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We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave
dispersion curve using a difference approximation to the gradient of the misfit function. We call this
wave equation inversion of skeletonized surface waves because the skeletonized dispersion curve for the
fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the multi-dimensional
elastic wave equation. The best match between the predicted and observed dispersion curves provides the
optimal S-wave velocity model. Our method can invert for lateral velocity variations and also can miti-
gate the local minimum problem in full waveform inversion with a reasonable computation cost for simple
models. Results with synthetic and field data illustrate the benefits and limitations of this method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Conventional surface wave inversion methods can be separated
into two categories: 1) 1D inversion for a layered medium using
semi-analytical solutions to the elastic wave equation (Milana et al.,
2014; Nazarian et al., 1988, 1983; Xia et al., 2004, 2002) or global
optimization methods including genetic algorithms (Dong et al.,
2014; Feng et al., 2005), and 2) full waveform inversion (Groos et al.,
2014; Solano et al., 2014). Semi-analytical solutions can be used to
robustly and efficiently invert for a 1D S-wave velocity model, but
they become less accurate with increasing lateral heterogeneity in
the subsurface. Global optimization methods can be used for a lay-
ered medium in practice, but the computation cost is not acceptable
for 2D and 3D models with strong lateral variations in S-wave veloc-
ity. In contrast, waveform inversion estimates the velocity model
that minimizes the misfit between the predicted and recorded data.
However, the data-misfit function can be very sensitive to the accu-
rate prediction of amplitudes, which is difficult to achieve with
modeling methods that do not fully take into account viscoelastic
and anisotropic effects. Moreover, a poor starting model will pro-
mote cycle skipping and convergence to a local minimum (Virieux
and Operto, 2009).
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To mitigate these problems, other types of data can be inverted
that can be more accurately modeled and might enjoy a more quasi-
linear relationship between the model and the data. For example, the
traveltime misfit function is much less bumpy than the waveform
misfit function. Hence, we can think of the less complex traveltimes
as data skeletonized from the more complicated seismograms. The
strategy of Luo and Schuster (1991a,b) is to invert the skeletonized
data to get near the global minimum with no cycle skipping. Once the
inverted model is close to the global minimum, an inversion method
such as waveform inversion is used to reconstruct the final model.

We now adapt the skeletonized inversion strategy for inverting
the dispersion curves of Rayleigh waves. Instead of picking travel-
times we pick the dispersion curve of the fundamental mode in the
frequency-wavenumber domain and invert it for the S-wave veloc-
ity model. Higher-order modes can also be picked and inverted as
well. This procedure is denoted as skeletonized wave equation inver-
sion because the elastic wave equation is used to invert the velocity
model from the dispersion curves. It can also invert for 2D or 3D
S-wave velocity models compared to the 1D layered model in stan-
dard surface-wave inversion (Park et al., 1998). Our method differs
from the waveform inversion approach of Baumstein et al. (2011)
and Solano et al. (2014) who invert all of the surface-wave events or
their windowed portions for the near-surface velocity information.
They attempt to explain most of the observed waveforms with pre-
dicted ones, and so there still exists the possibility of getting stuck in
a local minimum with a poor starting model. This is less of a problem
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Fig. 1. Common shot gather recorded by a land survey.

with skeletonized inversion because it only attempts to explain the
simple fundamental dispersion curve. However, if the medium is
too complex then the fundamental dispersion curve cannot be easily
identified and so skeletonized inversion might not be applicable.

This paper is divided into five sections. After the Introduction,
the theory of skeletonized inversion of surface waves is described
where the Fréchet derivative is estimated by a 1st-order difference
approximation. The two terms in the difference approximation to the
Fréchet derivative are computed by finite-difference solutions to the
multidimensional elastic wave equation. We also provide the general
workflow for inversion of skeletonized surface waves. In the third
section, we first test skeletonized 1D and 2D inversion on synthetic
data, then apply 1D inversion to field data to analyze the effective-
ness and limitations of our method. The last section presents the
summary of our work.

2. Theory

We now present the theory for skeletonized inversion of dis-
persion curves for multidimensional S-wave velocity models. In
Fig. 1, there are many surface-wave cycles in the traces and so the
waveform-misfit function for these data are highly nonlinear with
respect to changes in the S-wave velocities. Therefore we should look
for a means to simplify the data. One such reduction is to estimate
the dispersion velocity C(®)°? = w/k(w) curve for the fundamental
mode of Rayleigh waves in Fig. 2b, and invert it for the shear-velocity
distribution. The locus of points for the fundamental mode is often
identified by the maximum spectral amplitudes (Dong et al., 2014;
Gabriels et al., 1987; Jianghai et al., 1999; Park et al., 1998) with the
closest proximity to the C(w) (or wavenumber) axis in Fig. 2.

