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SUMMARY

We test the feasibility of applying multiscale phase inver-
sion (MPI) to seismic marine data. To avoid cycle-skipping,
the multiscale strategy temporally integrates the traces several
times , i.e. high-order integration, to produce low-boost seis-
mograms that are used as input data for the initial iterations
of MPI. As the iterations proceed, higher frequencies in the
data are boosted by using integrated traces of lower order as
the input data. Results with synthetic data and field data from
the Gulf of Mexico produce robust and accurate results if the
model does not contain strong velocity contrasts such as salt-
sediment interfaces.

INTRODUCTION

One of the most significant problems with full waveform inver-
sion (FWI) is the cycle-skipping problem (Virieux and Operto,
2009; Warner et al., 2013; Warner and Guasch, 2014), where
an iterative solution gets stuck in a local minimum. Another
problem is that the amplitudes of the predicted traces do not
fully match those of the observed data because all of the actual
physics is not used in computing the predicted traces. To miti-
gate both problems, Sun and Schuster (1993) proposed a multi-
scale phase inversion (MPI) method. To avoid cycle-skipping,
the multiscale strategy temporally integrates the traces several
times to produce low-boost seismograms that are used as input
data for the initial iterations of MPI. To avoid the necessity of
exactly predicting amplitudes, only the phase of the seismic
data is predicted and the amplitude information is largely ig-
nored. The penalty in not matching amplitudes is a moderate
loss in resolution in the velocity tomogram. Sun and Schuster
(1993) demonstrated the feasibility of this method by applying
it to synthetic crosswell data. We now test the MPI strategy on
both synthetic data and field data recorded in a marine seismic
sruvey. The next section describes the theory of MPI, which
is then followed by the numerical results section. Both syn-
thetic data and field data are inverted with the MPI strategy for
sediments with moderate velocity contrasts. The final section
presents the summary.

THEORY

For phase inversion, we replace the magnitude spectrum of
a calculated trace with the magnitude spectrum of the cor-
responding observed trace so that the amplitude strengths of
two traces are equalized. The predicted and observe traces are
Fourier transformed to obtain the magnitude A and phase φ

spectra, where

F [p(g, t;s)cal ] = A(g,ω;s)cale
iφ(g,ω;s)cal , (1)

F [p(g, t;s)obs] = A(g,ω;s)obse
iφ(g,ω;s)obs . (2)

Here, s is the location of the source, and g is the location of
the geophone for a monochromatic source at frequency ω . The
modified traces p̄(g, t;s)cal are obtained by replacing A(g,ω;s)cal
with A(g,ω;s)obs and performing the inverse Fourier trans-
form,

p̄(g, t;s)cal = F−1
{

L(ω)A(g,ω;s)neweiφ(g,ω;s)cal
}
, (3)

p̄(g, t;s)obs = F−1
{

L(ω)A(g,ω;s)obse
iφ(g,ω;s)obs

}
, (4)

where A(g,ω;s)new = A(g,ω;s)obs and L(ω) is a low-pass fil-
ter applied to data.

Misfit function. The modified predicted and observed traces
are time-integrated and their residual are used for the MPI mis-
fit function,

ε
mpi =

∑
s,g

∫
dt [In p̄(g, t;s)cal − In p̄(g, t;s)obs]

2 , (5)

where In is an integration operator I ≡
∫

dt performed n times,
and p̄(g, t;s)cal and p̄(g, t;s)obs are the modified traces in equa-
tions (3) and (4). If we set A(g,ω;s)new = A(g,ω;s)cal in
equation (3), then the MPI misfit function becomes that for
full wave inversion, except that the traces have been modified
by the filter L(ω) and integration operator.

Gradient. The gradient of MPI misfit function εmpi w.r.t. the
velocity field c(x)

γ
mpi(x) =

∂εmpi

∂c(x)
(6)

=
1

c(x)3

∑
s

∫
dt [In ˙̄p(x, t;s)]

[
In ˙̄p′(x, t;s)

]
,

where dot means time differentiation, p̄(x, t;s) is the pressure
wavefield by the source at s, and p̄′(x, t;s) is the wavefield
computed by backprojecting the seismogram residual (Luo and
Schuster, 1991) δ p̄,

p̄′(x, t;s) =
∑

r
g(x,−t;g,0)∗δ p̄, (7)

with
δ p̄ = p̄(g, t;s)obs− p̄(g, t;s)cal . (8)

In theory, the integration operator In on the fields p̄ and p̄′ in
equation 6 can be alternatively applied to source functions that
generate them without changing the misfit gradient. For exam-
ple, In ˙̄p(x, t;s) is equivalent to generating a wavefield using a
source wavelet with In−1 integrations.
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For comparison, the traditional full wave inversion (FWI) gra-
dient is

γ
f wi(x) =

∂ε f wi

∂c(x)
=

1
c(x)3

∑
s

∫
dt [ṗ(x, t;s)]

[
ṗ′(x, t;s)

]
,

(9)

where the FWI gradient is the dot product between the source
forward modeled wavefield and the backprojected wavefield
with the data residual δ p = p(g, t;s)obs− p(g, t;s)cal .

