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ABSTRACT
Multisource migration of phase-encoded supergathers has shown great promise
in reducing the computational cost of conventional migration. The accompanying
crosstalk noise, in addition to the migration footprint, can be reduced by least-
squares inversion. But the application of this approach to marine streamer data is
hampered by the mismatch between the limited number of live traces/shot recorded
in the field and the pervasive number of traces generated by the finite-difference
modelling method. This leads to a strong mismatch in the misfit function and results
in strong artefacts (crosstalk) in the multisource least-squares migration image. To
eliminate this noise, we present a frequency-division multiplexing (FDM) strategy
with iterative least-squares migration (ILSM) of supergathers. The key idea is, at
each ILSM iteration, to assign a unique frequency band to each shot gather. In this
case there is no overlap in the crosstalk spectrum of each migrated shot gather m(x,
ωi), so the spectral crosstalk product m(x, ωi)m(x, ωj) = δi,j is zero, unless i = j.
Our results in applying this method to 2D marine data for a SEG/EAGE salt model
show better resolved images than standard migration computed at about 1/10th of
the cost. Similar results are achieved after applying this method to synthetic data for
a 3D SEG/EAGE salt model, except the acquisition geometry is similar to that of a
marine OBS survey. Here, the speedup of this method over conventional migration is
more than 10. We conclude that multisource migration for a marine geometry can be
successfully achieved by a frequency-division encoding strategy, as long as crosstalk-
prone sources are segregated in their spectral content. This is both the strength and
the potential limitation of this method.
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INTRODUCTION

For large datasets, 3D prestack wave equation migration is
a computationally expensive procedure. Its computational
workload is proportional to both the number of shots in a
survey and the computational complexity of solving the 3D
wave equation for a given velocity model. In the case of it-
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erative methods, such as full waveform inversion (FWI), this
workload is proportional to the number of iterations for ac-
ceptable convergence.

An attempt to reduce this workload was proposed by Mor-
ton and Ober (1998) by migrating one blended supergather,
rather than separately migrating individual shot gathers. Here,
the supergather is computed by summing a number of shot
gathers, each encoded by correlation with a distinct ran-
dom time series approximately orthogonal with one another.
The migration image is then formed by applying a decoded
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migration operator whose imaging condition is tuned to de-
coding the simultaneous sum of the encoded shots. Applying
this migration operator to the supergather produces a migra-
tion image of good quality only if the number of iterations
is sufficiently large. In fact, their results did not show a clear
computational cost advantage over the conventional method
of wave equation migration.

To mitigate problems associated with wavelets of long ran-
dom time series, Jing et al. (2000) and Krebs et al. (2009)
proposed a polarity encoder that randomly multiplied shot
gathers by either +1 or −1. For phase-encoded multi-source
migration, Jing et al. (2000) empirically concluded that the
crosstalk term was adequately suppressed when six shot gath-
ers were encoded, summed together and migrated. On the
other hand, Krebs et al. (2009) empirically found that using
this strategy with FWI produced acceptable velocity tomo-
grams at a cost saving of at least one order of magnitude. In
one of the few exceptions, Gao, Atle and Williamson (2010)
used deterministic encoding to determine a shot’s scale factor
that gave the most significant update to the velocity model
for a specified composite source. Another form of determinis-
tic encoding is plane-wave decomposition (see e.g., Whitmore
and Garing 1993; Duquet, Lailly and Ehinger 2001; Zhang
et al. 2003), which also aims at reducing data volume. Using
this method, Vigh and Starr (2008) obtained speedups ranging
from 3 to 10-fold. Other groups, such as Virieux and Operto
(2009), Dai and Schuster (2009), Boonyasiriwat and Schus-
ter (2010), Ben-Hadj-Ali, Operto and Virieux (2009, 2011)
and Ben-Hadj-Ali et al. (2011) discovered similar cost sav-
ings for FWI or least-squares migration, except that they used
somewhat different encoding recipes such as exclusive use or
combinations of random time shifting, frequency selection,
source selection, amplitude encoding and/or spatial random-
ization of source locations. A related inversion scheme is by
Tang (2009), who used random phase-encoding of simulta-
neous sources to efficiently compute the Hessian for iterative
least-squares migration. Almost all of these schemes aimed to
efficiently approximate the orthogonality between different
encoders in as few iterations as possible.

Is there an encoding scheme that can exactly satisfy this
orthogonality condition? The answer is yes. The frequency-
division multiplexing (FDM) scheme from the communica-
tions industry can be used to assign each shot gather to a
unique set of frequencies. Careful assignment ensures no over-
lap in frequencies from one shot gather to the next, thereby
eliminating the crosstalk. Just as important, FDM also mit-
igates the acquisition crosstalk noise associated with marine
geometry.

The marine acquisition crosstalk is defined as the migra-
tion noise caused by the mismatch in the modelled traces and
the recorded traces. In a marine survey the recorded traces
are only alive over a moving swath of hydrophones while the
generated finite-difference traces are alive everywhere. This
induces large residuals in the data misfit functions, leading
to large artefacts in the FWI or migration images. As will
be discussed later, the FDM strategy eliminates this problem.
The downside of this strategy is, however, the reduced resolv-
ing power of seismic illumination. To enhance the resolving
power, we use the ILSM method (Nemeth, Wu and Schuster
1999; Duquet, Marfurt and Dellinger 2000; Tang and Biondi
2009), varying each shot gather’s unique frequency fingerprint
at every 3 CG updates. The resulting migration algorithm for
encoded data can be more than an order of magnitude faster
than conventional migration while producing nearly the same
image quality.

The rest of this paper is organized as follows. The theory
section presents the theory of frequency-division encoding,
how it can be used to remove the crosstalk in migrating su-
pergathers and the I/O implications for computing systems.
The method section, supplemented by appendices, defines the
objective function for the frequency-division multisource algo-
rithm, discusses the implications for optimization, and derives
the computational complexity. The numerical results for both
the 2D and 3D SEG/EAGE salt models are then presented in
the numerical results section. Here, the 2D model is used to
generate synthetic data emulating a marine survey and the 3D
model is used to test the viability of the proposed technique for
3D data. The final section presents a summary and discussion.

Notations used in this paper are listed in Table 1.

THEORY

We now present the spectral encoding strategy for removing
crosstalk artefacts in multisource imaging. We first identify
the source spectrum in the forward modelling equation and
we outline a typical phase-encoded multisource procedure,
before developing the proposed frequency encoding method.

