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S U M M A R Y
We propose a seismic scanning tunnelling macroscope (SSTM) that can detect subwavelength
scatterers in the near-field of either the source or the receivers. Analytic formulas for the time
reverse mirror (TRM) profile associated with a single scatterer model show that the spatial
resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly
proportional to the source-scatterer separation as long as the scatterer is in the near-field
region. This means that, as the scatterer approaches the source, imaging of the scatterer with
super-resolution can be achieved. Acoustic and elastic simulations support this concept, and a
seismic experiment in an Arizona tunnel shows a TRM profile with super-resolution adjacent
to the fault location. The SSTM is analogous to the optical scanning tunnelling microscopes
having subwavelength resolution. Scaled to seismic frequencies, it is theoretically possible to
extract 100 Hz information from 20 Hz data by the imaging of near-field seismic energy.

Key words: Interferometry; Theoretical seismology; Wave scattering and diffraction; Wave
propagation.

I N T RO D U C T I O N

The resolution limit in refocusing light waves by a conventional
optical lens is defined as the Rayleigh resolution limit (Elmore &
Heald 1969; Born & Wolf 1999) �θ = 1.22λ/D, or if the object is
close enough to the lens such as in a microscope then there is the
Abbe resolution limit. Here, �θ is the angle between the optic axis
and the line that connects the object in the image plane with the
edge of the lens, D is the aperture width of the circular optical lens
and λ is the wavelength associated with the light. This resolution
limit is important for defining the minimum distance between two
neighbouring objects in which they are distinguishable in the image.

To achieve better resolution than the Abbe limit, evanescent en-
ergy should be used for imaging. In 1873, Abbe recognized a fun-
damental diffraction limit of optics: whenever an object is imaged
by an optical lens, fine features of the object smaller than λ/2 are
permanently lost in the image (Cragg & So 2000; Zhang & Liu
2008). Such fine detailed information is lost because light emerging
with these fine features decays exponentially away from the object
as evanescent energy, and are not carried by the propagating waves
(Tabib-Azar et al. 1999; de Rosny & Fink 2002; Lerosey et al. 2007;
Fink 2008). If this subwavelength information can be utilized then
there is the possibility of subwavelength imaging, also known as
super-resolution (Steel et al. 2010), and forms the basis of many
types of high-resolution optical imaging devices (de Fornel 2001;
Jia et al. 2010). Until now, such a device has not been devised for
seismic waves in the earth.

Resolution that goes beyond Rayleigh resolution without using
near-field evanescent energy in seismic imaging can be achieved

by applying various algorithms to the data, such as diffraction
tomography (Schatzberg & Devaney 1992; Gelius 1995), least
squares migration (Nemeth et al. 1999; Duquet et al. 2000; Kuhl &
Sacchi 2003), conventional statistical multiple signal classification
(Schmidt 1986; Lehman & Devaney 2003), or null space solutions
(Gelius & Asgedom 2011). An overview of diffraction-limited res-
olution for seismic applications is provided by Gelius & Asgedom
(2011).

This article shows both theoretically and experimentally that it is
possible to use far-field seismic energy for subwavelength imaging
of sources at seismic frequencies. The key idea is that seismic energy
scattered from subwavelength objects located in the near-field of the
source or receiver can be refocused with subwavelength resolution
by TRMs to the source location. This is similar to optical imaging
devices that include a super lens in the near field of the source
(i.e. within a half-wavelength distance) that converts the evanescent
energy to propagating waves (de Fornel 2001). Analogous to the
STM (de Fornel 2001) we propose a seismic scanning tunnelling
macroscope (SSTM) that can harness the subwavelength imaging
potential in near-field seismic energy.

This paper is organized in the following way. The first section
presents the SSTM theory and shows how its essential properties
are related to the point scatterer response of the near-field TRM
operator. A related formula is derived in Appendix B that shows the
influence of second-order scattering from multiple scatterers. The
second section presents acoustic simulations that validate predic-
tions from the SSTM theory for multiple scatterers. This is followed
by the next section which presents elastic simulations of TRM pro-
files and field data results from a seismic experiment in an Arizona
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tunnel. The elastic simulations suggest that the acoustic theory is
largely valid for an elastic medium and are consistent with the field
data results. The last section presents the conclusions.

S E I S M I C S C A N N I N G T U N N E L L I N G
M A C RO S C O P E

The SSTM shares the same principle as the scanning tunnelling
microscope (STM) in producing images with high spatial resolution:
small near-field changes in the separation of the source-object lead
to enormous changes in the measured field. In the case of the STM,
the measured field is the current at the scanning tip and for the
SSTM it is the amplitude changes in the scattered field.

Fig. 1(a) illustrates this idea for the STM (Binnig & Rohrer 1986;
Bai 2000) where a conducting tip (a few atoms in width) is placed
within a few Angstroms from the conducting surface of the object.
The goal is to map out the topography of the conducting surface
to within a few Angstroms of resolution. If the object is within the
near-field of the tip, electrons can tunnel through the vacuum gap to
create a current between the tip and object. This near-field current
measured at the tip is very sensitive to slight changes in the height
of the surface, as illustrated by the I(h) versus h plot on the right.
Consequently, scanning the tip just above the surface (i.e., in the
near-field region of the object’s surface) can map out the surface
topography to within a few nanometres. If the tip is too far away
from the surface, that is, it is in the far-field region, then current
fluctuations due to topography variations are too weak to be reliably
measured. Analogously, the SSTM illustrated in Fig. 1(b) relies on
the fact that the scattered seismic energy from a subwavelength
scatterer is very sensitive to the changes in the near-field separation
r between the source and scatterer. This strong sensitivity is caused
by the strong sensitivity of the geometric spreading term 1/r to
small near-field variations in the source-scatterer separation r (see
A(h) versus h curve in Fig. 1(b), where r and h are the same). Note,
the evanescent wave from the source converts to a propagating body
wave at the scatterer that is recorded by the receivers, also illustrated
in Fig. 2. Unlike the STM, the SSTM receivers are in the far-field
region of the source and the recorded seismic energy is refocused to

Figure 1. Illustration of (a) Scanning Tunnelling Microscope (STM) and (b)
Seismic Scanning Tunnelling Macroscope in transmission mode. In the STM
(SSTM) example, small changes in the source-object (source-scatterer) sep-
aration lead to enormous changes in the measured current (trace amplitude
of scattered energy) measured at the tip (geophone). It is assumed that both
the tip (seismic source) and object (seismic scatterer) are subwavelength in
dimension and are separated by less than λ/2.