Multiscale rrequency strategy. The data should be band-pass
filtered into different frequency bands with different peak fre-
quencies, and then the FWI or MPI method is used for low-
frequency data at the early iterations and then high-frequency
data at later iterations. A low-pass Wiener filter (Boonyasiri-
wat et al., 2009) can be computed by

Lwiener(ω) =
Wtarget(ω)W †

original(ω)

|Woriginal(ω)|2 + ε2 , (10)

where Lwiener(ω) is the Wiener filter, Woriginal(ω) is the orig-
inal wavelet, Wtarget(ω) is the target wavelet, † denotes com-
plex conjugate, ω is the angular frequency, and ε is a damping
factor to prevent numerical instability. One formula for choos-
ing optimal frequency bands proposed by Sirgue and Pratt (2004)
is

fn+1 =
fn

αmin
, (11)

where fn is the current frequency, fn+1 is the next frequency
to be chosen, and αmin = z/

√
h2 + z2 is the parameter that de-

pends on the maximum half offset h and the maximum depth z
to be imaged.

NUMERICAL RESULTS

To demonstrate the effectiveness of MPI and its advantages,
we invert one synthetic data from the Marmousi and marine
data from the Gulf of Mexico. The modeling kernels are based
on numerical solutions to the constant-density acoustic wave
equation, while the observed input data are generated by solv-
ing the constant-density acoustic wave equation (Alford et al.,
1974), visco-acoustic equation (Operto et al., 2007) or elastic
equation (Levander, 1988) in the synthetic cases.

Marmousi Model
The Marmousi model (Figure 1a) is discretized into a 284 ×
461 gridded velocity model with spacing of 10 m in both di-
rections. There are 116 point sources spaced at an interval of
40 m on the free surface and 461 receivers separated by a 10
m interval along the free surface.

Acoustic Data
The original acoustic data are generated by solving the con-
stant density acoustic equation with a 15-Hz Ricker wavelet. A
common shot gather for the source at (z,x) = (0,0)m is shown
in Figure 2a. Different bandpass filters are applied to the origi-
nal data, and the frequency multiscale strategy is used for both
the FWI and MPI methods.
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Figure 1: a) The Marmousi velocity model, b) the Q model used for generating visco-acoustic
data.
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Figure 2: Synthetic seismic data, a) constant density acoustic data, b) visco-acoustic data, and
c) elastic data, for the shot location at x = 0 km. All subplots have the same scale.
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Figure 3: Inversion results for acoustic data. a) The smoothed initial velocity model with
an average velocity error of 12%, c) FWI and e) MPI tomograms based on the initial model
a), g) velocity profile comparison for true (black), initial (blue), FWI (green) and MPI (red)
tomograms; b) the v(z) initial velocity model with an average velocity error of 22%, d) FWI
and f) MPI tomograms based on the initial model b), h) velocity profile comparison for true
(black), initial (blue), FWI (green) and MPI (red) tomograms.

Figure 3a is the smoothed initial velocity model with an aver-
age velocity error of 12%, and Figure 3b is the v(z) initial ve-
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locity model with an average velocity error of 22%. The FWI
and MPI tomograms with the smoothed initial model (Fig-
ure 3a) are shown in Figures 3c and 3e, respectively. The FWI
and MPI tomograms with the v(z) initial model (Figure 3b)
are shown in Figures 3d and 3f, respectively. Figures 3g and
3h shows the velocity profile comparison for the true (black),
initial (blue), FWI (green) and MPI (red) velocity models at
different offsets. We can see that both the FWI and MPI to-
mograms have a good agreement with the true model when the
initial model is not far away from the true model. However,
when the initial model is far away from the true model, tradi-
tional FWI gets stuck in a local minima, while MPI provides an
accurate tomogram. Thus, the MPI method has a more robust
convergence than FWI for this model.

Visco-acoustic Data
We now use visco-acoustic data as input traces to the acous-
tic FWI and MPI algorithms. The goal is to test the sen-
sitivity of each method to the unmodeled attenuation effects
in the data. The visco-acoustic data are generated by solving
visco-acoustic equations, where the source wavelet and acqui-
sition geometry are the same as in the acoustic case. A pres-
sure source is injected in the water, and the pressure field is
recorded. The true vp model is shown in Figure 1a and the
Q model is shown in Figure 1b, where the minimum Q is 5.
The visco-acoustic data for the shot location at (z,x) = (0,0)m
is shown in Figure 2b, where we can see that reflections are
highly attenuated due to the highly attenuative medium. The
acoustic FWI and MPI methods are applied to these synthetic
visco-acoustic data, where the initial vp model is shown in Fig-
ure 3a. The FWI and MPI tomograms are shown in Figures 4a
and 4c, respectively, where the velocity profile comparison at
different offsets are shown in Figure 4e. It is found that MPI is
slightly more accurate than FWI.
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Figure 4: Inversion results for visco-acoustic and elastic data. a) FWI and, c) MPI tomograms,
e) velocity profile comparison for true (black), initial (blue), FWI (green) and MPI (red) tomo-
grams at different offsets for visco-acoustic data; b) FWI and d) MPI tomograms , f) velocity
profile comparison for true (black), initial (blue), FWI (green) and MPI (red) tomograms at
different offsets for elastic data.

