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Acoustic wave-equation traveltime and waveform
inversion of crosshole seismic data

Changxi Zhou*, Wenying Cai*, Yi  Gerard T. Schuster*, and Sia Hassanzadeh§

ABSTRACT

A hybrid wave-equation traveltime and waveform
inversion method is presented that reconstructs the
interwell velocity distribution from crosshole seismic
data. This inversion method, designated as WTW,
retains the advantages of both full wave inversion and
traveltime inversion; i.e., it is characterized by rea-
sonably fast convergence which is somewhat indepen-
dent of the initial model, and it can resolve detailed
features of the velocity model. In principle, no travel-
time picking is required and the computational cost of
the WTW method is about the same as that for full
wave inversion.

We apply the WTW method to synthetic data and
field crosshole data collected by Exxon at their
Friendswood, Texas, test site. Results show that the
WTW tomograms are much richer in structural infor-
mation relative to the traveltime tomograms. Subtle

structural features in the WTW Friendswood tomogram
are resolved to a spatial resolution of about 1.5 m, yet are
smeared or completely absent in the traveltime tomo-
gram. This suggests that it might be better to obtain high
quality (distinct reflections) crosshole data at intermedi-
ate frequencies, compared to intermediate quality data
(good quality first arrivals, but the reflections are buried
in noise) at high frequencies.

Comparison of the reconstructed velocity profile
with a log in the source well shows very good agree-
ment within the O-200 m interval. The 200-300 m
interval shows acceptable agreement in the velocity
fluctuations, but the tomogram’s velocity profile dif-
fers from the sonic log velocities by a DC shift. This
highlights both the promise and the difficulty with the
WTW method; it can reconstruct both the intermedi-
ate and high wavenumber parts of the model, but it can
have difficulty recovering the very low wavenumber
parts of the model.

two extremes, traveltime inversion (Dines and Lytle, 1979;

INTRODUCTION

Paulsson et al., 1985; Ivansson, 1985; Bishop et al., 1985;
Lines, 1988; and many others) and full wave inversion

Among the various seismic inversion methods there are

(Tarantola, 1986, 1987; Mora, P. 1987; Crase et al., 1992; and
others). In traveltime tomography, the time of flight informa-
tion is inverted for the smooth features of the velocity model,
while waveform inversion inverts the amplitude and phase
information for the fine details of the earth model. Both
methods have complementary strengths and weaknesses.

than that from full wave inversion. On the other hand, the

as does the source wavelet. In addition, the resolution of the

traveltime misfit function (sum of squared errors between
observed and calculated traveltimes) can be quasi-linear

reconstructed model from traveltime inversion is much less

(Luo and Schuster, 1991b) with respect to the normed
difference between the starting and actual velocity models.
This means that successful inversion can be achieved even if
the starting model is far from the actual model. 

The characteristics of full wave inversion are complemen-
tary to those of traveltime inversion. While sensitive to the
choice of starting model or noisy amplitudes, full wave
inversion can sometimes reconstruct a highly resolved earth
model. This is because there are no high-frequency assump-

A weakness of traveltime inversion is that it employs a
high frequency approximation and so it can fail when the
earth’s velocity variations have nearly the same wavelength
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tions about the data, and almost all seismic events are
embedded in the misfit function. The problem with full wave
inversion, however, is that its misfit function (normed
squared error between the observed and synthetic seismo-
grams) can be highly nonlinear with respect to the velocity
model (Gauthier et al., 1986; Luo and Schuster, 1991b). In
this case, a gradient method will tend to get stuck in local
minima if the starting model is too far from the actual model.

To exploit the strengths and ameliorate the weaknesses of
both traveltime and waveform inversion, this paper presents
a hybrid inversion method that minimizes a weighted com-
bination of first arrival traveltime (Luo and Schuster, 1991a)
and seismogram (Tarantola, 1987) misfit functions. The main
benefits are a convergence rate that is somewhat insensitive
to the starting model, a high degree of model resolution, no
high-frequency approximations to the data, and a robustness
in the presence of data noise. Synthetic and real data tests
show that this hybrid method, designated wave-equation
traveltime and waveform inversion (WTW), provides a to-
mogram with both the smooth and the detailed parts of the
velocity model.

