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SUMMARY

Supervirtual interferometry (SVI) was developed to signifi-
cantly enhance the signal-to-noise ratio of noisy first arrivals.
However, a time window must be specified that contains these
first arrivals, and the window should be no wider than several
times the dominant period of the source wavelet. The accu-
rate specification of this window is very challenging for noisy
data and involves manual picking. To overcome this prob-
lem, we propose to automatically pick these windows via ma-
chine learning methods. Convolutional neural network (CNN)
and density-based spatial clustering of applications with noise
(DBSCAN) are used to distinguish first-arrival signals com-
pletely buried in noise. Numerical tests validate that this
method can accurately specify the correct window as well as
that of a human interpreter. The benefit is an automatic means
for picking first-arrival traveltimes in noisy traces from a large
3D data set.

INTRODUCTION

First arrival traveltime tomography (Bishop et al., 1985) is one
of the most important applications for velocity model building.
However, manual picking the first breaks can be very labor-
intensive. To solve this problem, many auto-picking meth-
ods have been proposed (Allen, 1978; Coppens, 1985; Zhang.
et al., 2003; Song et al., 2010; Chen, 2018), yet these methods
become less robust for data with high noise levels. This dis-
advantage is becoming more intolerable since wider source-
receiver offsets are needed for imaging deeper targets.

One way to increase the performance of auto-picking meth-
ods is to enhance the signal-to-noise ratio (SNR) of the data.
This can be accomplished with super-virtual interferometry
(Bharadwaj et al., 2011; Mallinson et al., 2011), which is a
robust and effective SNR enhancer for far-offset head waves.
The general idea of SVI is to construct and stack super-virtual
refractions to improve the SNR of coherent refractions. Figure
1 describes the workflow for creating super-virtual refractions
in far-offset traces, where the SNR is significantly improved.
One of the requirements of SVI is that a time window must be
accurately specified that is no wider than about twice the pe-
riod of the dominant wavelet and it contains the hidden first ar-
rivals. Accurate specification becomes more challenging with
noisier data and often involves manual editing.

To overcome manual specification of the time window, we pro-
pose a noise-resistant automatic windowing strategy for SVI
with machine learning. Results with noisy data suggest that
they are at least equal in effectiveness to manual specification
of the correct time window.

In the following, I will first explain the methodology, which
includes two steps: classification and window parameter de-
termination. Two machine learning methods: convolutional
neural network (CNN) and density-based spatial clustering of
applications with noise (DBSCAN) are applied for the classi-
fication. After that, I present several examples of automatic
window picking for seismic data with different noise levels.
The conclusions are drawn at the end.

MACHINE LEARNING METHODOLOGY FOR AUTO-
MATIC WINDOW SELECTION

We automatically pick the temporal windows for first arrivals
using two steps: 1) signal/noise classification and 2) window
parameter determination. In the first step, subimages are ex-
tracted from the seismic data display and each subimage is
classified as either signal (coherent events) or random noise by
the machine learning algorithm. For the purpose of more ro-
bust classification, the subimages are pre-processed to be more
noise-resistant before they are used as inputs for the machine
learning classifiers. In the second step, the window parameters
are determined by the time and velocity information obtained
from the subimages that are classified as signals at early trav-
eltime.

Signal/Noise Classification

Pre-processing
To better distinguish the signals from the noise, we identify
the coherent features of the seismic events. A local slant-stack
is applied to each subimage with different scanning velocities.
The stacking velocity that gives the highest energy is used to
create the signal in this local window (see Figure 2).

Classification by CNN

A convolutional neural network (CNN) is a class of deep, feed-
forward artificial neural networks, which uses a variation of
multilayer perceptrons designed to require minimal prepro-
cessing (Krizhevsky et al., 2012; LeCun et al., 2015). CNNs
have attracted a lot of attention recently, because of its robust-
ness in many fields like image and video recognition, recom-
mender systems and natural language processing.

In our application, CNN is designed as a binary classifier to
distinguish signals from noise for the subimages after local
slant stacking. To train or invert the CNN filters, the training
and validation sets are prepared where the the signal exam-
ples are picked from subimages with identifiable first arrivals,
and the noise examples are randomly selected from the subim-
ages before the traveltimes of first arrivals. To avoid biasing
the CNN weights, we choose the same number of signal and
noise examples for training. It is not recommended to pick
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Figure 1: Diagram outlining the main steps for super-virtual interferometry. The reconstructed first arrivals are significantly en-
hanced compared to those in the original data.

very weak first arrivals as the training examples, as it might
lead CNN to misidentify noise as signals in the testing set.

Classification by DBSCAN

Density-based spatial clustering of applications with noise (DB-
SCAN) is a data clustering algorithm (Martin et al., 1996). It
is a density-based clustering algorithm: given a set of points in
some space, it groups together points that are closely packed
together (points with many nearby neighbors), and marks the
outlier points that lie alone in low-density regions (whose near-
est neighbors are too far away).

By masking the pixels with low absolute amplitudes in the
slant-stacked data, the points in the areas where the energy is
focused will form a dense cluster, which can be recognized by
the DBSCAN algorithm. There are only a few of these clusters
for the subimage with coherent events since such events will
only be focused at the correct apparent velocity in the slant
stack result. On the other hand, for the subimage with random
noise, the energy in the slant-stacked data is dispersive, so that
there can be many clusters randomly distributed. This phe-
nomenon provides a simple way to distinguish between signals
and noises based on the number of clusters as shown in Figure
3.