Elastic Data
We now use elastic data as input traces to the acoustic FWI
and MPI algorithms. The goal is to test the sensitivity of each
method to the unmodeled elastic effects in the data. The elastic
data are generated by solving the elastic wave equation, where

the source wavelet and acquisition geometry are the same as
in the acoustic case. The pressure is injected in the water and
the pressure field is recorded as the negative of the average of
the normal stresses. The true vp model is shown in Figure 1a,
the density is given by ρ = 0.31v0.25

p , and vs = vp/
√

3, except
the shear velocity of the ocean water is set to 0 m/s. The elas-
tic data at shot location (z,x) = (0,0)m is shown in Figure 2c.
We can see some converted waves which do not appear in the
acoustic data. The FWI and MPI tomograms are shown in
Figure 4b and 4c, respectively, and the corresponding velocity
profiles are shown in Figure 4c. We can see that the MPI to-
mogram is moderately more accurate than the FWI tomogram.

Gulf of Mexico Data
The MPI method is applied to a streamer data set recorded in
the Gulf of Mexico using 515 shots with a shot interval of 37.5
m, a time-sampling interval of 2 ms, a recording time of 10
s, and 480 hydrophones per shot. The hydrophone interval is
12.5 m, with the minimum and maximum source-receiver off-
sets of 198 m and 6 km, respectively. The v(z) velocity model
shown in Figure 5a is used as the initial model for multiscale
FWI and MPI. The initial velocity model is discretized into
402 × 3008 grids with a grid spacing of 6.25 m in both direc-
tions.
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Figure 5: The a) v(z) initial model, b) multiscale FWI, and c) MPI tomograms for the Gulf of
Mexico data.

Figures 5b and 5c depict the FWI tomogram after 26 iterations
and MPI tomogram after 52 iterations, respectively. Both the
FWI and MPI tomograms have a higher resolution compared
with the initial velocity model. In addition, the resolution of
the MPI tomogram is slightly higher than that seen in the FWI
tomogram. In order to verify the reconstructed FWI and MPI
tomograms, we compare the migration images and angle do-
main common image gathers (ADCIGs).
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Figure 6: RTM migration images computed from a) initial velocity model, b) FWI tomogram,
and c) MPI tomogram.
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Figure 7: Angle domain common image gathers (ADCIGs) from -45◦ to 0◦ based on the a)
initial model, b) FWI tomogram, and c) MPI tomogram.

The original data are migrated using reverse time migration
(RTM) computed with the initial velocity model, the FWI to-
mogram and the MPI tomogram, and the results are shown in
Figures 6a, 6b, and 6c, respectively. We see that the RTM im-
ages computed with the FWI and MPI tomograms are quite
similar. The corresponding ADCIGs are shown in Figures 7a,
7b and 7c, respectively. Comparing the ADCIGs, we can see
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Figure 8: The average correlation, which is calculated by the correlations between the ob-
served and predicted data, for each shot.

that the ADCIGs associated with the FWI and MPI tomograms
are flatter than those from the initial velocity model. And the
ADCIGs (in the red box) from MPI are slightly flatter then
FWI. Figure 8 shows the data similarity between the observed
and predicted data. We can find that the flattened MPI traces
have a better similarity to one another than the traces obtained
from the FWI tomogram.

SUMMARY AND CONCLUSIONS

The multiscale strategy temporally integrates the traces several
times to produce low-boost seismograms that are used as input
data for the initial iterations of MPI. Synthetic examples show
that both the MIP and FWI methods can obtain similar tomo-
grams when the initial velocity model is not far away from
the true model. However, limited tests suggest that the MPI
method gives a more accurate tomogram than FWI when the
initial model is far from the true model. In addition, tests sug-
gest that MPI can provide a more accurate tomogram than FWI
when inverting elastic data. These examples show that MPI is
more robust than FWI for inverting seismic marine data.

In the GOM marine data case, both the FWI and MPI methods
successfully inverted the marine data to obtain tomograms that
are more accurate than the initial velocity model. Comparing
the RTM images, ADCISs and data correlations, it is found
that the MPI has a slightly higher accuracy than FWI.
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