T H E O R Y

The following analysis assumes that the propagation of
seismic waves honors the 2-D acoustic wave equation. Let

  be the observed pressure at time t observed at
the receiver location  = 1, 2, . . . , Nr ) as a result of a
source at  = 1, 2, . . . , Ns ). The source is always
assumed to be initiated at zero time and this time variable
will be suppressed in our notation. For a given velocity

 denotes the calculated seismogram that
honors the 2-D wave equation

  
 

   

  ( 1 )
where  is the density,  is the bulk modulus, and
 (       is the source function at xs . The forward modeling

problem is defined as finding everywhere the pressure field
that satisfies equation (1) with the given boundary + initial
conditions. In practice, we find this pressure field by a
fourth-order finite-difference solution (Levander, 1988) to
the first-order equations of motion.

We will define the inverse problem as finding the velocity
model =  that both predicts the observed
seismograms    and minimizes the following
hybrid misfit function:

(2)

(3)

Here  is the seismogram residual

and =      is the traveltime
residual, or the difference between the observed and calcu-
lated first arrival times for a source at xs and a receiver at xr.
In practice, these traveltimes can be found either by picking
the first arrival times or by some automated method such as

cross-correlating the observed seismogram with the calcu-
lated seismograms (Luo and Schuster, 1991a). The w (dis-
cussed in Luo and Schuster, 1990) is a weighting factor used
to balance out the contribution from these two residuals.
Implicit in our definition of the inverse problem is that we
assume that the density distribution is known. This assump-
tion is appropriate if the densities can be obtained from
either well log data or by a simple empirical relation between
velocity and density.

For simplicity we choose a steepest descent method to
minimize equation (2), with the understanding that a conju-
gate gradient method is used in practice. To update the
velocity model, the steepest descent method gives,

      (4)
where  is the steepest descent direction for the misfit
function S, x represents any location between the wells, 
is the step length, and k denotes the kth iteration.

Representing the first term in equation (2) as S1, the
second term as S2, and taking the Frechet derivative of S
with respect to velocity, yields

 
    (5)

From equation (8) in Luo and Schuster (1991a)

        

where

            

and the symbol  represents temporal convolution,  repre-
sents the time derivative of p, and    is the
Green’s function associated with equation (1) for the veloc-
ity field  Here  is the pseudo-traveltime residual
defined by

             (8)

with the normalization factor  defined as

           

For a single source, the interpretation of equation (6) is that
the forward-modeled field     is cross-correlated
with the back-projected field   (x,  to yield the gradi-
ent value at x. From equation (7), the back-projected field

   is found by back-projecting the pseudo-travel-
time residual  ,  where   is formed by
weighting the observed seismogram at the  receiver with
its associated traveltime residual  and normalization
value E. In other words, the  term is calculated by
reverse time migration of the weighted observed seismo-
grams, where the traveltime residuals serve as scalar weight-
ing factors. This is the gradient for the wave-equation
traveltime-inversion (WT.) method of Luo and Schuster
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(1991a). In practice, all waveforms except those of the nonlinear conjugate gradient method with preconditioning
transmitted arrivals are muted out prior to back-projection. (Beydoun and Mendes, 1989) and a constant step length.

It is shown in Luo and Schuster (1991a) that the seismo-
gram misfit gradient  is exactly the same as the travel-
time misfit gradient  (x) except the pseudo-traveltime re-
sidual  in equation (7) is replaced by the
normalized seismogram residual     where

  is defined in equation (3). Similar to the interpreta-
tion of    is calculated by reverse time migration of
the normalized seismogram residuals.

