such sharp boundaries can
be removed before applying an FWI algorithm which inverts
for more subsurface parameters than the acoustic velocity.

We chose to start the inversion with two LSRTM iterations
and increase the number of LSRTM iterations by one for ev-
ery non-linear iteration. Our choice is heuristic based on tests
with synthetic data. More work is needed for choosing optimal
TDIGN-FWI inversion parameters.

CONCLUSION

We implemented and applied the TDIGN-FWI to a GOM dataset.
The algorithm uses the LSRTM images as the slowness up-
dates instead of the RTM images. The TDIGN-FWI uses the
deep reflection data to define sharp boundaries in the velocity
model. Those sharp boundaries generate wavepaths that are
used by the inversion to build velocity updates for the deeper
section. The definition of sharp boundaries and using them in
calculating slowness updates are implicit within the algorithm.
As a result, the quality of the migration images computed with
the TDIGN-FWI tomogram appears to be highly resolved at
both the shallow and deeper parts.
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Figure 2: The convergence curves for TDIGN-FWI applied to
0-10 Hz GOM data.
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a) Initial Velocity Model
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b) TDIGN−FWI Tomogram (0−10 Hz)
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Figure 3: a) the initial velocity model, and b) final TDIGN-
FWI tomogram of the band 0-10 Hz.

Figure 4: Kirchhoff migration images using the initial veloc-
ity model (upper) and the final velocity model (lower). The
spliced narrow panels are common image gathers.
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Figure 5: 0-10 Hz shot gathers from different parts of the sur-
vey. The observed data are shown in the top panels and the
corresponding calculated data at the bottom.
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