In the frequency domain a seismic trace with a source at xs

and a receiver at x can be expressed (Stolt and Benson 1986),
based on the Born approximation to the Lippman-Schwinger
equation, as

d(x|xs) =
∫

G(x|x′)mo(x′)G(x′|xs)Ws(ω) dx′. (1)

Here, G(b|a) denotes the Green’s function from a to b;
mo(x′) def= s(x′)δs(x′) is the reflection coefficient-like term at
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Table 1 Notations used in this paper.

Notation Description

CG Conjugate Gradient method
FD Frequency Division
ILSM Iterative Least-Squares Migration
IS Iterative Stacking (of Frequency-Division

MultiSource)
j Angular frequency index
Kit Number of iterative updates
KCGit Number of iterative updates given fixed

encoding
LSFDMS Least-Squares Frequency-Division

MultiSource
m Reflectivity model
Mga Number of supergathers
nh Number of receivers associated with a source
nhtot Total number of receivers covered by a

supergather.
In marine streamer acquisition, nhtot ≥ nh.

nω Number of discretized frequencies
normalized fKit fKit / f0, assuming m|Kit=0 = 0. f could be

‘model error’ or ‘objective function’.
S Number of sources included in a supergather
Stot Total number of sources
SNR Signal-to-noise ratio (quantifying how the

observed CSG is corrupted by noise in this
paper)

Explicit functions of ω

W Source spectrum
d Data, in frequency domain
L prestack modelling operator
L L deprived of W
Ns Encoding function for source s
�̃ Encoded version of �

x′, where δs(x′) is the slowness perturbation from an assumed
background slowness s(x′); and Ws(ω) is the spectrum of the
sth source weighted by −2ω2 and can be pulled outside the
integral since it is independent of x′. For conciseness Ws(ω) is
hereafter referred to as the ‘source spectrum’ or simply ‘spec-
trum’ for short. As the earth model is discretized into M grid
points, equation (1) can be recast in matrix-vector form as

ds = Ws(ω)Lsm, ∀s = 1, . . . , S (2)

which is conventionally expressed as

ds = Lsm, ∀s = 1, . . . , S (3)

where Ls = Ws(ω)Ls . (4)

Here, m ∈ R
M is the reflectivity model; ds ∈ C

nh represents the
sth shot gather; S is the number of shots; nh is the number of
receivers per shot; Ws(ω) is a scalar denoting the spectrum of
the sth source; Ls ∈ C

nh×M represents the prestack modelling
operator for the sth shot gather and Ls is Ls deprived of Ws(ω).
Equations (2) to (4) are in the frequency domain and recognize
that quantities such as ds Ls and Ls all depend on ω, which
is silent to reduce notational clutter; however, ω is explicitly
retained in Ws(ω), because Ws(ω) represents the proposed fre-
quency encoding function. Note also the subscript in Ws(ω),
implying that different sources may have different spectra.

Phase encoding

Our frequency encoding scheme will now be developed in
the same framework of phase-encoding (Romero et al. 2000),
which typically consists in the following three steps. 1) Dif-
ferent shot gathers are uniquely phase encoded. 2) They are
summed together to form supergathers, which are then 3) mi-
grated all at once. The first step amounts to multiplying the
sth shot gather with a unique phase-encoding function Ns, a
step expressed as

d̃s = Nsds . (5)

Then d̃s are summed over all sources to give the encoded
supergather d̃:

d̃ =
S∑

s=1
d̃s =

S∑
s=1

Nsds, (6)

= L̃m, (7)

where the multisource phase-encoded prestack modelling op-
erator is defined as

L̃ def=
S∑

s=1
NsLs . (8)

Finally, the third step involves applying the adjoint oper-
ator L̃† to the encoded supergather d̃ in equation (6), before
applying the imaging condition, to obtain the migrated image
m̃ as

m̃ = ∑
ω

L̃†d̃ (9)

= ∑
ω

S∑
s=1

S∑
q=1

N∗
s NqL†

sLqm (10)

= m̂ + c, (11)
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where

m̂ def= ∑
ω

S∑
s=1

|Ns |2L†
sLsm (12)

= ∑
ω

S∑
s=1

L†
sLsm, (13)

and

c def= ∑
ω

S∑
s=1

S∑
q �=s

N∗
s NqL†

sLqm (14)

= ∑
ω

S∑
s=1

S∑
q �=s

N∗
s NqW∗

s (ω)Wq(ω)L†
sLqm. (15)

Here, m̂ is the sequential shot-gather migration and c is
crosstalk noise. Equation (13) follows assuming the phase-
encoding function Ns is of pure phase so that N∗

s Ns = 1 and
equation (15) follows from equation (4).

Note the crosstalk noise, c, is the only part of m̃ that de-
pends on the random phase encoding function, over which an
ensemble average, denoted by 〈 〉, is taken to produce

〈c〉 = ∑
ω

S∑
s=1

S∑
q �=s

〈N∗
s Nq〉L†

sLqm. (16)

Frequency-division encoding

While existing approaches such as studied by Schuster et al.
(2011) strive to reduce crosstalk noise by devising phase-
encoding functions such that 〈N∗

s Nq〉 = 0 for s �= q, this paper
relies on devising source spectra Wq(ω)’s in order to eliminate
the noise term c defined in equation (15). To this end, we
single out an arbitrary term in equation (15) and investigate
how to make it zero. An example of such a term is expressed
as

csq = ∑
ω

W∗
s (ω)νsq(ω)Wq(ω), s �= q, (17)

where

νsq(ω) def= N∗
s NqL†

sLqm. (18)

Because the dependence of νsq(ω) on ω is typically spatially
varying and unknown, it is impossible to construct Wq(ω)’s
that can suppress all elements of csq, unless the source spectra
are non-overlapping. Non-overlapping source spectra ensure
that

W∗
s (ω)Wq(ω) = 0, fors �= q, ∀ω (19)

and in turn reduce equation (15) to zero. We refer to this
encoding scheme specifically as the frequency-division (FD)
method. The previous analysis contrasts the different roles
that the phase encoder Ns and frequency encoder Ws(ω) play.
For notational economy, however, hereafter in the context
of FD we recast Ns as a frequency encoder, on which Ws(ω)
is predicated; in addition, ω is discretized, and is identified
with a frequency index j running from 1 to nω. The frequency
encoder is given as a binary vector

Ns( j) def=
⎧⎨⎩1 if the jth frequency belongs to source s,

0 otherwise.
(20)

Note that Ns(j)’s are no longer of pure phase; this can be
regarded as a form of amplitude encoding (Godwin and Sava
2010). If no frequency index is shared by multiple sources,
then equation (20) leads to

Ns( j)Nq( j) = 0, for s �= q, ∀ j = 1, . . . , nω. (21)

Thus equation (19) is guaranteed, in our new notation, by the
choice

Ws( j) = Ns( j)W( j), ∀s = 1, . . . , S, ∀ j, (22)

where W(j) is the intact source spectrum. In shorthand, equa-
tion (21) can be expressed as

Ns � Nq = 0, for s �= q, (23)

where � represents element-wise multiplication between two
vectors. If, moreover, every frequency index is assigned to
some source, then equation (20) leads to

S⊕
s=1

Ns = 1, (24)

where ⊕ represents element-wise addition. Accordingly, fol-
lowing equation (22), we have

Ws � Wq = 0, for s �= q, (25)

S⊕
s=1

Ws = W. (26)

Given S sources and nω frequency indices, FD endeavours to
evenly divide the latter among the former. That is, on average
each source is assigned nω/S frequency indices.