Synthetic crosshole data

A useful strategy for inversion is to first reconstruct the
long wavelength parts of the velocity model with the travel-
time gradient and then reconstruct the short wavelength
features with the waveform gradient (see appendix). This
strategy can be implemented by re-weighting the hybrid
gradient in equation (5)

The WTW method will now be applied to the Figure l(a)
fault model used in Luo and Schuster (1991a). The “ob-
served” seismograms in this case were generated by a
fourth-order finite difference solution to the 2-D acoustic
wave equation (with constant density). The fault model is
discretized onto a mesh with 31 x 71 gridpoints, with 18 line
sources and 36 receivers along the left side and right side of
the model, respectively; a 40-gridpoint wide absorbing
sponge zone is added along each boundary. The source
wavelet is a Ricker wavelet having a peak frequency of
80 Hz, and the starting velocity model is a uniform medium
with a velocity of 3000 m/s.

        (10)
where the scalar weight a is used to emphasize either the
traveltime misfit gradient or the seismogram misfit gradient.
The criteria we use is to set a = 1 for  > T/4, and a = 0
for  < = T/4, where T is the period corresponding to the
peak frequency of the wavelet. In practice, we find that using
the traveltime tomogram as a starting model will allow the
waveform inversion to converge to the true model. In the
following numerical tests, each of the seismograms is nor-
malized to an amplitude of one.

NUMERICAL EXAMPLES

The WTW method will be applied to both synthetic and field
crosshole seismic data. Figure l(a) depicts the synthetic model.
The field crosshole data were collected by Exxon (Chen et al.,
1990) near Friendswood, Texas. The inversion scheme is a

FIG. 1. Synthetic data test results. (a) Fault model dis-
cretized onto a mesh of 3 1 x 71 gridpoints with a gridpoint
spacing of 3 m. (b) WTW tomogram after 10 iterations,
except only the traveltime gradient is used. (c) WTW tomo-
gram after 14 iterations, where the waveform gradient was
exclusively used after the 10th iteration. (d) Raytracing
traveltime tomogram after 50 iterations.

Figure l(b) shows the wave equation traveltime inversion
(WT) tomogram after 10 iterations. After the tenth iteration
the traveltime gradient in equation (10) was turned off [by
setting a = 0 in equation (10)] and the waveform gradient
was turned on for another four iterations to give the WTW
tomogram in Figure 1(c). For comparison, Figure 1(d) shows
the “best” traveltime tomogram after more than 50 itera-
tions. The traveltime tomogram was reconstructed by a first
arrival tomography method using ray tracing and a smoothed
gradient field. Note that the WTW tomogram in Figure l(c)
shows much better interface definition than the WT
[Figure l(b)] or ray tracing traveltime [Figure 1(d)] tomo-
grams. This is not surprising because the WT method seeks
to fit only the first arrival traveltimes compared to fitting all
of the waveforms in the seismograms for the WTW method.
This means that the first arrival times can be accounted for
by a smooth velocity model, while only a highly detailed
fault model will account for the entire seismograms. It is to
be noted that Luo and Schuster (1991a) showed that stan-
dard full wave inversion failed for this fault model if the
starting model was a homogeneous velocity model. This
underscores the important feature of the WTW algorithm
which first inverts for the long wavelength velocity features
by traveltime inversion, and then extracts the model’s de-
tailed features by waveform inversion.

Figure 2 depicts shot gathers associated with the actual fault
model [Figure l(a)], the WT tomogram [Figure l(b)], and the

FIG. 2. Common shot gathers (for a source depth at 108 m)
computed for (a) the Figure l(a) fault model, (b) the
Figure l(b) WT tomogram, and (c) the WTW tomogram in
Figure l(c).
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WTW tomogram [Figure l(c)]. It is observed that the WTW
shot gather contains many of the scattering and reflection
events in the fault model shot gather in Figure 2(a). In compar-
ison, the WT shot gather does not correlate well with the actual
shot gather, except for the direct arrivals and some reflection
events.