Window parameter determination

A classification map of signals and noise is obtained after the
above step. The subimages classified as signals at early times

delineate the approximate arrival times of the first arrivals. In
order to properly select the windows that isolate the first ar-
rivals, the center times and the slopes of the local windows
(we assume a local window with constant dipping angle and
temporal width) need to be determined. We search the center
point of the energy focus zone in the slant-stacked data. The
horizontal coordinate of this point gives the apparent velocity
and the vertical coordinate is the center time of the window.

NUMERICAL RESULTS

A synthetic test is conducted by applying the proposed method
to auto-window an undulating event with three different SNRs
of -9.3 dB, -16.8 dB and -19.0 dB, respectively. Here the SNRs
are much lower than 0 dB, because the proposed method is for
data with high noise levels. Subimages with a size of 91 pixels
along the temporal axis (approximately 2 periods) by 10 traces
along the offset axis are extracted from the data examples, and
the steps between adjacent subimages are 20 pixels along the
time axis and 5 traces along the offset axis. Both CNN and
DBSCAN algorithms are tested for classification.

In the CNN classification, the subimages are used as input
patches. The CNN architecture consists of two convolutional
layers and two fully-connected layers. At each convolutional
layer, there are 8 convolutional filters with size of 2× 2. We
used the softmax function to give the possibility of each subim-
age to be signal or noise.
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Figure 2: Illustration of pre-processing results for classifica-
tion. (a) A noisy data example, in which subimages with the
signal (red) and another with the noise (blue) are picked. The
subimages with signal (b) and noise (d) are pre-processed as
shown in the panels (c) and (e), where each trace is a slant-
stacked trace associated with the optimal stacking velocity. (c)
is obviously distinguished from (e) as its energy is well fo-
cused.

The training and validation sets include 120 signal examples
and 120 noise examples picked from the data with SNRs of
-9.3 dB and -16.8 dB. Examples are not picked from the most
noisy data to avoid the classification system confusing extremely
weak signals with noise. 80% of the examples are used for
training and the rest for validation. The accuracy of the train-
ing and validation sets are 98.33% and 97.5%, respectively.
Figures 4 (d)∼(f) show the CNN classification results, where
the yellow pixels represent the subimages identified as signals,
and the rest are noise.

In the DBSCAN classification, the masking threshold is set to
be 0.5 (points with amplitudes smaller than 0.5 after normal-
ization are muted). The subimages with the number of clusters
less than 4 are classified as signals. Figures 4 (g)∼(i) show the
classification results with DBSCAN.

Both methods perform well in the first two examples with rela-
tively higher SNRs. In the last data example, where the event is
barely noticeable, both methods suffer from strong noise, sug-
gesting that the noise tolerance level of the proposed classifi-
cation method does not exceed that of a human interpreter. For
comparison, CNN beats the DBSCAN method for extremely
noisy cases.

Figure 5 (c) shows the final result after the window parameter
determination step for data example 2, where the weak event
is correctly windowed.

Figure 3: Illustration of classifying subimages by DBSCAN.
(a) and (b) are pre-processed subimages with signals and noise,
respectively. All the pixels with amplitudes below the thresh-
old are muted as shown in (c) and (d). (e) and (f) demonstrate
the clustering results, where the number of clusters is small for
signals but much larger for noise.

CONCLUSIONS

We propose a strategy for automatically picking the first breaks
of noisy seismic arrivals by enhancing the SNR with auto-
windowed SVI. We design the auto-windowing process as two
steps: subimage classification and window parameter determi-
nation. The subimage classification can be fulfilled by either
of the two machine learning methods: the supervised CNN
method and an unsupervised learning method (DBSCAN). The
numerical tests show that both CNN and DBSCAN perfor-
mances are satisfactory when the SNR is not lower than -17
dB. Our results showed that CNN beats DBSCAN for data
with extremely low SNR. However, DBSCAN, as an unsu-
pervised learning method, requires no prior labels or training,
we suggest using DBSCAN in most cases, unless the data are
heavily polluted by noise.

The limitation of the proposed first arrival auto-windowing
method is that it assumes that the additive noise is random. If
this assumption is not satisfied, the coherent noise appearing
at earlier times than first arrivals need to be masked or filtered.
For very low SNRs, in which some parts of the event can not
be identified (such as the cases in Figures 4(f) and (i)), inter-
polation can be an option.



Auto-SVI

Figure 4: The classification results for three data examples with different SNRs: (a) -9.3 dB, (b) -16.8 dB and (c) -19.0 dB.
(d) (f) and (g) (I) are classification results from CNN and DBSCAN, respectively, where the yellow pixels represent the subimages
identified as signals and the blue pixels represent the subimages identified as noise.

Figure 5: Diagram illustrating how to determine the window for a subimage identified as signal. The relative temporal position and
velocity picked in (a) determines the central time of the window (the most left vertical yellow bar) and the window slope in (b),
where the red box represents the subimage position. (c) shows the windows (marked by the red dots) automatically picked for the
synthetic data with a SNR of -16.8 dB.
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