Figure 2. Single scatterer in the near field of the source and the geophones
are in the far-field region. The horizontal resolution limit of the source image
is proportional to ε for a homogeneous background medium.

the source position by a TRM operation. The next section presents
the mathematical formulation for refocusing waves by the TRM.

Point scatterer response of the near-field TRM operator

To understand the properties of refocusing seismic waves by TRMs
we first derive its point scatterer response function. This function,
similar to the point spread function (Lipson et al. 1995) used in
optical physics and seismic migration (French 1974), is a valu-
able diagnostic tool for understanding the focusing sensitivity to
variations in the object distance, the recording geometry and the
wavelength.

In Fig. 2, the point scatters at o = (0, ε) scatters incoming en-
ergy from the harmonic point source at s = (0, 0), which is then
recorded by receivers at gεBg. The scattered data G(g|s)scatt. can be
mathematically expressed as

sεBs ; gεBg; G(g|s)scatt. = G(g|o)G(o|s), (1)

where a unity scattering coefficient is conveniently assumed and
G(x|x′) is the Green’s function that solves the Helmholtz equation
for a point source at x′ and a receiver at x in a background velocity
model. The dependence on the angular frequency variable ω is
implicit in this Green’s function notation. For a band-limited point
source at s with wavelet spectrum W (ω), the TRM image m(s′, s)
with a trial point source at s′εBs for a continuous distribution of
geophones along Bg is given by

s′εBs ; m(s′, s) =
∫ ω0

−ω0

∫ L

−L
k|W (ω)|2

scattered data︷ ︸︸ ︷
G(g|o)G(o|s)

extrapolator︷ ︸︸ ︷
G(g|o)∗G(o|s′)∗ dgdω.

(2)

If the background medium is homogeneous with velocity c, the
background Green’s function is

G(x|x′) = eiω|x−x′ |/c

|x − x′| , (3)

where k = ω/c, the frequency band of the flat source spectrum
is between −ω0 and ω0, and the recording aperture is 2L wide.
The extrapolator plays the role of focusing the recorded energy
back to the source location. If the source is the reflection point
at a reflector boundary, then the related imaging is called reverse
time migration (McMechan 1983; Claerbout 1992) for extrapolators
computed by finite-difference solutions to the wave equation; and
if a Kirchhoff-like formula is used to extrapolate poststack traces it
is called poststack migration (French 1974; Schuster 2009). If the
data are used for the extrapolator then eq. (2) forms the basis of the
operation known as the time reverse mirror (TRM; Fink 1993, 2006,
2008). It is now known that the general mathematical foundation
for these methods is the reciprocity theorem of correlation type
(Snieder 2004; Wapenaar 2004).
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For convenience, assume |W (ω)|2 = 1/k so that plugging the
Green’s function in eq. (3) into eq. (2) gives the TRM profile
m(s′, s)

m(s′, s) =
∫ ω0

−ω0

eiω(|o−s|−|o−s′ |)/c

|s − o||s′ − o| dω

∫ L

−L

1

|g − o|2 dg,

= α(s, o, s′) sin (ω0[|o − s| − |o − s′|]/c)

[|o − s| − |o − s′|] , (4)

where the near-field geometrical spreading factor α(s, o, s′) is de-
fined as

α(s, o, s′) = c

|s − o||s′ − o|
∫ L

−L

1

|g − o|2 dg. (5)

Eq. (4) is used to compute the TRM profile for the trial source
positions s′ along a specified line that intersects the actual source
position.

For a fixed source position s, the first zero-crossing of m(s′, s) is
given by the value of s′ that satisfies

[|o − s| − |o − s′|] = −λ0/2, (6)

and, under the traditional Rayleigh resolution criterion, determines
the spatial resolution of the imaged source location; here λ0 =
2πc/ω0. For the scatterer at o = (0, ε), the source at s = (0, 0), and
s′ = (x′, 0), eq. (6) becomes[
ε −

√
ε2 + x ′2] = −λ0/2. (7)

For ε ≈ 0 the first zero-crossing is at x′ = λ0/2, which is the Abbe
limit and the sinc-like function is illustrated by the solid-line curves
in Fig. 3. As expected, the sinc-like function widens as the point
scatterer is moved further away from the point source.

However, the first zero-crossing is not the only determinant of
the spatial resolution limit �x because the near-field geometrical
spreading factor α(s, o, s′) in eq. (5) is proportional to 1

|s′−o| , which
spikes the central part of the sinc function for small ε. This spiking is
illustrated by the dashed-line curves in Fig. 3, where the half-width
of 1

|s′−o| is shown in Appendix A to be

�x ′ = βε. (8)

Consequently, the near-field horizontal resolution becomes better
as the point scatterer approaches the source position. Here, β is
a constant that depends on the type of resolution criterion and is
equal to 2

√
3 if a half-power criterion is used. In the Fig. 3 example,

the dominant wavelength of the transient source is 120 m. Beyond
the source-scatterer distance of about λ/2 the sinc-like function
determines the horizontal resolution limit, otherwise it is controlled
by the inverse-distance function to yield subwavelength resolution.