The WTW method can be robust in the presence of
random noise. This is demonstrated by WTW inversion of
the shot gathers from the fault model, except random noise
has been added to the data. In this example the signal-to-
noise ratio is 4: 1, and Figure 3 depicts the shot gather in
Figure 2(a) after the addition of random noise. Applying the
WTW method to the noisy fault model data yields the WTW
tomogram after 16 iterations in Figure 4. The tomogram’s
accuracy is quite acceptable. Other examples of applying the
WTW method to synthetic data are given in Luo and
Schuster (1990).

Friendswood crosshole data

The WTW method is applied to a crosshole seismic data
set collected by Exxon near their Friendswood, Texas, test
site (Chen et al., 1990). The source and receiver wells are
180 m apart, the wells extend to a depth of approximately
300 m, and the source and receiver intervals are 3.05 m so
that there are 98 sources and 96 receivers. The source
consists of a small amount of dynamite, and the seismic data
have a usable bandwidth of 80 to 600 Hz. A typical unproc-
essed shot gather at intermediate depth is shown in
Figure 5(a).

FIG. 3. The same shot gather as in Figure 2(a), except the
random noise has been added to the data.

FIG. 4. WTW tomogram (after 16 iterations) inverted from
the noisy fault model data (Figure 3).

FIG. 5. A typical shot gather of Fnendswood crosshole data
collected by Exxon near their Friendswood, Texas, test site.
The source depth is 156 m. (a) Raw shot gather. (b) First
arrival wavelet extracted from the Figure 5(a) shot gather.
(c) Figure 5(a) shot gather data after signal processing. (d)
Downgoing waves after f-k filtering of the Figure 5(a) shot
gather.

Downloaded 18 Mar 2010 to 86.51.114.210. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Traveltime + Waveform Inversion 769

Processing steps applied to the shot gathers include
(Cai and Schuster, 1993) the following: (1) tube waves are
eliminated by median filtering; (2) free-surface reflections are
muted out in the time domain; (3) an 80-600 Hz bandpass
filter is applied to the data; (4) each trace is normalized to its
maximum amplitude value; and (5) direct arrivals are muted
out after the waveform inversion is turned on. Each forward
modeled shot gather used a source wavelet extracted from
the corresponding observed shot gather; e.g., Figure 5(b)
shows the first arrival source wavelet associated with a trace
at intermediate depth. To accommodate the 80-600 Hz
bandwidth of the data, a 2-D finite-difference mesh of 301 x
501 gridpoints is used for the forward modeling and back-
projection, with the same well geometry as in the Friendswood
experiment. Well deviations in the source and receiver wells
were corrected by shifting the coordinates of deviated sources
and receivers to the appropriate position in the vertical plane of
the source-receiver wells. The data were corrected to a 2-D
format by multiplying the filter  by the spectrum of the
observed seismograms and scaling the data by  to approxi-
mate geometric spreading. The final processed shot gather
associated with Figure 5(a) is shown in Figure 5(c). Figure 5(d)
shows the same gather except the upgoing and transmitted
waves have been eliminated by f-k filtering.

FIG. 6. The WTW tomograms inverted from the Friend-
swood crosshole data. (a) WT inversion after 10 iterations.
Figures 6(b), 6(c), and 6(d) are WTW tomograms after 16
iterations, 46 iterations, and image enhancement of the
Figure 6(c) tomogram, respectively.