We outline next how nω is determined. Suppose the maxi-
mal traveltime between sources and their associated receivers
is T, the peak frequency of the source wavelet is f 0 and the
cut-off high frequency is at f hi = 2.5f 0. The Nyquist sam-
pling theorem dictates dt < 1

2 fhi
= 1

5 f0
and therefore the total

C© 2012 European Association of Geoscientists & Engineers, Geophysical Prospecting, 60, 663–680



Multisource least-squares migration of data 667

number of time samples is nt = T/dt > 5Tf 0. For real signals
devoid of DC, the number of independent angular frequencies
is given by

nω = 2.5Tf0. (27)

For example, the parameters chosen for our 2D and 3D sim-
ulations are: nω = 160 as T = 2s and f 0 = 32Hz and nω =
360 as T = 9s and f 0 = 16Hz, respectively. Note that the
effective number of independent frequencies is smaller than
nω, because the source spectrum W(j) is far from uniform.

Eliminating marine acquisition crosstalk

Once sources have been assigned non-overlapping sets of fre-
quencies, marine acquisition crosstalk can be eliminated. The
key idea is, after completing multisource forward modelling
by computer simulation, at each receiver h any extraneous
frequency component j is pruned; j is considered extraneous
if j is assigned to a source, to which, according to marine
geometry, h is not associated. We illustrate the proposed al-
gorithm with an example shown in Fig. 1. Figure 1(a) depicts
S = 3 sources, nω = 5 frequencies and a specific way of FD
described by the frequency encoders Ns(j)’s identified as, from
left to right N3 = [1, 0, 0, 0, 1]T , N2 = [0, 1, 0, 0, 0]T and
N1 = [0, 0, 1, 1, 0]T . Figure 1(b) depicts a towed marine ge-
ometry, where each source is associated with nh = 5 receivers.
For instance, source s3 is associated with receivers h5–h8, but
not with receivers h1–h4. Consider for example j = 5 at re-
ceiver h4. Because, according to Fig. 1(a), j = 5 is assigned to
source s3, j = 5 is considered extraneous at receivers h4 and
should be pruned. The rationale is as follows. When sources
are blended, all frequency components are present (see equa-
tion (26)) in forward modelling and consequently at every
receiver. Receiver h4 would have detected frequency compo-
nent 5, which comes from source s3 but h4 lies outside the
aperture associated to s3, and therefore h4 should not pick
up any signal stemming from s3. This explains the pruning
of the extraneous frequency component 5 at h4. This is indi-
cated by the absence of a bar corresponding to j = 5 at h4

in Fig. 1(c). Other unoccupied frequency slots in Fig. 1(c) are
likewise inferred.

The pruning operation is equivalent to selective filling in
as follows. Let Fblen(frequency, receiver) of size nω × nhtot be
the outcome1 in the frequency domain detected by receivers
generated by forward modelling with blended sources prior

1 in MATLAB notation; likewise for the following arrays in this sec-
tion

to pruning and let Fprun(frequency, receiver) of the same size
be the result of pruning applied to Fblen. Here, nhtot is the total
number of receivers covered by the supergather and nhtot = 8
in this example. Fprun is obtained by first initialization with 0
and subsequently filling in with valid entries in Fblen; an entry
Fblen(j, h) is valid if frequency component j is not extraneous
at receiver h. For instance for j = 5, we have

Fprun( j = 5, [h5, h6, h7, h8]) ← Fblen( j = 5, [h5, h6, h7, h8]).

(28)

Similarly, the encoded supergather CSGenc, of size nω × nhtot,
can be formed as follows, assuming that the observed CSG’s
have been transformed to the frequency domain and are in-
dexed as CSG(frequency, receiver, source), of size

MCSG = nω × nh × S. (29)

Here, nh is the number of receivers associated with each source
in acquisition and nh = 4 in this example. First, CSGenc ←
0. Next, fill in CSGenc with the corresponding entries in CSG
according to the current frequency encoders. Specifically, loop
j over nω, and for a given j, find to which source s it belongs
and subsequently find which receivers h’s are associated to
this s. Then execute CSGenc(j, h’s) ← CSG(j, :, s). An example
for j = 3 is given as

CSGenc( j = 3, [h1, h2, h3, h4]) ← CSG( j = 3, :, s1). (30)

Finally, the misfit function is computed by Fprun − CSGenc.
By pruning or equivalently selective filling in, the mismatch
problem between the limited number, nh, of live traces/shot
in observed CSG and the pervasive number, nhtot, of traces in
simulation-generated Fblen is now resolved.

Note that since there are nω equations similar to equa-
tion (30), each reading nh entries, the total number of entries
read from CSG by selective filling in is

MCSGenc = nω × nh, (31)

= MCSG

S
. (32)

In this example MCSGenc = 5 × 4 = 20, coinciding with the
number of bars in Fig. 1(c).

Input/output implications

I/O is an important consideration when dealing with
industrial-size data sets. Contrary to the naive impression
that the I/O cost of the proposed method in Kit iterations
is Kit times that of standard migration, here we show that the
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Figure 1. Frequency division of sources for one supergather of towed-marine data. Sources and receivers are identified with their indices. (a)
Unique spectra assigned to and hence will be emitted by the sources. The three spectra patterns are non-overlapping. (b) The association,
signified with the same line width and fill style, between sources and their respective receiver groups. f denotes near off-set; l denotes line length.
(c) Frequencies listened to at each receiver.

actual I/O cost is only 2 + ε times2 the latter, assuming the
migrations are carried out in the frequency domain while the
original data are stored in the time domain.

