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ABSTRACT

Semblance picking is an important but tedious labor-
intensive processing procedure in the petroleum indus-
try. For a large 3D dataset, this task becomes ex-
tremely time-consuming. In this paper, we present
an automatic semblance picking technique based on
the K-means clustering algorithm. K-means clustering
method can automatically partition different clusters of
energy in the semblance spectrum into different groups.
The centroid of each group is the automatically picked
semblance point. A synthetic and field data example
is shown in this paper to illustrate the effectiveness of
this method.

INTRODUCTION

Velocity analysis is one of the most important routines
of seismic data processing (Yilmaz, 1987), which relies
on picking the maximum energy values in the semblance
spectrum. However, semblance picking is often manually
performed and extremely time-consuming for large data
sets. For a large 3D dataset, it may take a geophysi-
cist days or weeks to finish the work. To mitigates this
problem we propose that the semblance spectrum can be
picked by an unsupervised cluster analysis.

Cluster analysis is the formal study of methods and
algorithms for grouping, or clustering, objects according
to measured or perceived intrinsic characteristics or sim-
ilarity (Jain, 2010). It is similar to logistic regression in
grouping data into different classes, except the training
data do not have to be labeled and there can be many
different clusters. Thus, a clustering algorithm is an un-
supervised learning method that avoids the cost of super-
vised labeling of large data sets.

One of the most widely used clustering algorithms is
the K-means cluster method (Steinhaus, 1956; Ball and

Hall Dj, 1965; MacQueen et al., 1967; Lloyd, 1982), which
is simple and very effective in machine learning studies.
The next section describes the bottom-up K-means clus-
tering method.

THEORY OF K-MEANS CLUSTERING

Let X = {z(M} i =1,2,... N be the set of D—dimensional
feature vectors to be clustered into a set of K clusters,
with the points in C' = {¢x, k = 1,2... K}. The mean
centroid point of the k** cluster is defined as

1
Mk = m Z T, (1)

The sum of the squared distances between the k' cen-
troid point p; and the points in the k cluster is given
as

di = Y e — - (2)
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The goal is to find the optimal distribution of cluster
points ¢ such that the objective function € is minimized:
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There are two groups of clustering algorithms: hier-
archical and partitional. For the hierarchical algorithm,
there are two strategies.

e The bottom-up approach starts with each point be-
ing its own distinct cluster, and iteratively finds a
smaller number of clusters that contain the points.

e The top-down approach, where all points belong to
one super cluster, and smaller clusters are iteratively
computed.

The partitioning clustering algorithm sets the number
of clusters and finds the optimal arrangement of points
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that minimize the misfit function. In our case, we use a
top-down hierarchical approach where the number of clus-
ters increases and we choose the cluster where the residual
reduction becomes small.

There are four steps to the K-means clustering algo-
rithm where the number of clusters is specified.

1. Select an initial configuration of K clusters. Com-
pute the centroid point uy for each cluster.

2. Compute the distances ||z — p||, and reassign
points to the cluster of the centroid they are clos-
est to. If the elements in each vector have different
units then they should be normalized by the stan-
dard deviation.

3. Compute new centroids from the new clusters.

4. Repeat steps 2 and 3 until convergence. This pro-
cedure can be adapted to the hierarchical approach
where an outer loop can be added where the number
of clusters is either increased or decreased.

In this paper we will use a bottom-up approach where
the number of clusters is increased at each iteration of the
outer loop.

THEORY OF SEMBLANCE ANALYSIS

The goal of semblance analysis is to find the stacking ve-
locity Vistack as a function of two-way zero-offset traveltime
T, such that the hyperbolas

x?
t(ﬂ?, Vstack) = V2— + T027 (4)
stack

best fit the reflections in a CMP gather. Here, the mid-
point coordinate is z, = (2, —x5)/2 and the offset between
the source and receiver is * = x,. —x,. The primary reflec-
tions in each trace d(z,t) approximately follow the travel-
times in equation 4 for the correct values of V, and T, so
the stacking procedure uses the semblance equation given
by (Yilmaz, 1987; Luo and Hale, 2012)

S(TO, Vstack) — Zz d(%’, t(l‘, ‘/StaCk» ’ (5)
Zm d(:L', t(CL‘, Vstack))2

where S(Vitaek, To) 18 the semblance spectrum associated
with the midpoint coordinate z, = (z, — x5)/2. To gen-
erate a smooth semblance panel, the trace amplitudes are
typically stacked together along a half-period wide strip
centered about the moveout curve described in equation 4.
A CMP gather is shown in Figure la and it’s semblance
spectrum is shown in Figure 1b, which can be seen as a
combination of many small energy clusters. Therefore,
hierarchical cluster analysis is used to identify different
clusters of stacking velocities with high semblance values
in the semblance spectrum. The centroids of each cluster
are then connected to form the stacking velocity curve.
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Figure 1: (a) A CMP gather and (b)it’s semblance spec-
trum calculated by semblance analysis.

WORK FLOW

1. Threshold the semblance spectrum and only keep
the points which have relatively large semblance val-
ues. Those points are viewed as the eligible points
for clustering analysis.

2. Specify the initial number of clusters K. Assign the
centroid point of the k cluster to be (X/S(t’;)ck,Té’“)).
These K points are selected at equi-spaced T, and

Vistack intervals along an initial semblance curve.