The WTW method is now applied to the 98 shot gathers of
the processed Friendswood data, where the starting model is
a homogeneous velocity model of 1800 m/s. Figures 6(a),
6(b), and 6(c) show the WTW tomograms after 10, 16, and 46
iterations, respectively. Figure 6(d) shows the Figure 6(c)
tomogram after applying an edge detection algorithm (Bilbro
et al., 1992). For these WTW tomograms, the waveform
gradient is turned on and the traveltime gradient is turned off
after the tenth iteration. This means that Figure 6(a) is the
WT tomogram after 10 iterations, whereas Figures 6(b)-6(d)
can be considered as full waveform inversion tomograms
that use the Figure 6(a) WT tomogram as the starting
velocity model. We assign the density model by a simple
empirical formula (Gardner et al., 1974) that relates density
to the P-wave velocity. Note that the final WTW tomogram in
Figure 6(c) provides a much finer layer and velocity resolution
compared to the Figure 6(a) WT tomogram. This is verified in
Figure 7 which compares the smoothed sonic log (solid line) in
the source hole to a vertical slice of the final WTW and WT
tomograms. These slices were taken from the tomograms along
a vertical line 12 m from the sonic log (or source well on the left
side) and demonstrate that the vertical resolution of the WTW
tomogram is about 1.5-3.0 m compared to the 6.0-12.0 m

FIG. 7. Tomogram velocity profiles (dots spaced at 0.6 m)
compared to the sonic log (solid line) in source well. The
profiles are extracted from the tomograms 12 m from the
source well. (a) Figure 6(c) WTW tomogram velocity profile
and sonic log, (b) Figure 6(a) WT tomogram velocity profile
and sonic log.
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resolution of the WT tomogram. Note that the WTW velocity
profile differs from the sonic log profile by a DC shift in the
200-300 m interval. This highlights a weakness in the WTW
method. It is effective at reconstructing both the high and
intermediate wavenumber parts of the model but it can have
difficulty in recovering the low wavenumber part of the model.

As a final accuracy check, Figures 8(a) and 8(b) show the
synthetic shot gathers computed from the velocity field in
the 10th iteration WT tomogram [Figure 6(a)] and the final
WTW tomogram [Figure 6(c)], respectively. In the WTW
synthetic shot gather, both direct waves and reflection
arrivals show significant correlations with their counterparts
in the observed shot gather shown in Figure 8(c). For
example, downgoing reflection events A, B, C, and D are
present in both the real and synthetic shot gathers. Also note
that the primary and secondary arrivals around zone G in the
field data are matched quite well by similar events in the
synthetic WTW gather. Reflection events F and E in the field
records are not present in the synthetic gather because the
free surface and subwell reflectors were deliberately ex-
cluded from the synthetic velocity model.

FIG. 8. Synthetic acoustic common shot gathers associated with the (a) WT tomogram in Figure 6(a), and (b) the WTW
tomogram in Figure 6(c). Figure 8(c) depicts the corresponding observed shot gather, and Figure 8(d) depicts the
seismogram residuals. The source location for these common shot gathers is at the depth 156 m.

The events not accounted for in the synthetic acoustic
gather are depicted in the shot gather residual shown in
Figure 8(d). Note the large residual associated with the
direct wave; this indicates that the synthetic source wavelet
did not exactly match the shape of the actual source wavelet.
Part of the mismatch can be attributed to the acoustic
finite-difference modeling which does not take into account
P-S conversions or viscoelastic losses in the field data.

In comparison with the WT results, the WT synthetics in
Figure 8(a) show a good correlation with the actual direct
arrivals in Figure 8(c). However, the secondary arrivals are
almost completely absent because of the smooth nature of
the WT tomogram. Inverting just the first arrival traveltimes
is insufficient for reconstructing detailed features of the
velocity model.

Figure 9 shows the RMS traveltime and RMS waveform
residuals vs iteration number for the Exxon data reconstruc-
tions. Relative to the waveform residual at the 10th iterate,
the waveform residual at the 46th iterate decreases by about
30%. For each WTW iteration, about 50 CPU minutes were
required on a 2.5-Gigaflop Fujitsu VPX240/10, or about
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30 CPU hours on an 80-Mflop Stardent 2000 (roughly equiv-
alent in speed to an IBM RS6000 560 computer for finite-
difference computations).

