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SUMMARY

Viscoacoustic least-squares reverse time migration (Q-

LSRTM) linearly inverts for the subsurface reflectivity model

from lossy data. It can compensate for the amplitude loss

and phase distortion in the migrated images because of the

strong subsurface attenuation. However, the adjoint Q prop-

agators used for backward propagating the residual data are

also attenuative. Thus, the inverted images from Q-LSRTM

are often observed to have lower resolution when compared

to the benchmark acoustic LSRTM images from acoustic data.

To increase the resolution and accelerate the convergence of

Q-LSRTM, we propose using viscoacoustic deblurring filters

as a preconditioner for Q-LSRTM. These filters can be esti-

mated by matching a simulated migration image to its refer-

ence reflectivity model. Numerical tests on synthetic and field

data demonstrate that Q-LSRTM combined with viscoacoustic

deblurring filters can produce images with higher resolution

and more balanced amplitudes when there is strong attenua-

tion in the background medium. The proposed preconditioning

method is also shown to improve the convergence rate of Q-

LSRTM. These benefits only require the extra computational

cost of constructing the deblurring filters, which is approxi-

mately no more than one migration of the data.

INTRODUCTION

Migration deconvolution (MD) is used to deblur migration im-

ages corrupted by artifacts due to coarse source and receiver

sampling (Hu and Schuster, 1998), limited aperture width, strong

velocity contrasts, and uneven subsurface illumination (Hu et al.,

2001). Previous research on MD (Yu et al., 2006; Aoki and

Schuster, 2009; Dai and Schuster, 2009; Dai et al., 2011) as-

sumed a lossless background medium. However, strong sub-

surface attenuation can significantly distort the amplitudes and

phases of seismic waves (Aki and Richards, 1980). In this

case, conventional acoustic reverse time migration (RTM) and

least-squares reverse time migration (LSRTM) cannot com-

pletely correct for the attenuation loss.

To account for attenuation, Q-LSRTM has been shown to com-

pensate for the attenuation loss and produce images with more

balanced amplitudes and accurately positioned reflectors than

standard migration techniques (Dutta and Schuster, 2014; Dai

et al., 2015; Sun et al., 2016). However, the inverted images

from Q-LSRTM sometimes have lower resolution when com-

pared to the original acoustic LSRTM images. This is because

the adjoint Q propagators used for backpropagating the data

residual are also attenuative. Hence, a large number of least-

squares iterations are required to get the desired uplift in the

image quality, which makes the Q-LSRTM technique compu-

tationally expensive when compared to standard RTM.

To mitigate these problems, we propose using viscoacoustic

deblurring filters as a preconditioner for Q-LSRTM. A refer-

ence reflectivity model is first constructed using a uniform dis-

tribution of point scatterers while the background velocity and

Q models are kept the same. The viscoacoustic data generated

from these background models are then migrated by viscoa-

coustic reverse time migration (Q-RTM) to obtain a reference

migration image. The viscoacoustic deblurring filters are then

estimated for different parts of the migration image using local

matching filters to transform the simulated migration image

into its reference reflectivity model. These filters are then used

as a preconditioner during the Q-LSRTM iterations.

This paper is divided into four sections. After the introduction,

the second section presents the theory of Q-LSRTM with vis-

coacoustic deblurring filters. Numerical tests on synthetic and

field data are then used to demonstrate the advantages of the

proposed preconditioning method. The conclusions are in the

last section.

THEORY

Strong subsurface attenuation can significantly distort the am-

plitudes and phases of seismic waves (Aki and Richards, 1980).

To mitigate this problem, Q-LSRTM (Dutta and Schuster, 2014)

was developed to generate migration images with more bal-

anced amplitudes and accurately positioned reflectors than stan-

dard migration techniques. However, the inverted images from

Q-LSRTM sometimes tend to have lower resolution when com-

pared to the benchmark acoustic LSRTM images using lossless

data. This is because the adjoint Q propagators used for back-

propagating the data residual in Q-LSRTM are also attenua-

tive.

This loss of resolution can be explained by analyzing the mi-

gration Green’s function for a viscoacoustic medium. In a

lossy medium, for a homogeneous medium with velocity v0

and a monochromatic point source at xs = (xs,zs) with angu-

lar frequency ω , the viscoacoustic Green’s function G(x,xs) is

given by

G(x,xs)=
1

|xs −x|

phase distortion
︷ ︸︸ ︷

exp{
iω|xs −x|

v0ξ
}

amplitude/ f requency attenuation
︷ ︸︸ ︷

exp{−
ω|xs −x|

2Qv0ξ
} ,

(1)

where ξ = [1+ 1
πQ (ln( ω

ω0
))][1+ 1

4Q2 ]. Q is the quality factor

which is used to quantify the attenuation in the subsurface and

ω0 is the reference frequency (usually chosen to be the central
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frequency of the source wavelet). The first exponential term is

the phase distortion term and the second exponential term rep-

resents the amplitude/high-frequency loss term. Therefore, the

viscoacoustic migration Green’s function can be approximated

by

ΓQ =

∫

ω
dω

∑

s

∑

r

exp{i ω
v0ξ

(rr− rr0)}exp{− ω
2Qv0ξ

(rr+ rr0)}

|xs −x|· |xr −x|· |xs −x0|· |xr −x0|
,

(2)

where rr = |xs −x|+ |xr −x| and rr0 = |xs −x0|+ |xr −x0|.
Equation 2 shows that if viscoacoustic migration (i.e., Q-RTM)

is used, the backward propagated receiver wavefield in Q-RTM

is further attenuated because of the exp{− ω
2Qv0ξ

(rr0)} term

on the RHS of equation 2. Thus, the inverted images from

Q-LSRTM will have lower resolution when compared to the

images computed by acoustic LSRTM on acoustic data.