Let the I/O cost be identified with the size3 of data passing
through I/O and assume the data size is MCSG. Standard mi-
gration entails reading every shot gather, followed by Fourier
transform and then the migration. So the I/O cost is C0 =
MCSG. On the other hand, the work flow of the proposed
method consists in two stages. (1) Preparation. All input data
are read, transformed to the frequency domain and saved to
disk. The I/O cost of this stage is C1 = 2MCSG. (2) Migration.
The I/O cost per iteration is MCSGenc . In Kit iterations, the I/O
cost is C2 = Kit MCSGenc = Kit

MCSG
S = εMCSG, where ε = Kit/S

� 1 as Kit is typically an order of magnitude smaller than S,
which is how speedup can be gained by iterative multisource
methods. Therefore the I/O cost C1 + C2 = (2 + ε)C0 of
the proposed method is a little more than twice that of the
standard approach for any Kit � S.

2 ε is a small fraction, for instance, 1/10.
3 Measured in the number of complex numbers

If CSGenc can fit in a computer’s memory, C2 can be fur-
ther reduced as follows. Read the CSGs from disk to form a
CSGenc, which is kept in the memory, then make KCGit itera-
tive updates4 to the trial model. In this scheme, C2 is reduced
by a factor5 of KCGit.

METHOD

Multisource objective function

Due to frequency division, only a subset of the spectrum will
be covered at each source at each iteration and so ringy mi-
gration artefacts are expected. An effective method to reduce
migration artefacts (Nemeth et al. 1999; Duquet et al. 2000)
is least-squares migration (LSM), which works by iteratively
updating a trial model in order to minimize a data misfit func-
tion. A widely adopted misfit function is the L2 norm squared

4 Since the Hessian of the objective function is a constant given a fixed
CSGenc, these KCGit iterations are made using CG.
5 As KCGit increases, Kit may also have to increase in order to produce
an acceptable result. Therefore this reduction factor is a bit smaller
than KCGit.
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of data error. In addition, regularization with Cauchy norm
(Amundsen 1991; Sacchi 1997; Wang and Sacchi 2007) is used
in this paper. In the Bayesian framework (Aster, Borchers, and
Thurber 2005; Debski 2010), the regularization corresponds
to a negative logarithm of the a priori distribution of the
model. The choice of Cauchy distribution is meant to capture
the sparse nature of typical reflectivity models. Following the
Bayesian approach, we write the regularization as

R(m) = − ln pc(m) = − ln

[∏
i

c

π (c2 + m2
i )

]
(33)

=
∑

i

ln
(
c2 + m2

i

) + constants, (34)

where pc(m) is a 0-median Cauchy distribution with parameter
c; and we write the misfit function as

e(m) = − ln gσ2 (̃d|m) = 1
2σ 2

||̃d − L̃m||2 + constants, (35)

where gσ2 (·) is a 0-mean Gaussian distribution with vari-
ance σ 2. The probabilistic formulations allow us to determine
the parameters c and σ 2 by maximum likelihood estimation
(MLE). In equations (34) and (35) the constants are indepen-
dent of m. In equation 35, d̃ ∈ C

nhtotnω Mga and L̃ ∈ C
nhtotnω Mga×M

are respectively formed by concatenating d̃(γ, j) and L̃(γ, j) along
the column dimension in dictionary order of (γ , j), where γ =
1, . . . , Mga is the supergather index, with Mga being the num-
ber of supergathers and j = 1, . . . , nω is the frequency index.
Here, the descriptor (γ , j) explicates the fact that d̃ and L̃ as
defined in equations (6) and (8), respectively, are specific to
a particular supergather and frequency. Note that in the case
of marine streamer acquisition, the first dimension of d̃ and
L̃ is extended from nh to nhtot. In contrast, in the standard
approach of a single shot gather, the counterparts of d̃ and L̃

would be of sizes C
nhnω Stot and C

nhnω Stot×M, respectively, where
Stot = SMga is the total number of sources.

The objective function is then constructed as

J(m) = σ 2(e(m) + R(m)) = 1
2

||̃d − L̃m||2 + σ 2
∑

i

ln
(
c2 + m2

i

)
,

(36)

where additive constants have been dropped. Its negative gra-
dient is given as

g def= −∇m J (m) = L̃† (̃d − L̃m) − 2σ 2 ∑
i

Q(mi )mi , (37)

where

Q(mi ) = 1
c2 + m2

i

. (38)

Note that the shape of the objective function J(m) typically
changes over iteration step k because every iteration typically
requires a new pass of FD encodings for the Mga supergathers
to generate d̃ and to effect L̃. That the objective function de-
pends on k is a topic that is studied in stochastic optimization
(Spall 2003). Our problem (albeit of a much larger size) is
similar to the ‘stochastic bowl’ studied by Schraudolph and
Graepel (2002), because as shown in Appendix A the Hessian
of the misfit function pertaining to FD encoded supergathers
consists in terms sampled from the standard full Hessian.

As FD encoding could significantly alter the Hessian, the
conjugacy condition of the Conjugate Gradient (CG) can not
be maintained if supergathers are formed with new FD encod-
ing at each iteration, a strategy known as ‘dynamic encoding’.
On one hand, in order to accelerate convergence, and on the
other hand, in order to reduce I/O cost, we adopt a strategy
of a hybrid CG (termed ‘CG within mimi-batch’ in Schrau-
dolph and Graepel 2002), whereby supergathers are encoded
anew every KCGit iteration. KCGit = 3 is chosen in this study.
Given fixed supergathers and a fixed Q(mi) defined in equa-
tion (38), KCGit iterations are carried out by a CG scheme
(outlined in Algorithm 1 in Appendix C). Then supergath-
ers are randomly encoded again; Q(mi)’s are updated, which
is known as the ‘Iterative Reweighted Least-Squares’ method
(Scales, Gersztenkorn and Treitel 1988); the parameters c and
σ 2 of the probability distributions are re-estimated through
MLE; and the search direction of CG is reset to a negative
gradient.

Migration method

The migration method is considered next. We choose prestack
split-step migration based on the following two reasons. First,
the fact that sources are subject to phase and/or frequency
encoding demands that prestack migration is the method of
choice. Second, aside from computational efficiency and the
absence of operator aliasing, the fact that phase-shift migra-
tion is a spectral technique makes it particularly convenient to
perform frequency encoding. To handle smooth lateral vari-
ations in the velocity field, we opt for split-step migration
(Stoffa et al. 1990), as did Kuehl and Sacchi (1999). It is a
straightforward procedure to adapt this to RTM, with the
finite-difference method replacing the spectral method.

