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SUMMARY

We present a decoupled deblurring filter that approximates the
multiparameter Hessian inverse by using local filters to ap-
proximate its submatrices for the same and different parameter
classes. Numerical tests show that the filter not only reduces
the footprint noise, balances the amplitudes and increases the
resolution of the elastic migration images, but also mitigates
the crosstalk artifacts. When used as a preconditioner, it accel-
erates the convergence rate for elastic inversion.

INTRODUCTION

Conventional migration can be considered as the first iteration
of iterative least-squares inversion (Claerbout, 1992). The mi-
gration operation does not compute the Hessian inverse so the
image suffers from amplitude distortion, strong footprint noise
and blurring effects (Nemeth et al., 1999; Aoki and Schuster,
2009). In addition, the multiparameter migration image suffers
from crosstalk artifacts (Operto et al., 2013).

The Hessian inverse are usually too expensive to compute and
store for large-scale 3D applications. The simplest way to re-
duce the cost is to approximate it by a diagonal or diagonal-
dominant matrix (Nemeth et al., 1999; Plessix and Mulder,
2004; Valenciano et al., 2006). Hu and Schuster (1998), Hu
etal. (2001) and Yu et al. (2006) estimated the Hessian inverse
by a series of local Hessian inverses in the wavenumber do-
main by assuming a locally layered medium. Guitton (2004)
approximated the Hessian inverse with a bank of nonstation-
ary matching filters. Similarly, Aoki and Schuster (2009) pro-
posed a bank of localized stationary filters, called deblurring
filters, to approximate the Hessian inverse. The deblurring fil-
ter is used to accelerate the convergence speed of least-squares
migration (Aoki and Schuster, 2009; Dai et al., 2011).

We now develop a decoupled deblurring filter to estimate the
multiparameter Hessian inverse. The filter estimates the near-
diagonal elements of the submatrices of the Hessian inverse
for the different parameter classes. Our decoupled deblurring
filter is used to improve the elastic migration image quality and
speed up the convergence of elastic linearized inversion (Duan
et al., 2016; Feng and Schuster, 2017; Ren et al., 2017). The
results show that the filter not only balances the amplitude, in-
creases the resolution, but also reduces the crosstalk artifacts
in the elastic migration images. It can also be used as a pre-
conditioner to accelerate the convergence of elastic inversion.

THEORY

Multiparameter Hessian
The general theory for linearized seismic inverse theory and

deblurring filter can be found in Aoki and Schuster (2009) and
Dai et al. (2011). For two parameter classes, the forward mod-
eling operator L, reflectivity model m and corresponding mi-
gration image m™¢ can be expressed as
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The corresponding multiparameter Hessian LT L has the form
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The multiparameter migration image can be expressed as
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Here, the first term on the right-hand side represents a blurred

version of the actual reflectivity model, while the second term
accounts for the crosstalk artifacts by parameter coupling.

Decoupled deblurring filter algorithm
The multiparameter Hessian inverse (L7L)~! can be written
as a combination of four submatrices
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where the submatrices F; ; (k,l = 1,2) have the same dimen-
sion. Thus we have
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For the decoupled deblurring filter, we seek four stationary lo-
cal filters fy ; to approximate the submatrices F; ; in a window
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where [ ] denotes the model or migration image in a window.
The filter f; ; is computed by constraining them to satisfy
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where m™ = (mr'ef is the reference model and m™&-ref =

mig_ref
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1 is its corresponding migration image.
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We design the m™! to be a model with an even distribution
of isolated point diffractors in one parameter class, while there
are no diffractors in the other parameter class, as shown in Fig-
ures la and lc. The reference models are then divided into sev-
eral subsections centered at the location of each point diffrac-
tor. For example, a subsection is displayed as the area of the
black squares in Figure 1. In each subsection, f; ; is assumed
to be stationary.
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Figure 1: Illustration of local matching filters that transform
(b) the migration image m™&-rf (o (a) its reference model
m'™ . The six black squares belong to the same subsection.
Both reference models (a) and (c) are used as input for solving
for the filters in equation 7.

NUMERICAL RESULTS

‘We now test the effectiveness of decoupled deblurring filter on
elastic migration and inversion with synthetic elastic data and
a marine dataset recorded in the Gulf of Mexico. The syn-
thetic data are simulated from two land models: (1) a layered
model with different P- and S-wave velocity anomalies and (2)
a portion of the modified Marmousi2 model.

In the synthetic examples, the observed two-component data
are generated by a time-space staggered-grid solution of the
elastic wave equation (Levander, 1988) without a free-surface
boundary condition. The data are used to invert for the P- and
S-reflectivity models defined as m = (8V,,/V,», 8Vs/V;)T using
elastic reverse time migration (RTM) and least-squares reverse
time migration (LSRTM) (Feng and Schuster, 2016), where V),
and V; are the background P- and S-wave velocity models and
8V, and 8V are the corresponding perturbations. Here, the P-
and S-reflectivity images are denoted as the P-image and the
S-image, respectively. Elastic RTM refers to the first iteration
of elastic LSRTM. If a decoupled deblurring filter is not em-
ployed, source-side illumination preconditioning (Plessix and
Mulder, 2004) is used for both elastic R-TM and LSRTM.

Layered velocity model

We first demonstrate that the decoupled deblurring filter can
improve the quality of the elastic migration image using the
flat-layered elastic model embedded with anomalies in Fig-
ure 2. The density is homogeneous with 1 g/cm3. Here 92
shots are evenly spaced at 50 m, and 230 receivers are evenly
distributed at 20 m intervals on the surface. The P-wave point
source uses a Ricker wavelet with a 7.5 Hz peak frequency and
the total recording time is 5 s.