To increase the resolution of the Q-LSRTM images and accel-

erate the convergence of the least-squares iterations, we pro-

pose the use of local viscoacoustic deblurring filters to approx-

imate the inverse of the Hessian in a viscoacoustic medium.

Assuming the SLS model (Christensen, 1982; Carcione et al.,

1988; Blanch et al., 1995) and the Born approximation, the

observed data dQ can be represented as

dQ = LQm0, (3)

where LQ is a linearized viscoacoustic modeling operator. The

migration image mmig is computed by applying the migration

operator L
†
Q

to the lossy data as

mmig = L
†
Q

dQ. (4)

The viscoacoustic deblurring filters are estimated by defining a

uniform distribution of point scatterers as the reference reflec-

tivity model. The viscoacoustic synthetic data are generated

using this reference reflectivity model and the background ve-

locity and Q models. The data are then migrated by Q-RTM

to obtain a reference Q-RTM image. Viscoacoustic deblurring

filters for different subdomains of the Q-RTM image are then

estimated using matching filters. The viscoacoustic deblurring

filter for the ith local window is estimated in the space domain

by solving the system of equations given by

[FQ]i ⊗ [L†
Q

LQmre f ]i ≈ [mre f ]i, (5)

where [FQ]i and [mre f ]i represent the viscoacoustic deblur-

ring filter and reference reflectivity model in the ith local win-

dow, respectively. The symbol ⊗ here means 2D convolution.

As the reference migration image is generated from the same

source-receiver configuration as the original field experiment

and by using the same velocity and Q models, the applica-

tion of these deblurring filters to the migration image is an

acceptable approximation to the true inverse Hessian operator

[L†
Q

LQ]
−1.

The misfit function for Q-LSRTM is given by (Dutta and Schus-

ter, 2014)

ε =
1

2
‖LQm(k)−dobs

Q ‖2, (6)

where dobs
Q denotes the observed data that have suffered from

attenuation, mk represents the migration image at the kth iter-

ation and LQ is the linearized viscoacoustic forward modeling

operator. The Gauss-Newton gradient g(k) for this misfit func-

tion is given by

g(k) = (L†
Q

LQ)△m(k) = L
†
Q
[LQm(k)−dobs

Q ]. (7)

It can be seen from this equation that the gradient at each it-

eration g(k) is a blurred version of the desired update ∆m(k)

caused by the viscoacoustic migration Green’s function L
†
Q

LQ.

Thus, a preconditioner for the gradient in equation 7 can be

written as the deblurring approximation [L†
Q

LQ]
−1 ≈ FQ, so

that the preconditioned gradient in equation 7 can be used in

the iterative update equation

m(k+1) = m(k)−αFQ ⊗ (L†
Q
(LQm(k)−dobs

Q )), (8)

where α is the step length.

NUMERICAL RESULTS

The effectiveness of Q-LSRTM with viscoacoustic deblurring

filters is now demonstrated with synthetic and field data ex-

amples. The data are migrated using acoustic RTM, acoustic

LSRTM, Q-RTM, Q-LSRTM and Q-LSRTM with viscoacous-

tic deblurring filters. The migration results in the same figure

are compared at the same colorbar scale.

The preconditioned Q-LSRTM method is first tested on the

Marmousi II model. Figure 1 shows the true velocity and Q

models, respectively. A Ricker wavelet with a peak frequency

of 15 Hz is used as the source wavelet. A fixed-spread ac-

quisition geometry is used where there are 150 sources evenly

distributed on the surface at an interval of 50 m. The data are

recorded by 800 receivers for each shot uniformly distributed

every 10 m on the surface.

(a) Velocity Model

2 4 6 8

X (km)

1

2

3

Z
(k

m
)

2

3

4

km/s (b) Q Model

2 4 6 8

X (km)

1

2

3

Z
(k

m
)

0.01

0.02

0.03

0.04

0.05
1/Q

Figure 1: The Marmousi model: (a) true velocity model and (b) true Q model.