The use of LSM requires both the forward modelling and
migration operations; and the use of prestack migration re-
quires both a source field and downward continued data field.
The details of this migration method are relegated to Appendix
B, which is included because of the usefulness in assessing the
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Figure 2. (a) The 2D SEG/EAGE salt model and (b) the associated reflectivity model, where the red star denotes a source at X = 2.725 (km) and
the appending yellow line denotes the receiver aperture of this source. (c) The CSG from this source. (d) This CSG corrupted by band-limited
incoherent noise such that SNR=10 dB.

computational complexities of the algorithms studied in this
paper.

To demonstrate the effectiveness of LSM, its performance
will be compared to that of iterative stacking (IS). In contrast
to the iterative refinement of LSM, IS of encoded migration
images (Schuster et al. 2011) at the kth iteration produces a
sum of k realizations of migration images. For IS, dynamic en-
coding is used, so that at each iteration the input supergather,
specifically the source wavefield at surface P(x, z = 0, ω) in
Fig. 8(a), is formed using a new frequency assignment.

It is of interest to analyse how the proposed method would
fare compared to standard migration in terms of saving com-
putational cost. This analysis is provided in Appendix C. In
addition, the results in Appendix C allow us to compare the
convergence performances of LSM and IS on the basis of the
same computational cost.

R E S U L T S

The proposed method of Least-Squares Frequency-Division
MultiSource (LSFDMS) is tested on the 2D SEG/EAGE salt
model, of size6 nx × nz = 640 × 150, with a grid spacing of

6 nx is reduced from the original value of 645 to speed up the FFT.

9.144 m. The velocity and the reflectivity model are shown in
Fig. 2(a,b), respectively.

The following parameters are chosen to emulate marine
acquisition geometry: shot interval = 18.288 m, receiver in-
terval = 9.144 m, near-offset = 45.72 m, line length = 2 km.
The number, Mga, of supergathers dividing up all Stot = 304
sources varies from 1,2,4, up to 8. A Ricker wavelet with a
32 Hz peak frequency is used as the source wavelet and 160
frequency channels equally divide the frequency range from
0–80 Hz, as exemplified alongside equation (27). With the
true velocity and reflectivity models, a CSG for the source and
receivers depicted in Fig. 2(a, b) is generated for example using
split-step forward modelling and is presented in Fig. 2(c). To
probe noise robustness, we contaminate the CSG’s with vari-
ous levels of random noise for a flat spectrum below 80 Hz, to
yield SNR=10, 20, 30 dB. Figure 2(d) shows a contaminated
version of Fig. 2(c). The noisy CSG’s are first Wiener filtered,
before being migrated. The smoothed velocity model shown
in Fig. 4(a) is used as the migration velocity and is obtained
by applying a 3 × 3 boxcar filter to the true velocity model
shown in Fig. 2(a).

As the LSM iterations proceed, the trial reflectivity model
is updated and surpasses the standard migration image in
quality, as demonstrated in Figs. 3 and 4. For comparison,
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Figure 3. Normalized model error (a-c) and normalized objective function (d) for various SNR as a function of iteration number, in solid curves
colour coded for various Mga, when minimizing by a hybrid CG. For space efficiency, the legends in (a,c) are shared among (a-c). Regarding
the black horizontal solid and dashed lines in (a-c), the dash-dot curves in (b) and the symbols �, �, � and ◦ in (a-c), see text for details. The
alphanumeric short labels ‘4(c)’ up to ‘4(i)’ refer to in which figure and panels the corresponding migration images are shown.

migration with the subsampled CSG’s (‘Subsmpl Mig’) is
also considered, which is an alternative means for data re-
duction and speedup. To yield a speedup of around 8 (see
Fig. 5), comparable to that of our proposed method, the sub-
sampling ratio of ‘Subsmpl Mig’ is chosen as 1/8. As indi-
cated by the black dashed horizontal lines in Fig. 3(a–c),
the model error of ‘Subsmpl Mig’ always exceeds that of
standard migration, indicated by the black solid horizontal
lines. As shown in Fig. 4(g), the image produced by ‘Sub-
smpl Mig’ contains many artefacts that are disruptive because
they are of similar spatial frequency and locations to those of
reflectors.

Several features in Fig. 3 are worth commenting. First, un-
derstandably, larger Mga and SNR lead to a smaller model
error and better convergence. Second, oscillations in the objec-
tive function in panel Fig. 3(d) are the expected behaviour of a
hybrid CG. The objective function is consistently reduced by
CG within every KCGit = 3 updates but will increase upon the
presentation of newly encoded supergathers. This is because
the previous optimization efforts are targeted at reducing a
differently parametrized objective function. As the iterations
proceed, however, the envelope of the oscillatory objective

function still decreases, validating the robust performance of
a hybrid CG.

Third, in terms of model error, the least-squares method
can surpass standard migration in as few as two iterations;
see for example the ◦ symbol at iteration 2 on the cyan curve
in Fig. 3(a). This estimate, however, is too optimistic, even
though we have made sure to minimize the model error of
standard migration image as minα‖αm̆ − m‖2, where m̆ is the
migration image and m is the true model. The reason is that
a standard migration image tends to be smooth and the high-
frequency components are suppressed. Thus the model error
could be large. On the other hand, the image obtained by
LSFDMS tends to be sharper, matching the true model better
in terms of the L2-norm of the model error. The downside,
however, is ringy noise, as evident in the corresponding reflec-
tivity images shown in Fig. 4(e,f). That is why it makes sense
to involve human subjects in judging the quality of resulting
images.

The results, as to where the LSFDMS image quality is com-
parable to that of standard migration, are indicated by the
symbols �, � and �, of which the abscissae are also labelled,
in Fig. 3(a-c), and three of such images are shown in Fig. 4(c),
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Figure 4. Reflectivity distributions obtained by various methods with a smoothed velocity model (a), in various parameter settings of Mga and
Kit, the iteration number, when applicable. 30 dB of the SNR of CSG applies to (b,c), whereas 10 dB applies to (d-i). (c–i) are respectively
referred to in Fig. 3(a) and Fig. 3(c).

Fig. 4(h) and Fig. 4(i), respectively. To equate the quality
of these images with that of standard migration, shown in
Fig. 4(d), trade-offs are made. In Fig. 4(c), Fig. 4(h) and
Fig. 4(i), there is some residual high-frequency noise, espe-
cially at shallow depths. But this noise is quite distinct from
those of reflectors and thus it hardly affects the dominant fea-
tures. On the other hand, the resolution of Fig. 4(c), Fig. 4(h)
and Fig. 4(i) is better than that of Fig. 4(d). It is based on
these two factors that we choose the break-even points in vi-
sual quality. Once the abscissae, or Kit’s, of these break-even
points are known, from equation (C3) we calculate the rel-
ative computational cost, or, its reciprocal, termed ‘gain in
computational efficiency’, which is plotted in Fig. 5. Here we

see that, for the parameter settings and the model under study,
nearly an order of magnitude of speedup can be achieved.