Figure 3 compares the elastic RTM images with and without
the decoupled deblurring filter. The images with filtering have
fewer artifacts, better amplitude balancing and higher resolu-
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Figure 2: Test models: (a) true V), (b) migration V), (c) true
Vs, and (d) migration V.
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Figure 3: Elastic RTM images of the test model: without filter-
ing for the (a) P-image and (b) S-image, with filtering for the
(c) P-image and (d) S-image.

tions compared to the images without filtering. In addition, the
P- and S-images without filtering contain false reflectivity im-
ages of P- and S-wave velocity anomalies, which are mitigated
after applying the filter.

Marmousi2 velocity model

We also demonstrate that the decoupled deblurring filter can
be used as a preconditioner to improve the image quality and
speed up the convergence rate for elastic LSRTM. Elastic data
are generated for a portion of the elastic Marmousi2 model and
where the water layer is replaced a solid layer. The S-wave ve-
locity is also modified to avoid very low V; values. Figures 4a
and 4c show the true P- and S-wave velocity models, respec-
tively, and the velocity models for migration are shown in Fig-
ures 4b and 4d. The density is constant with 1 g/cm>. The true
reflectivity models for the P- and S-wave velocities are shown
in Figure 5. 393 shots are evenly spaced at 20 m, and 787 re-
ceivers are evenly distributed at 10 m intervals on the surface.
The P-wave point source uses a Ricker wavelet with a 15-Hz
peak frequency and the total recording time is 5.5 s.

The elastic RTM images with and without the decoupled de-
blurring filter are shown in Figure 6. The elastic LSRTM im-
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Figure 4: A portion of the modified Marmousi2 model: (a) true
Vp, (b) migration V), (c) true Vj, and (d) migration V.
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Figure 5: The Marmousi2 reflectivity models: true reflectivity
models for the (a) P-wave velocity and (b) S-wave velocity
distributions.

ages with and without the filter as a preconditioner are shown
in Figure 7. The deblurring filter improves the quality of both
the RTM and LSRTM images. It also increases the conver-
gence rate so that the misfit function of LSRTM with the filter
at the 6th iteration has about the same value as the one without
the filter at the 15th iteration, as shown in Figure 8.

The zoom views of the red-box area (see Figure 5) for the P-
and S-images are displayed in Figures 9 and 10, respectively.
These magnified views show that the decoupled deblurring fil-
ter improves the amplitude balance and resolution of the im-
ages. The increase in spatial resolution is further validated
by the vertical-wavenumber spectra in Figures 9b and 10b. In
the yellow box of Figure 9f, the two reflectors are only dis-
tinguishable in the filtered LSRTM P-image. In addition, the
RTM S-image without filtering (Figure 10c) shows a strong
false structure in the reservoir area, for example, the green box
marked in Figures 9a and 10a. These crosstalk artifacts are
much weaker in either the LSRTM S-image without filtering
(Figure 10d) or the RTM S-image with filtering (Figure 10e).
This crosstalk problem is slightly mitigated by LSRTM with
filtering, as shown in Figure 10f.

Field data test

The third example is for a 2D marine data set recorded in the
Gulf of Mexico. The streamer data consist of 496 shots with a
shot interval of 37.5 m. Each shot has 480 hydrophones with
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Figure 6: Elastic RTM images of the Marmousi2 model: with-
out filtering for the (a) P-image and (b) S-image, with filtering
for the (c) P-image and (d) S-image.
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Figure 7: Elastic LSRTM images of the Marmousi2 model:
without filtering for the (a) P-image and (b) S-image, with fil-
tering for the (c) P-image and (d) S-image.

a receiver interval of 12.5 m. The maximum source-receiver
offset is approximately 6 km, the nearest offset is 198 m, and
the recording time is 5 seconds.

Figure 11 compares the elastic RTM images with and without
the decoupled deblurring filter. The images with filtering have
better amplitude balancing especially for the deeper structures.
The images of the shallow reflectors are more continuous and
clear because of the better amplitude balancing and higher res-
olutions.

The residual drops less than 1% for RTM images (first itera-
tion of LSRTM) without filtering while more than 10% with
filtering. There is no doubt that there are false reflectivities in
the S-image since the marine data set does not contain strong
PS converted wave. Here, we mainly demonstrate that decou-
pled debluring filter can improve the image quality and speed
up the convergence rate because it truly approximates the mul-
tiparameter Hessian inverse.
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Figure 8: Convergence curves for elastic LSRTM with and
without filtering for the Marmousi2 model.
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Figure 9: Zoom views showing the P-images in the red boxes
in Figures 6 and 7. (a) True P-reflectivity image, (b) vertical-
wavenumber spectra, (c) RTM and (d) LSRTM P-images with-
out filtering, (¢) RTM and (f) LSRTM P-images with filtering.

CONCLUSION

We estimate the mutiparameter Hessian inverse using local fil-
ters to approximate its submatrices for the same and different
parameter classes. Numerical tests on the elastic migration and
inversion show that the decoupled debluring filter improves the
quality of multiparameter migration images and significantly
accelerates the convergence speed.
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Figure 10: Zoom views showing the S-images in the red boxes
in Figures 6 and 7. The figures have the same arrangement as
the images in Figure 9.
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Figure 11: Elastic RTM images of field data test: without fil-
tering for the (a) P-image and (b) S-image, with filtering for
the (c) P-image and (d) S-image.