Eq. (8) says that the evanescent energy introduces an effective
horizontal wavelength that is linearly proportional to the distance

Figure 3. Plots of sinc-like function (solid lines) in eq. (4) and inverse-
distance function (dashed lines) in eq. (5) for a point scatterer 2 m (left plot)
and 90 m (right plot) from the point source.

between the point scatterer and the point source. And for source-
scatterer separations greater than λ/2 the sinc-like function controls
lateral resolution, not the near-field geometrical spreading factor in
eq. (5).

S U B WAV E L E N G T H S C AT T E R E R S
W I T H F I N I T E V O LU M E

The TRM profile of a point scatterer showed that rapid near-field
variations of the geometrical spreading term accounted for super-
resolution in the TRM profile. This is also true for subwavelength
scatterers with finite volume. To prove this, Godin (2011) derives
the acoustic response psc for the near-field scattering from a soft
sphere of radius a due to a near-field point source:

psc = −a

b

[
eik R

R
+ ik(b − a)

eikr

r

]
× [1 + O(k2(b2 + r 2))], (9)

where b > a is the radius of a reference sphere larger than the
scatterer’s radius; and r (R) represents the distance between the
near-field observation point and the centre of an image point within
the sphere. Similar to the Green’s function for a point scatterer,
the near-field scattering of a small sphere has an inverse distance
sensitivity to slight changes in the observation location1 .

For a point scatterer, the entire domain h > 0 of A(h) in Fig. 1 is
available for superresolution profiling and so the TRM profile has
a potentially unlimited resolution capability according to eq. (8). In
contrast, scattered data from a spherical scatterer of radius a only
gives access to the domain h > a, and so ε > a in eq. (8).

Finally, a subwavelength scatterer does not have to be spherical
to promote superresolution. For example, the asymptotic near-field
Green’s function for a wedge (Osipov & Hongo 1998) is inversely
proportional to the square root of distance from the wedge.

A C O U S T I C S I M U L AT I O N T E S T S

Synthetic acoustic data are now used to test for subwavelength reso-
lution, where a Born modelling procedure with ray tracing generates
the scattered data (Stolt & Benson 1986). For multiple scatterers
with weak interactions, the Born formula is used to compute the
scattered pressure field d(g, t|s, 0)scatt. due to a point source at s
excited at time zero and recorded at g

d(g, t |s, 0)scatt. =

F−1

[
W (ω)

∑
oεBo

r (o)eik(|g−o|+|o−s|)

|g − o||o − s|

]
, (10)

where W (ω) is the spectrum of a Ricker source wavelet, F−1 rep-
resents the inverse Fourier temporal transform, and r(o) is the scat-
tering coefficient associated with the point scatterer at oεBo. Here,
Bo is the set of point scatterer locations. For multiple scatterers in
a homogeneous medium, the modelling formula is highly accurate
if second-order and higher-order multiples are negligible. If the
multiples are stronger, then the scatterer–scatterer reverberations
can possibly enhance the effectiveness of the SSTM in detecting
small-scale scatterers.

1 Note, the asymptotic limit k2(b2 + r2) → 0 as the radius of the scatterer
becomes small with respect to the wavelength.
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Figure 4. (a) Shot gather for the two-scatterer model in (b) where the point
source is at (x, z) = (60, 0) m; here, the source time history is that of a Ricker
wavelet peaked at 20 Hz and the horizontal line of geophones is 45 m above
the source. The scatterers are located in the near-field region of the source
(5.2 m source-scatterer separation), where the wavelength of the source is
100 m. (c) The TRM profile at z = 0 for a source at s = (60, 0) m using
only scattered arrivals shows a horizontal resolution of approximately λ/20;
here the horizontal axis indicates the trial source position s′ in eq. (11). In
contrast, the TRM profile using only the direct arrivals is in (d) and shows
diffraction-limited resolution.

For multiple point scatterers embedded in a homogeneous back-
ground model, the TRM imaging formula 2 becomes

s′εBs ; m(s′, s) =
∫ ω0

−ω0

k|W (ω)|2

×
∑

Bg

scattered data︷ ︸︸ ︷∑
oεBo

r (o)G(g|o)G(o|s)

×
extrapolator︷ ︸︸ ︷∑

o′εBo

r (o′)G(g|o′)∗G(o′|s′)∗ dω,
(11)

where the summations are over the scatterer locations in the set Bo

and the geophone locations in Bg. In this formula, the input scattered
data consist of the scattered energy recorded at gεBg excited by a
single source at sεBs, and the output of this equation is the TRM
profile m(s′, s) for different trial image points s′ = (x, 0.5)εBs as
depicted in Figs 4(c)–(d).

Subwavelength resolution for acoustic data

Fig. 4(a) depicts 85 traces in a shot gather for the two scatterer model
in Fig. 4(b) with a source at (60, 0) m; only the scattered arrivals are
computed here. These traces were computed with eq. (10), where
the scatterers are separated by 10 m and located 5.2 m from the
source (60, 0) m. Here, the source time history is that of a Ricker
wavelet peaked at 20 Hz and the horizontal line of geophones is 45 m
above the source. The traces are used as input to eq. (11) to create
the TRM profile in Fig. 4(c). It is obvious that this TRM profile
clearly distinguishes the separation of the two scatterers from one
another, despite the 100 m wavelength. The horizontal resolution of
this scattered wave TRM profile is approximately λ/20. In contrast,

Figure 5. Same as Fig. 4, except the scatterer-source separation is 33.7 m
rather than 5.2 m. Here, super-resolution profiling is lost in c) because the
scatterers are more than 1/3 of a wavelength from the source.

Figure 6. Same as Fig. 4, except there are 10 scatterers with the same reflec-
tion coefficient, each separated by 5.2 m. Here, super-resolution profiling
is achieved at far offset positions (e.g. X = 20 m) from the source. See
Appendix B for an explanation.

the TRM profile associated with the direct wave in Fig. 4(d) is
diffraction limited.