3. Apply K-means clustering for several iterations until
a stable group of K clusters has emerged.

4. Increment the value of K by 1 and repeat step 2.
The value of K is incrementally increased until the
residual misfit in equation 3 does not decrease by a
significant amount.

5. The centroids of the final cluster are used to form
the final semblance curve.

NUMERICAL RESULTS

The effectiveness of semblance picking by clustering anal-
ysis is now demonstrated with synthetic data generated
from the Marmousi model and a Gulf of Mexico field data.

Marmousi Model

The automatic semblance picking method is now tested
on the Marmousi Model. Figure 2 shows the true velocity
model used for generating the observed data. A Ricker
wavelet with a peak-frequency of 15 Hz is used as the
source wavelet. A fixed-spread acquisition geometry is as-
sumed where there are 400 sources evenly distributed on
the surface at an interval of 20 m. The data are recorded
by 800 receivers for each shot uniformly distributed ev-
ery 10 m on the surface. For the CMP gathers at the
location where the velocity model has most flat layers,
the reflections in the CMP gather approximately follow
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Figure 2: The marmousi velocity model.

the traveltimes in equation 4 for the correct values of V,
and T,. By this procedure the energy clusters are more
concentrated which result in a fairly accurate pick of the
semblance curve as shown by the black curve in Figures
3b and 6b. The red stars and red crosses in Figures 3b
and 6b are the initial and inverted centroids of each clus-
ter. The centroids of the clusters are then connected by
a black line to form the stacking velocity curve. However,
for the CMP gathers at the location where the velocity
model has complicated structure, the energy clusters are
more diffused in the semblance spectrum, which results in
a loss of picking accuracy results as shown in Figures 4
and 5.
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Figure 3: (a) A CMP gather at x = 1.5 km and (b)it’s
semblance spectrum with picked semblance curve. The
red stars and red crossings are the initial and inverted
centroid of each cluster. The black curve is automatic
picked semblanced curve.

GOM Data

The proposed methods is tested on a 2D marine data set.
There are 100 shots with a shot interval of 37.5 m, and
each shot is recorded by a 6 km long cable with 480 re-
ceivers spaced with a 12.5 m receiver interval. The re-
ceiver offset from the source is 200 m by a 25-Hz Wiener
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Figure 4: (a) A CMP gather at x = 3 km and (b)it’s
semblance spectrum with picked semblance curve. The
red stars and red crossings are the initial and inverted
centroid of each cluster. The black curve is automatic
picked semblanced curve.

filter (Boonyasiriwat et al., 2009). Figures 7 and 8 shows
the CMP gathers at the location of x = 2.45 km and
x = 6.1 km, respectively. The energy clusters at the shal-
lower parts of the semblance spectrums are more diffused.
Therefore the inverted cluster’s centroid result in a loss
of accuracy. However, the accuracy in picking improves
for the deeper parts where the energy clusters are more
concentrated. The red stars and red crosses in Figures 7b
and 8b are the initial and inverted centroid of each clus-
ter. The centroids of each cluster are then connected to
form the stacking velocity curve which is indicated by the
black curve.
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Figure 7: (a) A CMP gather at x = 2.45 km and (b)it’s
semblance spectrum with picked semblance curve. The
red stars and red crossings are the initial and inverted
centroid of each cluster. The black curve is automatic
picked semblanced curve.
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Figure 5: (a) A CMP gather at x = 5 km and (b)it’s
semblance spectrum with picked semblance curve. The
red stars and red crossings are the initial and inverted
centroid of each cluster. The black curve is automatic
picked semblanced curve.
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Figure 8: (a) A CMP gather at x = 6.1 km and (b)it’s
semblance spectrum with picked semblance curve. The
red stars and red crossings are the initial and inverted
centroid of each cluster. The black curve is automatic
picked semblanced curve.

SUMMARY

An automatic semblance picking method is presented which
use clustering analysis to compute for the centroid of each
energy cluster in a semblance spectrum. The centroids of
the clusters are then connected to form the stacking ve-
locity curve. Both synthetic and real data tests show that
the automatic picking method performs well when the en-
ergy clusters in the semblance spectrum are more concen-
trated. However, the picking accuracy decreases when the
energy cluster become more diffused. Therefore, to get a
fairly reliable stacking-veloity curve, more constraints are
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Figure 6: (a) A CMP gather at x = 7 km and (b)it’s
semblance spectrum with picked semblance curve. The
red stars and red crossings are the initial and inverted
centroid of each cluster. The black curve is automatic
picked semblanced curve.

needed.

REFERENCES

Ball, G., and 1. Hall Dj, 1965, A novel method of data
analysis and pattern classification. isodata, a mnovel
method of data analysis and pattern classification. tch.
report 5ri, project 5533.

Jain, A. K., 2010, Data clustering: 50 years beyond k-
means: Pattern recognition letters, 31, 651-666.

Lloyd, S., 1982, Least squares quantization in pcm: IEEE
transactions on information theory, 28, 129-137.

Luo, S., and D. Hale, 2012, Velocity analysis using
weighted semblance: Geophysics, 77, U15-U22.

MacQueen, J., et al., 1967, Some methods for classifica-
tion and analysis of multivariate observations: Proceed-
ings of the fifth Berkeley symposium on mathematical
statistics and probability, 1, 281-297.

Steinhaus, H., 1956, Sur la division des corp materiels en
parties: Bull. Acad. Polon. Sci, 1, 801.

Yilmaz, O., 1987, Seismic data processing: Investigations
in geophysics.