Figure 10(a) is a zoom view of the lower part of the
Figure 6(c) WTW tomogram and shows highly resolved
dipping layers (Figure 10) that are absent in the WT tomo-
gram in Figure 6a. The layers appear to be about 3.0-4.5 m
thick and are imaged because the WTW inversion accounts

FIG. 9. RMS (a) traveltime residuals and (b) seismogram
residuals vs iteration number for the WTW inversion of the
Friendswood data.

FIG. 10. Enlarged WTW tomogram showing structural detail.
(a) WTW tomogram after 46 iterations. (b) WTW tomogram
after 10 iterations (using only the first arrival traveltime
information).

for the secondary events (primarily reflection events) in the
data.

Figure 11 shows the migrated crosshole section using the
Friendswood crosshole data and a smoothed representation
of the Figure 6(c) velocity model. In this case a constrained
Kirchhoff-migration method (Qin and Schuster, 1993) was
used and the migration velocity below the well was extrap-
olated from the bottom part of the Figure 6(c) tomogram. On
the left is a 1-D synthetic seismogram computed from the
sonic log in Figure 7 and the source wavelet in Figure 5(b).
The migrated section and sonic log correlate reasonably well
to provide complementary information to the WTW tomogram.

CONCLUSION

We presented a hybrid velocity inversion method, i.e.,
WTW, that incorporates the advantages of both traveltime
(i.e., robust convergence) and full wave inversion (i.e.,
high-resolution) methods. The wave equation traveltime
inversion (WT) method is used to first reconstruct the long
wavelength features of the velocity model, and then full
waveform inversion is used to reconstruct the fine details of
the model. This strategy avoids the problem of getting stuck
in local minima when the starting model is far from the actual

FIG. 11. Migrated Friendswood data using the WTW tomo-
gram model in Figure 6(c) as the migration velocity model.
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model. To partially alleviate amplitude problems caused by
source radiation patterns or inconsistent geophone/source
coupling, we normalize the traces of both the observed and
synthetic seismograms.

Inversion of both synthetic and crosshole seismic data
shows that the WTW method provides a significantly better
model resolution than given by traveltime tomography.
WTW tomograms show a very fine resolution (1 S-3.0 m) of
the interface boundaries compared to the indistinct or
smeared interfaces in the traveltime tomograms. Except for
a DC shift at the 200-300 m interval, there was good
agreement between the sonic log velocity and the tomo-
gram’s velocity profile near the source well. Subtle struc-
tural features completely absent in the Friendswood travel-
time tomogram are clearly defined in the WTW tomogram.
Such details can spell the difference between success and
failure in enhanced oil recovery operations. This suggests
that intermediate frequency data of high quality (i.e., distinct
reflection arrivals) may be more useful than high frequency
data of intermediate quality (i.e., good first breaks but
indistinct reflection arrivals).

Future work on the WTW method should include increas-
ing computation speed by the use of asymptotics, inverting
for source radiation patterns and subwell velocities (Zhou
and Schuster, 1993), and the use of the anisotropic and
viscoelastic wave equation for P-velocity, S-velocity, and
density inversion (Zhou et al., 1994).
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APPENDIX A

We now heuristically show that the misfit gradient in
equation (5) can be decomposed into both short wavelength
and long wavelength components, where the short wave-
length components are associated with reflection events and
the long wavelength components are primarily associated

where  = 2     and  =
   and the notation for the time variables has

been suppressed. The interpretation of equation (11) is that the
waveform gradient is updated by a zero-lag temporal cross-
correlation of the backward-propagated residual field   

with the transmitted arrivals.
For a single impulsive source, the waveform gradient  x)

in equation (5) can be rewritten as

with the forward-modeled field    .

 =   

Gradient decomposition

We will now decompose the gradient field into a sum of
transmission and reflection components, where the reflec-
tion component can be further divided into forward- and
back-propagated parts. The decomposition formula shows(11)
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that the magnitude of the misfit gradient associated with the
transmitted arrivals (henceforth called the transmission gra-
dient) dominates over the gradient contributions from re-
flected arrivals (henceforth called the reflection gradient).