If the two scatterers are elevated to 33 m (about 1/3 the wavelength
separation) above the source line with a source at (60, 0) m, then
the resulting TRM profile loses its super-resolution property, as
depicted in Fig. 5. According to theory (see Fig. 3), moving the
scatterers out of the near-field region and into the far-field prevents
the utilization of the evanescent energy in resolving model details.

Fig. 6(a) depicts the shot gather for a source located at (x, z) =
(120, 0) m on the bottom right of the 10-scatterer model in Fig. 6(b).
The corresponding TRM profile in Fig. 6(c) for a point source at
(60, 0) m shows that subwavelength resolution is possible for many
scatterers near the source line, as explained in Appendix B. In
fact, the location of the scatterers projected onto the receiver line
approximately coincides with the horns in the TRM image. As the
scatterer line is moved away from the source line, the scatterers will
no longer be in the source’s near-field region and so the spiky horns
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Figure 7. Sketch of source–receiver geometry and tunnel for seismic ex-
periment near Tucson, Arizona. The line of sources in the subsurface mine
(upper level) is roughly parallel to the receiver line shown at the surface.
The power spectrum of a typical trace is shown in the upper right diagram.

will smooth out to the shape of a Gaussian-like curve. These results
suggest that a downhole source can possibly be used to scan along
the source well and use the TRM profile to qualitatively reveal,
at subwavelength resolution, the character of near-field scatterers.
This defines the SSTM procedure.

E L A S T I C S I M U L AT I O N A N D T U C S O N
F I E L D DATA T E S T S

The SSTM is now tested with both elastic simulations and seismo-
grams recorded at a seismic experiment in an Arizona tunnel. A
finite-difference solution to the 2-D elastic wave equation is used
to generate the elastic seismograms, which are then used to get
the TRM profiles. The field data test is a controlled-source seis-
mic experiment2 conducted at the San Xavier Mining Lab, near
Tucson, Arizona where the source is a hammer blow in a subsur-
face mine. The resulting vibrations are recorded along a horizontal
line of vertical-component receivers located about 30 m above the
source line in Fig. 7. The goal is to detect in the TRM profile
super-resolution associated with scatterers in the near-field of the
source.

Synthetic elastic simulations

The TRM profile defined by eqs (4) and (11) assume the acous-
tic approximation, but they can also be applicable to an elastic
medium because the elastodynamic Green’s function is inversely
proportional to the source-scatterer distance. To test this claim, we
compute synthetic elastic seismograms and TRM profiles for a sim-
ple two-layer tunnel model with seven subwavelength scatterers.

2 Recently, Hanafy et al. (2009) and Cao et al. (2012) used TRMs to lo-
cate trapped miners. They exploited the high-resolution and super-stacking
properties of TRMs, but did not attribute this property to evanescent waves.
Moreover, they only used the TRM methodology to locate trapped miners,
not to characterize the distribution of scatterers in the earth.

Figure 8. (a) A common shot gather (CSG) containing 181 traces with
a 0.2 m trace interval and a shot location at 48.8 m. The dashed line is
the boundary between early (direct-only) arrivals and later (scattered-only)
arrivals. (b) Velocity model used to generate the synthetic CSGs. VP, V S ,
and density values are shown on the figure. Here, 7 scatterer points are added
at a depth of 36 m from ground surface.

Fig. 8(a) shows a sample CSG at (x, z) = (48.8, 36) m generated
for the velocity model shown in Fig. 8(b). Here, the source is a
z-component point displacement with a Ricker wavelet peaked at
100 Hz.

The TRM profile is computed according to eq. (11) by correlating
the trace d(g, t|s′, 0) with the trace d(g, t|s, 0) and summing over
geophone positions at g to get m(s′, s), the TRM profile for the
actual source at s. There are two different procedures for isolating
scattered events from the direct waves.

(i) Mute the early arrivals to eliminate the direct arrivals and
retain the near-field scattered arrivals. In this case, the early arrivals
are defined as the energy above the dashed line in Fig. 8(a), and the
remaining part defines the later scattered arrivals. Implicit in this
windowing is the assumption that the near-field scattered energy is
reverberating between the scatterers and the lower reflector.

Fig. 9(a) shows the TRM profile for the direct only energy where
later arrivals are muted, while Fig. 9(b) shows the thinner TRM
profile for the scattered only energy. This increase in resolution
is due to the near-field scattering. Cross sections along (A–B) in
Figs 9(a)–(b) are shown in Fig. 9(d) and represent the TRM profiles
with the true source at X = 48.8 m. If the horizontal spatial reso-
lution limit is defined to be the width of the main lobe at half the
maximum amplitude, then the direct only resolution3 is measured

3 The actual wavelength is calculated λ = v
f = 1500

100 = 15 m.
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Figure 9. TRM profiles m(s′, s) calculated from traces that exclusively contain (a) direct waves (b) later arrivals, and (c) scattered waves. The source location
is at s = (48.8, 0) m just below the middle of the scatterers in Figs 8(b). (d) Cross sections (A–B) taken at the source location s = (48.8, 0) m for the three
panels (a, b, and c).

to be �xdirect = 19.2m = 1.3λ and the scattered-only resolution is
�xscatt. = 3.6m = λ

4.2 .
(ii) Compute the CSGs for the velocity model without scatterers,

compute the CSGs with scatterers, and then subtract the two data
sets. This differenced CSG will be referred to as the ‘differenced’
Green’s function. Fig. 9(c) shows the TRM profiles for the dif-
ferenced Green’s function. The cross-section of the TRM profile in
Fig. 9(c) is plotted in Fig. 9(d) and shows a resolution of 1.8m = λ

8.3 .