One may raise the concern that, due to the frequency-
division scheme, even with a dozen iterations of dynamic en-
coding, each source can hardly have the chance to exhaust
its spectrum. For example, take Mga = 2, Kit = 10, then S =
Stot/Mga = 304/2 = 152. So at any one iteration, each source
only gets assigned 1/152 of the frequency channels available.
With 10 iterations, in the best scenario a source can only cover
a mere 10/152 of its spectrum. In light of this analysis, the ap-
parent good performance of the frequency-division scheme
seems therefore rather counter intuitive. To address this con-
cern, we maintain that due to least-squares iterations, sources
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Figure 5. The gains in computational efficiency of the proposed
LSFDMS as compared to the conventional shot-record split-step mi-
gration plotted on a log-log scale for various SNR’s, as functions of
shots per supergather, or equivalently as functions of Mga (labelled at
the top).

no longer act in straightforward linear superposition as they
do in standard migration. Rather, they act cooperatively and
with collaboration between sources the model gets effectively
illuminated by a wider range of specta than provided by stack-
ing migrations.

To test this idea, we examine the convergence performance
of IS, where frequency-division encoding with multisource ap-
plies as well. Figure 3(b) includes the convergence curves (the
dash-dot curves are for IS), plotted according to what is pre-
scribed at the end of Appendix C and Fig. 4(b) shows a migra-
tion image of IS, which is obtained at the same computational
cost as Fig. 4(c). Evidently, with this amount of computa-
tion, IS does not beat standard migration in terms of either
model error or the quality of the migration image. The ex-
planation for this phenomenon is precisely the concern raised
earlier, aided by the realization that by random frequency as-
signments, rarely can there be a smooth spectrum result and
fluctuations in the spectrum are likely. Non-smoothness in the
spectrum corresponds to ringiness in the time domain. There-
fore the migration image is always inferior to the standard mi-
gration image. Contrasting LSFDMS with IS, one can see the
essential role that least-squares updates play in this frequency-
division multisource method. Additional insights are reaped
from a comparison study conducted in Appendix D, where we
show that iterative refinement likely leads to better solutions
than migration does.

To test the viability of the frequency-division multisource
method in processing 3D data, we use a 3D SEG/EAGE salt
model, of size nx × ny × nz = 672 × 672 × 185 with a grid
interval of 20 m. Slices of the velocity model are depicted in
Fig. 6. There is one receiver at each grid point and Stot = 64
× 64 = 4096 sources are equally distributed on the surface.
A Ricker wavelet with a 16 Hz peak frequency is used as the
source wavelet; nω = 360 frequency channels equally divide
the frequency range from 0–40 Hz, as exemplified alongside
equation (27). Here, fixed acquisition geometry of both the
sources and receivers is assumed, as the aim of this study is to
test whether the frequency-division multisource method can
work on either land or marine 3D data.

Note that in this case the number of sources Stot is far greater
than the number of available frequency channels nω. If S =
Stot/Mga > nω, then the assignment of non-overlapping source
spectra is not possible, unless only a small number of sources
are turned on at a time, a practice that would discard much
useful information. Here we allow overlapping source spec-
tra. If S � nω, each frequency channel is shared among S/nω

sources. This assignment can be implemented for example
by randomly drawing S/nω source indices in turn without re-
placement to be assigned to each frequency. In addition, a
random polarity ±1 is assigned to each source, in order to
reduce the crosstalk among sources sharing a frequency. A
comparison of this method with standard migration is given
in Fig. 7, where 50 steepest descent updates of LSFDMS in
one supergather yield a result comparable to standard mi-
gration. Equation (C5) says that the speedup is 2S/(4Kit −
1) = 2 ∗ 4096/199 ∼= 41, if the I/O cost is ignored.

CONCLUSIONS

We emphasize that the mismatch between the limited number
of live hydrophones in a marine-streamer survey and the per-
vasive number of live traces generated by modelling is essen-
tially a form of crosstalk in multisource migration/inversion
not seen in a fixed spread survey. To completely remove
this marine crosstalk we propose a frequency-division en-
coding scheme, similar to the ones used in the communica-
tions industry. Our frequency-division scheme demands that,
any crosstalk-prone source should only emit signals in non-
overlapping frequency bands. This allows any receiver to se-
lectively tune in to the valid source—the source that indeed
has made a contribution to this receiver—and to selectively
disregard potentially confounding sources; such sources are
grouped with the receiver only at the time of multisource
modelling.
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Figure 6. The 3D SEG/EAGE salt velocity model, in m/s, sliced at (left panel) x = 6.7 km and (right panel) z = 1.98 km.

We show that, our frequency-division technique in a mul-
tisource framework is similar in form to the well-studied
stochastic optimization problem. In terms of computational
cost, blending groups of S sources together to form super-
gathers would cut down the subsequent computational cost

by a factor of S. Because of the weakened illumination capa-
bility however, iterations are usually required to produce an
image comparable to standard migration. Fast convergence
with many fewer steps than S yields an overall speed gain
compared to conventional migration.

Figure 7. Reflectivity model (a,b) and others obtained by (c,d) standard shot-record prestack split-step migration and (e,f) the proposed LSFDMS
for 1 supergather at the 50th iteration of steepest descent.
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Numerical results with a 2D salt model and a marine sur-
vey show that crosstalk is completely removed with a mul-
tisource speedup nearly an order of magnitude faster than
standard migration. In the 3D example with fixed acquisi-
tion geometry (fixed OBS geometry) a speed up of 40 was
achieved compared to standard migration. In addition, better
resolution was achieved. Here, because the number of avail-
able frequency channels is smaller than the number of sources,
strict non-overlapping frequency assignment is impossible. To
be applicable to 3D marine streamer data, we note that in-
line sources need to be crosstalk-free while sources along the
cross-line can have crosstalk without causing the deleterious
mismatch problem. This kind of crosstalk can be mitigated by
existing various phase-encoding techniques. This extension is
a subject of our current research.
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APPENDIX A: THE EFFECT OF FREQUENCY
DIVIS ION ON T H E HE SS I A N

The effect of frequency division (FD) on the Hessian matrix
is now investigated. For ease of discussion, we restrict our
attention to sources s = 1, . . . , S which are used to form one
supergather. The Hessian can be identified as

H̃ =
nω∑
j=1

L̃†L̃ (A1)

=
S∑

s=1

nω∑
j=1

Ns( j)|W( j)|2L†
sLs . (A2)

Here, equation (A2) follows from equations (8), (4), (22) and
(21), and the fact that N2

s ( j) = Ns( j), as Ns(j) ∈ {0, 1}; equa-
tion (21) ensures that all cross terms in equation (A1) when
expanded by plugging in equation (8) will vanish.