Conventional acoustic RTM and LSRTM images obtained from

the viscoacoustic data are shown in Figures 2a and 2b, respec-

tively. Both these images fail to recover the amplitudes of the

reflectors at the deeper parts. The Q-LSRTM image, shown

in Figure 2d, shows improvement in the deeper layers when
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(a) RTM and Q Data
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(d) Q-LSRTM and Q Data
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(e) Preconditioned Q-LSRTM
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Figure 2: Comparison between images computed from viscoacoustic data by (a) acoustic

RTM, (b) acoustic LSRTM, (c) Q-RTM, (d) Q-LSRTM, (e) Q-LSRTM using viscoacoustic

deblurring filters as a preconditioner, where 20 least-squares iterations are carried out in all

cases. (f) Acoustic LSRTM for lossless acoustic data, which is used as the benchmark image.

compared to the acoustic migration results. However, the Q-

LSRTM image has lower resolution for the reflectors below the

Q anomaly when compared to the benchmark acoustic LSRTM

image, shown in Figure 2f, that has been obtained from acous-

tic data generated using the same velocity model in Figure 1a.

The preconditioned Q-LSRTM image in Figure 2e computed

with the viscoacoustic deblurring filters has better resolution

when compared to the Q-LSRTM image in Figure 2d and bet-

ter balanced amplitudes than the acoustic RTM and LSRTM

images.

Magnified views of these images are compared in Figures 3

and 4, where the black arrows point to the areas in which

noticeable improvements in resolution can be seen. Figure 3

shows the wavenumber spectrum of a vertical slice at x = 3.11

km in Figure 3. The wavenumber spectrum clearly shows

the improvement in resolution with preconditioned Q-LSRTM,

which is also confirmed in Figure 4e which shows the wavenum-

ber spectrum of a vertical slice at x = 5.13 km in Figure 4.

It is evident from these plots that the high-wavenumber de-

tails in the image are successfully recovered in the precondi-

tioned Q-LSRTM image and these images have a similar reso-

lution as the benchmark image obtained from applying acous-

tic LSRTM to lossless acoustic data.

The data residual as a function of iteration number for acoustic

LSRTM, Q-LSRTM and preconditioned Q-LSRTM is plotted

in Figure 5, where it can be seen that the convergence rate of

the proposed Q-LSRTM method is much faster that the stan-

dard acoustic and Q-LSRTM methods.

For the field data example, we test our preconditioned Q-LSRTM
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Figure 3: Magnified views of the black boxes in Figures 2b, 2d, 2e and 2f. The black arrows

point to the areas in which improvements can be seen, and Figure 3e shows the kz wavenumber

spectrum of a vertical slice at x = 3.11 km in the above four pictures.

(a)LSRTM on Acoustic Data
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(d)Preconditioned Q-LSRTM
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Figure 4: Magnified views of the red boxes in Figures 2b, 2d, 2e and 2f. The black arrows

point to the areas in which improvements can be seen, and Figure 4e shows the kz wavenumber

spectrum of a vertical slice at x = 5.13 km in the above four pictures.

method on the Friendswood crosswell field data set. Two 305-

m-deep cased wells separated by 183 m were used as the source

and receiver wells. Downhole explosive charges were fired

at intervals of 3 m from 305 m to 9 m in the source well,

and the receiver well had 96 receivers placed at depths rang-

ing from 293 m to 3 m. For these data, the migration veloc-

ity and Q models are shown in Figures 6a and 6b, respec-

tively. The migration velocity model is estimated by early-

arrival waveform inversion and the migration Q model is es-

timated by wave-equation Q tomography (Dutta, 2016; Dutta
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Figure 5: Data residual vs number of iterations for acoustic LSRTM, Q-LSRTM and precon-

ditioned Q-LSRTM applied to data associated with the Marmousi II model.

and Schuster, 2016).

The comparison between the acoustic LSRTM and Q-LSRTM

images after 20 iterations are shown in Figures 7a and 7b, re-

spectively. Similar to the synthetic examples, the amplitudes

are more balanced in the Q-LSRTM image in Figure 7d than in

the acoustic RTM and LSRTM images in Figures 7a and 7b, re-

spectively. However, the resolution of this image is lower than

the acoustic LSRTM image. The preconditioned Q-LSRTM

image is shown in Figure 7e which has better resolution at

depths of 10-80 m as well as better balanced amplitudes than

the acoustic RTM and LSRTM images. The black arrows in

the magnified views of these images in Figure 8 validate the

same.
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Figure 6: (a) The estimated migration velocity and (b) Q models for the Friendswood cross-

well data.

SUMMARY AND CONCLUSIONS

A preconditioned Q-LSRTM method is presented that uses vis-

coacoustic deblurring filters to compensate for the amplitude

and resolution losses due to strong subsurface attenuation. Nu-

merical tests on synthetic and field data validate that the pro-

posed preconditioning method mitigates the problem of low

resolution associated with standard Q-LSRTM and can pro-

duce images with better balanced amplitudes and better reso-

lution than acoustic RTM and LSRTM. The proposed precon-

ditioning method is also shown to significantly increase the

convergence rate of Q-LSRTM.
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Figure 7: Comparison between images from (a) acoustic RTM, (b) acoustic LSRTM, (c) Q-

RTM, (d) Q-LSRTM and (e) preconditioned Q-LSRTM. Twenty iterations are carried out in

b), d) and e).
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Figure 8: Magnified views of the black boxes in Figure 7. The black arrows point to the re-

flectors where the improvement in resolution can be seen from the preconditioned Q-LSRTM

method.
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