The elastic simulations results confirm that TRM profiles with
super-resolution can be obtained from far-field elastic scattered
records. Muting the early arrivals is sufficient for obtaining super-
resolution TRM profiles, but differencing seismograms is more
effective.

Field data acquisition and results

The field test in the Arizona tunnel deployed 60 receivers along
the free surface in Fig. 7 with a receiver interval of 0.5 m. For
the source, a hammer was repeatedly struck against the side of the
tunnel wall at a horizontal shot spacing of 0.5 m. At each shot
location, two different files are recorded: the first one consists of the
single-stacked shot gather F−1[G(g|s)] in eq. (2) and the second

file contains the extrapolation shot gathers F−1[G(g|s′)] for s′εBs

and gεBg. There were 16 stacks per trace to increase the signal-
to-noise ratio, and each stacked shot gather was normalized by its
L2 norm value. This last step insures that the input energy of each
shot gather is about the same value. The early arrivals in the traces
in Fig. 10 are first muted to give the scattered CSGs (Fig. 10). A
low-pass filter with a pass range of 20–80 Hz and a stop value of
130 Hz is applied to the data, and the power spectrum of a stacked
shot gather is shown at the top of Fig. 7. The Abbe horizontal
resolution limit is approximately �x = λ/2 = 9.5 m where the
estimated minimum wavelength is λmin = Vp

Frequency = 1470/76 =
19 m. Here, the velocity is estimated from the collected shot gathers
to be 1470 m s−1 and the peak frequency of the data is estimated to
be 76 Hz as shown in the power spectrum at the top of Fig. 7.

Fig. 11(a) depicts the TRM profiles mdir(s′, s) and m
dir
2 (s′, s)

calculated, respectively, from the early-arrival CSGs recorded in
the full-aperture m

dir
2 (s′, s) and half-aperture4 of traces. Here, the

4 Eq. (11) is used to calculate the TRM profiles for the full 60-trace data and
the half-aperture data where only 30 traces located along the middle of the
geophone line are used.

C© 2012 The Authors, GJI, 190, 1593–1606

Geophysical Journal International C© 2012 RAS



Seismic scanning tunnelling macroscope 1599

Figure 10. Recorded band-limited Green’s function for a shot with the
offset of 6 m along the tunnel. Direct and scattered arrivals are marked with
arrows.

Figure 11. TRM profiles m(s′, s) calculated from traces that exclusively
contained either direct waves (black and green) or scattered waves (red and
blue). The source location is at s = (5.5, 0) m where the zero depth is at
the depth of the tunnel. The TRM profile is computed for source points
in the mine tunnel (see bottom left-hand side picture in Fig. 7). Note the
similarity of the peaked nature of these profiles to those predicted by the
dashed inverse-distance function in Fig. 3.

Figure 12. TRM profiles for different shot positions plotted against trial
image point locations. Varying the trial image point for source locations at
less than 5 m yields broad red regions around the diagonal and indicates
worse spatial resolution compared to the sources at around 6.0, 8.0 and
10.5 m. The colourbar corresponds to the normalized amplitude values of
the TRM profiles and the row of colours for the source location at 5.5 m is
plotted in Fig. 11.

source is set to be at the location s = (5.5, 0) m, and the trial
image points s′ are along the tunnel where z = 0 at the depth of the
tunnel. In contrast, mscatt(x, 0) and m

scatt
2 (s′, s) denote, respectively,

the TRM profiles calculated from the scattered energy in the full-
and half-aperture of traces.

If the horizontal spatial resolution limit is defined to be the main
lobe width at half the maximum amplitude, then Fig. 11 shows that

(i) the horizontal spatial resolution limits of �xscatt(x, 0) < 1 m
and �x

scatt
2 (x, 0) < 1 m are smaller than �xdir(x, 0) ≈ 10 m and

�x
dir
2 (x, 0) > 11.5 m and

(ii) if only direct arrivals are used, the horizontal resolution limit
gets worse as the receiver aperture decreases.

The resolution limit for the scattered data is approximately λ/19 and
is well below the Abbe limit of λmin/2 = 9.5 m.

The subwavelength resolution limit of �xscatt(x, 0) < 1 m is con-
sistent with the possibility that evanescent energy from the ham-
mer source converts to propagating waves at nearby subwavelength
scatterers, is recorded by the far-field geophones, and is digitally
refocused to the source location by the TRM operation. To quali-
tatively estimate the distribution of these subwavelength features,
Fig. 12 shows the TRM profiles at different source and trial image
points. It is clear that the better resolved source point locations are
at the (6, 6), (8, 8) and (10.5, 10.5) locations, which are located in
the region designated as B. To the left of zone B, is Zone A charac-
terized by broad red regions along the diagonal. This is a region of
low resolution as defined by the TRM profile.

To investigate the presence of subwavelength scatterers in the
tunnel, one of the authors (Hanafy) recently visited the test site and
took photographs of the tunnel walls. Hanafy observed that there is
a distinct separation between the two zones: Zone B in Fig. 13(b)
is characterized by sharp irregular features along the tunnel walls
with metre-sized inclusions of hard rock. The hardness is measured
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Figure 13. Photos from inside the San Xavier Mine Tunnel. (a) and (b) are along the same wall, but (a) shows mostly shows Zone A while (b) shows Zone B.
The red mark on the (a) is approximately between Zones (A) and (B). (c) shows one of the joints that can be visually seen along the tunnel wall. d) is a typical
inclusion about 1 m in width.

to be 6.0, surrounded by soft sediments with a hardness measured
to be 2.0.

A picture of a typical inclusion is shown in Fig. 13(d), which
most likely contributes to the near-field scattering. These inclusions
are not visible in the Zone A portion of the tunnel (Fig. 13a). In
fact, Zone A and Zone B are separated by a joint that appears to be
a fault-like feature. The geologic study of this area (Sternberg et al.
1988) confirms that a fault and joints (Fig. 13(c)) cut through the
tunnel.