In contrast, the Hessian in the standard case is

H =
S∑

s=1

nω∑
j=1

|W( j)|2L†
sLs, (A3)

which is equation (A2) lacking the binary encoding function
Ns(j).

Comparing equations (A2) and (A3), we see that the en-
coded Hessian H̃ consists in a subset of terms in the standard
Hessian H.

AP PENDIX B: P R E ST A C K SPLI T - ST EP
MIGRATION

We describe the steps of prestack split-step migration, of
which the flowcharts are illustrated in Fig. 8. This presenta-
tion closely follows Kuehl and Sacchi (1999) and is included
here for convenience because analysis of computational com-
plexity refers to it.

Consider first the forward propagation of a wavefield. The
split-step operator L per layer can be decomposed into a suc-
cession of four linear operators F , P, F−1 and C as follows.
First, the seismic wavefield P(x, z, ω) at z is transformed to the
wavenumber kx domain by the Fourier operator F . Second,
the phase-shift operator P is applied to the wavefield in the
(kx, ω) domain:

P1(kx, z, ω) = P(kx, z, ω)e−i	z
√

(ωu0)2−k2
x , (B1)

where u0 is the mean slowness for the current layer. Third,
P1(kx, z, ω) is transformed to the space x domain by the
inverse Fourier operator F−1. Fourth, the phase-correction

operator C is applied in the (x, ω) domain. This accounts for
the lateral slowness variation 	u(x) = u(x) − u0:

P(x, z + 	z, ω) = P1(x, z, ω)e−iω	z	u(x). (B2)

Altogether, it is given that

L = CF−1PF, (B3)

of which the adjoint is

L† = F†P†F−1†C†

= F−1P∗FC∗,
(B4)

The adjoint operator L† applies to the case of ‘backward
propagation’, or downward continuation of the data, as illus-
trated in Fig. 8(c). This ensures that the migration operator is
the adjoint of the forward modelling counterpart.

APPENDIX C: THE R ELATIVE
COMPUTATIONAL C OST

The computational costs of the proposed method and of stan-
dard migration (and therefore the relative computational cost)
will be derived as follows, assuming the observed CSG’s are
already in the frequency domain. Since ultimately it is the ra-
tio between the computational costs of different methods that
is of interest, we restrict our attention to one frequency and
to the S sources encompassed by one supergather.

First, spatial FFT’s, repeatedly invoked in Fig. 8(a–c), dom-
inate the computational cost of split-step migration. Element-
wise product and dot product between two vectors of length
nx, the grid size along x, incur a cost Cp that is a small multiple
of nx and the number of times such computation is invoked
is comparable to that of FFTx. On the other hand, the cost of
each FFTx

∼= 4nxlog2(nx). For typical seismic reflectivity mod-
els, nx > 512 and thus this cost � 36nxnznω, far exceeding Cp.
Since every flowchart in Fig. 8 contains an equal number of
FFTx’s, from now on we take the computational cost for each
of these flowcharts as of unit 1.

Next, the computational costs for forward modelling and
for migration, in cases of whether the source field is available,
are given by the following items:

1. Forward modelling
a. The source field, P(x, z, ω) as depicted in Fig. 8(a), is not
available. Therefore P(x, z, ω) needs to be computed before
the reflected field R(x, z, ω), as depicted in Fig. 8(b), can be
obtained. The computational cost is thus 2.
b. The source field is available. Then the only task is to com-
pute R(x, z, ω), with a computational cost of 1.
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Figure 8. Flowcharts for prestack split-step modelling and migration. F , F−1, P and C denote the Fourier transform, the inverse Fourier
transform, the phase-shift operator and the phase-correction operator, respectively (see text for details). (a) The source wavefield P(x, z, ω) is
propagated from the surface of the earth to depth z in steps 	z. (b) At each depth z of the earth, a reflected wave is generated by m(x, z)P(x,
z, ω), where m(x, z) is a reflectivity model. The wave is then propagated upward to the surface z = 0. The total reflected wavefield R(x, z, ω)
consists in the superposition of the reflected and propagated waves originating from below. The total reflected wavefield collected at the surface
are the data, i.e., R(x, z = 0, ω) ≡ D(x, z = 0, ω). (c) The data are then downward continued from the surface back to depth z in steps 	z.
Finally, the migration image I(x, z) (not shown) is constructed by applying the imaging condition: I(x, z) = ∑

ωP∗(x, z, ω)D(x, z, ω), or I(x, z)
= 2

∑
ω>0Re{P∗(x, z, ω)D(x, z, ω)}, assuming the DC component is 0.

2. Migration
a. The source field is not available. Then both the source field
and the downward continued data field D(x, z, ω), as depicted
in Fig. 8(c), need to be computed. The computational cost is
2. Note: this applies to standard migration.
b. The source field is available. Then only the downward con-
tinued data field needs to be computed, before forming the
final migration image. This computational cost is 1.

With these results in mind, we study the computational
cost incurred in a CG algorithm, as listed in Algorithm 1.
For standard migration, there are S sources covered by the
supergather in question and therefore the computational cost

as remarked at the end of item 2(a) needs a factor S. Let κ0 be
this cost, expressed as

κ0 = 2S, (C1)

and let κLS be the cost for LSM, given in the comment besides
line 25 as

κLS = Kit
3 + 2KCGit

KCGit
− 1. (C2)

Therefore the relative computational cost is given by

ρ = κLS

κ0
= Kit

S
3 + 2KCGit

2KCGit
− 1

2S
(C3)
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Algorithm 1. Conjugate Gradient algorithm, for solving Lm = d.

1: procedure CONJGRAD(m, L, d, KCGit)
2: if m = 0 then
3: g ← L†d � item 2(a) ⇒ cost=2.
4: else
5: g ← −L†(Lm − d) � item 1(a) and 2(b) ⇒ cost=2+1. In forward modelling, the source field is not available, ∴ item 1(a); in

migration, the source field has just become available, ∴ item 2(b).
6: end if
7: p ← g
8: g2old ← ||g||2
9: if KCGit = 1 � Steepest Descent
10: α ← g2old

||Lp||2 � Forward modelling. Source fields have been computed in line 3 or 5. ∴ Item 1(b) ⇒ cost=1.