We will employ the notation Gij which describes the
wavefield along the raypaths that connect the source at xi
with the receiver at xj. For the example of the single
interface model in Figure 12(a), the Green’s function

 can be decomposed into a composite wavefield
with support along the transmitted ray G02, the downgoing
ray G01, and an upcoming ray G12, i.e.,

        (12)
where r represents the reflection coefficient at the interface.

For a transmitted + reflected wavefield that is back-
propagated from the receiver array, the Green’s function

 for a source at x2 and a receiver at x0 can be
decomposed into a sum of back-propagated transmitted g20,
back-propagated downgoing g21 and back-propagated up-
coming g10 parts, i.e.,

      (13)
where the associated raypaths are shown in Figure 12(b).
Note that the wave downgoing from the receiver well is
scaled by r because we assume that this back-propagated
reflection started out at the receiver well with an amplitude
of r, After reflecting at the interface the amplitude is again
scaled by a factor r to yield the  term.

Transmission traveltime tomography

Plugging equations (13) and (12) into equation (11) and
neglecting all terms in r, we get the transmission gradient 

 =  (14)
which is, to zeroth-order in r, the gradient of the misfit
function. For small r, this means that the dominant contri-
bution to the velocity update is from the transmitted fields.
Moreover, the correlation is nonzero along the transmitted
raypath so that the velocity update for many source-receiver
pairs is evenly, i.e., globally, distributed throughout the
model. The velocity update is also evenly distributed along
the ray since equation (14) applies nearly equal weighting to
the velocity update along the transmitted raypath. This

FIG. A-1. (a). Forward-propagated rays and (b). Backward-
propagated rays.

assumes that the geometrical spreading factors have been
eliminated by a preconditioning method.

The idea that the transmission gradient updates the
smooth components of velocity forms the basis of the
inversion strategy for the WTW method. That is, the trans-
mitted arrivals are weighted by the traveltime residuals and
then back-projected into the medium to reconstruct the long
wavelength components of the velocity field. After five or so
iterations, the direct waves are muted out and waveform
inversion is applied to the reflection events to reconstruct
the shorter wavelength components of the velocity field. As
an example, Figure 8(a) is devoid of prominent reflections
because the traveltime tomogram is too smooth to generate
reflections. In contrast, prominent reflections are extant in
Figure 8(b) because the waveform tomogram contained the
sharp boundaries of the reflector interfaces.

Reflection waveform tomography

The previous section derived the transmission gradient
formula and showed how it performs a global and smooth
update of the velocity distribution. This section will derive
the reflection gradient formula, which mainly performs a
local and detailed update of the velocity model.

Eliminating the transmitted terms g20 and G02 in
equations (12) and (13), and plugging the resulting formulae
into equation (11), we get the reflection gradient  i.e.,

        

     

        (15)
Note that the crosscorrelations turn on only when the
forward-propagated rays coincide in both space and time
with the back-propagated rays. This statement implies that
the rays labeled G01 and g21 in Figure 12 coincide only at x 1
on the reflector boundary so that       
where geometrical spreading terms have been ignored. Like-
wise,        Therefore, the above
equation reduces to:

   

     (16)
and neglecting third-order terms in r this becomes

             (17)
For small r, we see that the reflection gradient is dominated
by the part that turns on at the boundary, namely the point
x1 where the migrated reflection correlates with the trans-
mitted arrival. Complementary to the transmission gradient,
the reflection gradient to first order in r performs a local and
detailed velocity update along the reflecting boundary, and no
first-order corrections take place along the raypaths to update
the smooth parts of the velocity field. This is one of the reasons
for the slow convergence of iterative reflection waveform
tomography. However, the second-order terms in equation (17)
do contribute along the raypaths and so the waveform gradient
can weakly update smooth parts of the velocity field.
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