Appendix C tests the sensitivity of the TRM profiles to different
window widths. Results show that the indicator of superresolution,
a main lobe width less than λ/2, is robust with respect to reasonable
variations of window lengths. Appendix D presents the justification
for normalizing each shot gather or each trace, which is necessary
if the source strength is variable from one CSG to the next.

A prediction from the TRM formula is that the near-field ge-
ometrical spreading factor α(s, o, s′) in eq. (5) is independent of
frequency, while the sinc-like function should widen with decreas-
ing source frequency. To test this prediction, Fig. 14 shows the
TRM curves for direct only and scattered only waves after applying
bandpass filters of 10–40 Hz and 40–80 Hz to the input data. As
predicted, the width of the filtered scattered data does not noticeably
change while that of the directly arrivals widen. This supports the
claim that the TRM profile is exhibiting superresolution behaviour
due to scatterers in the near-field of the source.

D I S C U S S I O N A N D S U M M A RY

Theoretical analysis, simulations, and a field experiment show that
a TRM operation can be generated from far-field seismic data

Figure 14. TRM curves for the Arizona data after bandpass filtering. Black
and green curves are for the direct only waves using 10–40 Hz (black) and
40–80 Hz (green) filter, while blue and red curves are for the scattered only
waves using 10–40 Hz (blue) and 40–80 Hz (red) filter.
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and achieve subwavelength resolution of the scatterer’s location.
This assumes that there are subwavelength scatterers in the near-
field of the source, the traces can be measured either in the near-field
or far-field regions of the source, and scattered energy can be sep-
arated from the strong direct arrivals. Synthetic tests validate this
claim, and the tests for the Arizona tunnel data support the pos-
sibility that super-resolution imaging of scatterer locations can be
achieved with seismic data at frequencies in the 10–80 Hz range. For
the Arizona TRM profiles, a spatial resolution of λ/19 is observed.
By reciprocity, this also means that if there are subwavelength scat-
terers in the near-field of the geophones then the TRM operation
can be applied to the reciprocal data G(g|s) to get TRM profiles at
the geophones with subwavelength resolution. The source–receiver
configuration for achieving this type of imaging is a line of source
locations and a roughly parallel line of receiver locations that
are located either in the near-field or the far-field region of the
source locations. This configuration can be achieved with vertical
seismic profile, surface seismic profile or crosswell field experi-
ments.

It can be shown that the TRM operation is a special case of reda-
tuming seismic data by interferometry (Wapenaar 2004; Schuster
2009) so that, in theory, the virtual data at the source line can be
migrated to image the scatterer distribution in the near field. Thus,
subwavelength imaging of the earth’s reflectivity distribution in the
near-field region is theoretically possible with the configuration of
a scanning tunnelling macroscope.

A significant challenge is that the near-field scattered energy
should be separated from the direct arrivals. There are several pos-
sible methods for achieving this goal.

(i) Mute the direct arrivals or early arrivals if there are significant
near-field multiples that are visible after the first arrival. Our elastic
simulations and Arizona tests required that both the P and S direct
waves should be muted to isolate the scattering energy.

(ii) 4-D experiments where the seismic data recorded at different
times are subtracted from one another. If there are significant sub-
wavelength scatterer variations in the near-field then this might be
visible in the subtracted records.

Separating the direct field from the near-field scattered arrivals
will be the biggest challenge in achieving subwavelength resolution
with a SSTM. As discussed in Appendix D, trace normalization
is a possible means for accounting for the effects of sources with
variable strengths.

A practical use of a SSTM might be to migrate evanescent energy
in downhole data to estimate the crack intensity along the borehole;
alternatively, an indirect imaging procedure is to examine the TRM
profiles such as in Fig. 12. Broad smooth peaks in the TRM profiles
indicate a negligible density of subwavelength cracks in the near
field, while sharper peaks indicate a higher density. Similar to a
spectroscope, the data can be low-pass filtered to extend the region
of the near-field and assess its crack density.

The SSTM can employ surface waves as the generators of
evanescent energy, and use the scattered Rayleigh waves as a high-
frequency indicator of near-surface velocity variations; moreover,
Stonely waves in a borehole might be used for this purpose as
well. Another potential application is to use earthquake recordings,
e.g. US Array, on the surface to estimate the calibration Green’s
functions. These calibration Green’s functions might then be used
to estimate the TRM profiles along the fault plane, as shown in
Fig. 15. Similar to the SSTM scans shown in Fig. 12, the earth-
quake SSTM scans might be used to estimate the roughness of the
geology near or on the fault plane. By reciprocity, the rough geology
under the recording array can be assessed as well.

Figure 15. Earthquake data associated with a fault or a subduction zone are
recorded by surface receivers. If the earthquake locations are known then
the TRM profiles can be computed along the fault. Another possibility is to
interferometrically redatum the traces at z = 0 to the fault plane itself using
the data as extrapolators, which is equivalent to the VSP–SWP transform
in Schuster (2009). These redatumed data can then be migrated to estimate
both the near-field and far-field scatterer distributions.
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A P P E N D I X A : VA R I O U S W I D T H
M E A S U R E S O F A N I N V E R S E - D I S TA N C E
C U RV E

Given the curve, which we name the inverse-distance curve in this
paper,

f̃ (x ′) = 1√
ε2 + x ′2

, (A1)

we investigate two measures of curve width. For clarity, we shall
focus on a normalized curve

f (u) = 1√
1 + u2

, (A2)

which is related to f̃ (x ′) by f (u) = ε f̃ (uε). The overall propor-
tionality coefficient in front of f̃ does not affect the width measure
of the curve; only the relationship x′ = uε does. Therefore, scaling

the width measure associated with f (u) by ε gives us in turn the
width �x′ associated with f̃ (x ′).