11: m ← m + αp
12: return m For steepest descent, if this procedure is called Kit times, the total cost is 3 + 4(Kit − 1) = 4Kit − 1.
13: else � Conjugate Gradient
14: for k ← 1, KCGit

15: q ← L†(Lp) � Forward modelling and migration. Since among CG updates, the sources are fixed rather than encoded anew,
source fields are thus fixed and have been computed in line 3 or 5. As the trial reflectivity model m is being updated, item 1(b) applies.
For migration, item 2(b) applies. So the total cost for this line is 2.

16: α ← g2old
p†q

17: m ← m + αp
18: g ← g − αq
19: g2new ← ||g||2
20: p ← g + g2new

g2old
p

21: g2old ← g2new

22: endfor � Taken together, for this loop, the total cost is 2KCGit.
23: return m � As this procedure is called KCG times, starting from model 0, the total computational cost is κLS = 2 + 2KCGit +

(KCG − 1)(3 + 2KCGit) =KCG(3 + 2KCGit) − 1.
24: end if
25: end procedure � In an alternative formulation, take Kit = KCGKCGit and express κLS in terms of Kit as κLS = Kit

3+2KCGit
KCGit

− 1.

= 3Kit − 1
2S

, when KCGit = 3. (C4)

In the case of steepest descent, the relative computational cost
is given by

ρ̄ = 4Kit − 1
2S

, (C5)

which follows from the comment regarding line 1.12 and
equation (C1).

In the case of IS with encoded supergathers, the computa-
tional cost per iteration is equal to that of standard migration,
except without the S factor. For Jit stackings, the cost is thus

κIS = 2Jit. (C6)

Equating equations (C2) and (C6) leads to

Jit = Kit
3 + 2KCGit

2KCGit
− 1

2
(C7)

= 3Kit − 1
2

, when KCGit = 3. (C8)

Equation (C7) relates Jit, the number of iterations of IS,
to Kit, the number of iterations of LSM, on the condition
that the computational costs incurred by these two meth-
ods are equal. This allows us to compare two criterion
functions for LSM and IS, respectively, on the basis of the
same computational cost. Let f LSM(Kit) and f IS(Jit) be cri-
terion functions of iteration step Kit and Jit, for LSM and
IS, respectively. Using equation (C7), we write f IS(Jit) =
f IS(Jit(Kit)). Plotted on the abscissa of Kit, the two curves
of f LSM(Kit) and f IS(Jit(Kit)) are thus put on equal footing of
computational cost. Examples of such plots are provided in
Fig. 3(b).

C© 2012 European Association of Geoscientists & Engineers, Geophysical Prospecting, 60, 663–680



Multisource least-squares migration of data 679

APPENDIX D: MI GR A T I ON V E R SUS
S U C C E S S I V E S T E E P E S T D E S C E N T

Given a set of sampled Hessians (or equivalently sampled
modelling operators) and the associated data generated ac-
cording to an underlining model m, we investigate two strate-
gies, with the knowledge of these sampled Hessians and ob-
served data, to get an estimate of m: 1) migration and 2)
successive steepest descent (SSD). The question we intend to
address is, which strategy is better—in terms of producing a
more accurate estimate?

Let L1, . . . , Ln and d1, . . . , dn respectively be the n copies of
sampled modelling operators and the data generated accord-
ing to

di = Lim, ∀i = 1, . . . , n. (D1)

The migration strategy forms the estimate as

mmig =
n∑

i=1

Li
†di. (D2)

On the other hand, the SSD strategy consists in the following
steps:

1 Start from m(0)
SSD = 0.

2 At the kth step, presented with Lk and dk, update the trial
model once, according to the steepest descent formula, pre-

scribed as :

m(k+1)
SSD = m(k)

SSD + αg, (D3)

where

g = Lk
†(dk − m(k)

SSD), (D4)

α = ||g||2
||Lkg||2 . (D5)

3 Finish at k = n.

To fairly evaluate the model error, we introduce

θε(x) def= �(x, m) = arccos
(

xT · m
||x|| ||m||

)
, (D6)

a criterion that ignores the magnitudes of the vectors in ques-
tion.

Unable to establish a mathematical bound on θε(mmig) in
comparison to θε(mSSD), we resort to the Monte Carlo method
instead. In this study, d ∈ R

10, m ∈ R
25; the sizes are deliber-

ately chosen to make each individual inverse problem, i.e.,
to invert equation (D1), underdetermined. In addition, the
performance of the two strategies in the presence of noise is
probed. Specifically, a line of code

di ← di + r (D7)

Figure 9. Scatter plot of the model errors in terms of θε , for migration and for SSD, when (upper row) data are not contaminated by noise and
(lower row) SNR=10dB, with the set size n varying from (left column) 2, to (middle column) 3 and to (right column) 10. In all the panels, data
points corresponding to θε (mmig) > =θε (mSSD) are plotted in black, while points corresponding to θε (mmig) < θε (mSSD) are plotted in red.
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follows immediately after equation (D1), and all succeeding
operations are based on the noisy di’s. Here, r is a vector of
white Gaussian noise, with its power adjusted to meet a given
choice of SNR.

The results are summarized in Fig. 9. Here, Li’s and m are
generated using Gaussian distribution. We have varied the
types of distribution, from Gaussian to a sparse distribution
such as binomial, and qualitatively the same trends are ob-
served: SSD produces a smaller model error than migration
does, except for a few rare exceptions. As the size of the
random set grows (i.e., more stackings in migration and more
updates in SSD), the advantage of SSD becomes even more ap-
parent. As plotted in the upper right panel, θε(mmig)/θε(mSSD)
≈ 24/6. When di’s are corrupted by noise, however, the perfor-
mance of SSD deteriorates more than that of migration does.
But at this level of noise, in most cases, SSD still outperforms
migration.

These observations are intuitively understandable. Migra-
tion can be thought of as one step of steepest descent start-
ing from 0. Over a set of n samples, migration amounts to
averaging n attempts of steepest descent, each starting from
0, whereas in SSD, the trial model keeps improving. So it
is very probable that the latter outperforms the former. It
could happen that the average of these ‘first attempts’ comes
very close to the true model. This explains why exceptions
exist. In the presence of white noise, averaging with equal
weight over random instances, as migration does, is the most
effective means to reduce noise. In SSD, however, the earlier
updates influence the iteration trajectory more than the later
updates do. In effect, the end result senses a weighted average
of the noise contained in each update, with a larger weight
assigned to early samples and a smaller weight to later sam-
ples, resulting in less noise reduction than what migration is
capable of.
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