Full width at half maximum (FWHM)

The FWHM w can be derived from its definition

f
(w

2

)
= 1

2
max f (u) = 1

2
,

yielding
1

1 + ( w

2 )2
= 1

4
,

and therefore w = 2
√

3 . (A3)

So the FWHM associated with f̃ (x ′) is 2
√

3ε.

Inflection point width

An inflection point is a point on a curve where the curvature changes
sign. Since the curvature of f (u) can be derived as

f ′(u) = −u(1 + u2)−
3
2 , (A4)

f ′′(u) = 3u2(1 + u2)−
5
2 − (1 + u2)−

3
2 , (A5)

setting f ′ ′(u) to 0 at u = w

2 leads to

3
(w

2

)2
= 1 +

(w

2

)2
,

and therefore w = √
2. (A6)

So the inflection point width associated with f̃ (x ′) is
√

2ε.

A P P E N D I X B : T R M F O R M U LT I P L E
S C AT T E R E R S

The summations in eq. (11) can be split into self-interaction terms

m(s′, s)self =
∫ ω0

−ω0

k|W (ω)|2
∑

Bg

∑
oεBo

r (o)2 G(g|o)G(o|s)

× G(g|o)∗G(o|s′)∗dω, (B1)

Figure B1. TRM profiles computed for the three-scatterer model described
in the text. The dimensions of this model and the source frequency are similar
to those for the Arizona tunnel experiment and the three dashed lines are
associated with the near-field scatterers at (x, z) = (6.2, 0.32), (8.2, 0.43)
and (10.5, 0.36) m.
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where o′ = o in the summations, and the remainder

m(s′, s)x talk =
∫ ω0

−ω0

k|W (ω)|2
∑

Bg

∑
o�=o′

∑
o′εBo

× r (o′)r (o)G(g|o)G(o|s)

× G(g|o′)∗G(o′|s′)∗dω,
(B2)

which will be termed the cross-talk term. Eq. (4) gives the analytic
form of the self-interaction term for a single scatterer, and now we
discuss the self- and cross-talk terms for the case of two scatterers.

For convenience, assume one geophone, k = 1, W (ω) = 1, a single
frequency, and two scatterers (one at o1 and the other distantly
located at o2) with unity reflection coefficients so that the self-
interaction term becomes

m(s′, s)self = |G(g|o1)|2G(o1|s)G(o1|s′)∗

+|G(g|o2)|2G(o2|s)G(o2|s′)∗, (B3)

= eiω(τso1 +τs′o1
)

|g − o1|2|o1 − s||o1 − s′|

+ eiω(τso2 +τs′o2
)

|g − o2|2|o2 − s||o2 − s′| , (B4)

and the cross-talk term B2 becomes

m(s′, s)x talk = G(g|o1)G(o1|s)G(g|o2)∗G(o2|s′)∗

+G(g|o2)G(o2|s)G(g|o1)∗G(o1|s′)∗ (B5)

= eiω(ω[τgo1 +τso1 −τgo2 −τs′o2
])

|o1 − g||o1 − s||o2 − g||o2 − s′|

+ eiω(ω[τgo2 +τso2 −τgo1 −τs′o1
])

|o2 − g||o2 − s||o1 − g||o1 − s′| . (B6)

The geometrical spreading factor 1/|o1 − s′| in equations B4–B6
says that there will be rapid variations in m(s′, s)xtalk and m(s′, s)self

for small changes in the trial source point location s′ near o1. This is
the essential property of an imaging system with super-resolution.
Moreover, the 1/(|o2 − s′||o1 − s|) factor will induce both strong
(strength supplied by the small denominator of |o1 − s| for o1 near
s) and rapid variations (variations supplied by 1/|o2 − s′| for o2

near s′) in m(s′, s)xtalk for small variations of the trial source point
s′ near the distant scatterer at o2. Hence, the TRM profile should,
in principle, detect at subwavelength resolution the presence of the
distant scatterer at o2 even with a far-field source at s and far-field
receivers at g. Indeed, far-field resolution is seen in the Fig. 6(c)
profile where the source at x = 60 m is able to detect fine details of
scatterers nearly 60 m distant.

An example of the multiple scattering response is computed for
a homogeneous model (P-wave velocity is 1.5 km s−1) with 30
embedded scatterers. This model is 12 m wide and 45 m in depth,
and has the same dimensions as the Arizona tunnel experiment.
Twenty-seven point scatterers with random reflection coefficients
between 1 and −1 are randomly distributed from the surface to
within 9 m of the tunnel. The peak frequency of the Ricker wavelet
is 70 Hz to give a dominant wavelength of 21 m, so the random
scatterers are mostly within the far-field region of the tunnel. Three
additional scatterers at positions (6.2, 0.32), (8.2, 0.43) and (10.5,
0.36) m and characterized by reflection coefficients of 1.4, 1.0 and
1.0, respectively, are placed within the near-field region of the tunnel
sources.

Generating the Born data for this three-scatterer tunnel model and
using eq. (11) to compute the TRM profiles produce the TRM pro-
files in Fig. B1. The white dashed lines here pinpoint the three

offset locations of the near-field scatterers at X = 6.2, 8.2 and
10.5 m. The checkerboard pattern here is consistent with the con-
tributions from the cross-talk term.

A P P E N D I X C : S E N S I T I V I T Y O F T R M
P RO F I L E T O W I N D OW S I Z E

This section presents results for testing the sensitivity of the TRM
profile in Figs 11 and 12 to variations in window length. A desirable
outcome is to show that a variety of muting windows still gives a
super-resolution signature in the TRM profile, as long as the window
excludes the direct arrivals of the P- and S-waves. The first test will
be for the window length that only admits the early arrivals, also
denoted as the ‘direct waves’, and the second test is that for the
scattered arrivals.

Window definition

The time window for admitting direct arrivals has a length T + 2To

and takes on the unit value over a time duration of T , and linearly
tapers to zero on either side of the window (Fig. C1). The value of
tb denotes the initial arrival time of the direct wave, T is the length
of the time window with unit values and T0 is the dominant period
of the P-wave direct arrival. The taper zone on either side of the
unit window is one period long.

TRM sensitivity to window width for direct arrivals

Fig. C2 shows the TRM images for traces windowed by the ‘direct-
wave’ window with lengths from T = To to T = 3.5To. All of the

Figure C1. Pass window used to pass either direct or scattered arrivals. The
total window length is T + 2To, where T is a given value and To is the
period. tb is the initial arrival time of the direct wave.
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Figure C2. TRM 2-D images for various direct-wave window lengths (DWWL) of (a) 0.013 s, (b) 0.0195 s, (c) 0.026 s, (d) 0.033 s, (e) 0.039 s and (f) 0.046 s.
Extending beyond the window is a tapering duration of one period T0 = 0.013 s.
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Figure C3. TRM sensitivity of the profiles for (a) direct and (b) scattered arrivals. A total of six different windows are used to show the TRM profile.

figures show broadened TRM profiles that are similar to the direct
wave profile in Fig. 11, where the main lobe widths are wider than
λ. This is similar to the synthetic TRM images where the large
amplitudes of the non-evanescent direct waves dominates the TRM
image.

Zoom views of the TRM profiles for different window lengths are
shown in Fig. C3(a), and reveal that the average width of the main
lobe is no larger than λ. In this example, the image point is located
at 5.5 m. These results are consistent with the elastic simulations
that predict that the superresolution signature will not appear if the
windowed arrivals are dominated by non-evanescent direct waves.

TRM sensitivity to window width for scattered arrivals

Fig. C4 shows the TRM profiles for traces windowed by the
‘scattered-wave’ windows with starting times that range from 0.078
to 0.143. The ending time is 0.5 s for all of these windows, the last
time of recording. All of the figures show a broadened TRM image
for trial source locations from 0 to about 6 m, which suggests the
absence of near-field scattering with significant energy. However,
the TRM profiles with width notably less than λ/2 are found at trial
source locations of 6, 8 and 10.5 m for all of the window lengths.

Zoom views of the TRM profiles for different scattered-wave
window lengths are shown in Fig. C3(b), and reveal that the average
width of the main lobe ranges from 0.8 to 1.6 m. This suggests the
presence of strong subwavelength scatterers in the nearfield of the
source location at 5.5. These results also suggest that the super-
resolution signature is some what robust with respect to reasonable
variations of the scattering window length.

A P P E N D I X D : N O R M A L I Z AT I O N
O F T R A C E S A N D I T S E F F E C T O N
T H E T R M P RO F I L E

The practical field experiment will have a source strength that is
variable for different source locations and a geophone response that
might vary from one geophone to the next. To partly account for
this variability, we can normalize each of the windowed traces to
their maximum amplitude or we can normalize a shot gather to its
L2 norm. For the experimental data, the windowed traces include
the energy after the first arrival.

The theoretical justification for normalizing the traces is the fol-
lowing. To account for a variable geophone response βg, and an

indeterminate source amplitude W s, we introduce a normalization
factor γ to the TRM eq. (2)

m(s′, s)norm = k

∫ ω0

−ω0

∫ L

−L
|Ws ||Ws′ ||βg|2

× G(g|o)G(o|s)︸ ︷︷ ︸
scattered data

G(g|o)∗G(o|s′)∗︸ ︷︷ ︸
scattered data

γ (s, g)γ (s′, g)dgdω,
(D1)

where γ (s, g) is designed to compensate for W s and βg. We can
assign γ be obtained by assigning it to be the scaled reciprocal of
the measured amplitude of the direct arrival in the windowed trace,
so that

γ (s, g) = 1

|Ws ||βg|||G(g|s)direct|| , (D2)

where G(g|s)direct is the magnitude spectrum of the direct arrival
recorded at g, the L2 norm is assumed, and the direct arrival is
assumed to be the dominant one in the windowed trace.

We can approximate the norm of the Green’s function’s direct
wave as ||G(g|s)direct| ≈ 1/|s − g|, where |s − g| is the source-
geophone distance. Thus our compensated TRM eq. (D1) now
reduces to

m(s′, s)norm = k

∫ ω0

−ω0

∫ L

−L
G(g|o)G(o|s)

× G(g|o)∗G(o|s′)∗|s − g||s′ − g|dgdω,

= k
α̂(s, o, s′) sin(ω0[|o − s| − |o − s′|)

[|o − s| − |o − s′|] , (D3)

where α̂(s, o, s′) is the compensated super-resolution factor given
by

α̂(s, o, s′) = c

|s − o||s′ − o|
∫ L

−L

|s − g||s′ − g|
|g − o|2 dg. (D4)

For s and s′ near o, then |s−g||s′ −g| ≈ |o−g||s′ −g| is a smoothly
varying factor w/r to s′ for g in the farfield, and is more smooth than
the sinc function in eq. (D4). Therefore the compensation in eq.
(D1) is roughly equivalent to a trace-by-trace normalization factor
that removes the variability of the strength of the source and the
geophone response.

In practice, each stacked CSG from the Arizona field experiment
was normalized by its L2 norm. The corresponding TRM profiles
roughly resembled those computed from traces where each one was
normalized to a maximum amplitude of unity.
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Figure C4. TRM 2-D images for various scatterer-wave window lengths (SWWL) of (a) 32 T0, (b) 31 T0, (c) 30 T0, (d) 29 T0, (e) 28 T0, and (f) 27 T0. The
window starts at initial arrival time of the direct wave + 2 To.
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