A skeletonized surface-wave inversion algorithm that employs
finite-difference solutions to the multidimensional elastic wave
equation and an iterative gradient optimization algorithm is now
presented. We call this method wave equation dispersion (WD)
inversion because it inverts the dispersion curves associated with
surface waves. The assumption is that dispersion curve of the
fundamental dispersion velocity C(w) has been picked, with the
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Fig. 2. Common shot gather on the left and right figures depict the (top right) actual
C(®) — o spectrum of the data and (bottom right) idealized dispersion curve for the
fundamental Rayleigh mode for a two-layered elastic medium with a free surface.
Here the dispersion velocity is ((®) = o/k(®).

understanding that higher order modes can also be picked and
inverted.

1. Form the misfit function e

1 2
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where R(c(x)) is the regularization term, c¢(x) is the S-wave
velocity model, and C(w)°*s describes the phase-velocity
curve for the observed fundamental mode. Here, ((w) is the
fundamental phase-velocity predicted by solving the wave
equation in the space-time domain and Fourier transform-
ing a shot gather into the @ — k domain. This predicted curve
is determined by manual picking or an automatic method
that identifies the maximum amplitudes that are closest to
the k axis to get k(w)°®. The formula (@) = w/k(w)° is
used to get the phase-velocity curve. In Eq. (1), the rough-
ness regularization term R(c(x)) = % penalizes sharp
jumps in the S-wave velocity model. There are other methods
for extracting the dispersion curve, such as the slowness-
frequency transform of McMechan and Yedlin (1981) or the
F-K method of Park et al. (1998). Fig. 3 shows the convex
property of a desirable objective function so that an itera-
tive gradient method will converge to the global minimum
regardless of the starting model.
2. The steepest descent formula

C(x)(k+1) — C(x)(k) _ OZ’Y(X),
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is used for reconstructing the S-wave velocity profile c(x),
where the regularization damping parameter is 3. Here, the
data residual is defined as AC(w)® = ((w) — C(w)** where
((w) is the predicted phase-velocity for the fundamental
mode in a shot gather. In practice, we recommend the pre-
conditioned conjugate gradient method in Luo and Schuster
(1991a).

3. For an N-layer medium, there are N +ag( u)nknown S-velocity

(0]

values so that the Fréchet derivative T €an be computed

by the 1st-order finite-difference formula:
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Fig. 3. Dispersion-curve misfit function versus S-wave velocity errors for a two-layer

model. For this example there is no problem with getting stuck in a local minimum.
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Fig.4. Surface-wave inversion results for synthetic data. a) CSG for the vertical particle-velocity traces u(g, t), b) its Fourier transform U(k, ®), c) the analytical (red) and numerically
estimated (blue) phase-velocity C(w) values for the fundamental-mode in a 2-layer medium, d) normalized residual vs iteration number for inverting phase velocities computed
for the 3-layer model in f), e) inverted (blue) and measured (red) phase velocity points for the 3-layer model in f), and f) inverted S-wave velocity model denoted by blue lines.
The true model denoted by the red line in f) consists of three layers below a free surface.

where ¢(X) represents the reference S-wave velocity model
and 6c;(x) is the perturbed velocity in the ith layer. Two
finite-difference simulations are required to compute gf(&g
in Eq. (3), one for the reference S-wave velocity model and

a constant density and assign the P-wave velocity V, to be
proportional to the S-wave velocity model. If the model is 2D,
then the number of FD simulations/iteration will increase by
the number of unknowns per layer.

one for the reference model with the S-wave velocity in the
ith layer perturbed by &c;(X). The shot gathers from these
two simulations in the space-time domain are FK transformed
to get the two dispersion spectra, the fundamental disper-
sion curves are identified to get k(®w)qx) and k(®)¢x)+scx)»
and these dispersion curves are used to get the phase veloc-
ity curves ((@)(x) and C(®)q(x)+scx)- These phase velocities
are then inserted into Eq. (3) to get the approximation to the
Fréchet derivative. The normalized residual curve AC(w)® is
also computed and Eq. (2) is used to update the S velocity. The
fundamental mode is largely insensitive to the P-velocity and
density variations (Aki and Richards, 1980), so their values
are not iteratively updated. For an N — 1 layer velocity model,
only N + 1 finite-difference (FD) simulations are computed
for one shot at each iteration. For convenience, we assume

3. The workflow for this method

In summary, our proposed skeletonized inversion includes the
following steps:

1. 2D Fourier transform of the observed data and generate the
dispersion curve.

2. Estimate the initial velocity model from the dispersion curves.

3. Split the initial model into finer layers and perturb each of
them with a small value to calculate the Fréchet derivative. The
details for implementing WD inversion for a 2D medium are
discussed in the next section.
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Fig. 5. 2D inversion results. a) True S-wave velocity model, b) initial S-wave velocity model which is a constant velocity model and c) inverted S-wave velocity model.

4, For the current model, compute the synthetic data, the Fréchet For 2D inversion, two more parameters need to be inverted under
derivative, the residual, and the misfit gradient. the quadratic assumption for laterally varying velocities. We rec-
5. Update the current model using the steepest descent method. ommend the hierarchy method (Brossier et al., 2009; Operto et al.,
6. Repeat steps 3-5 until the inverted results are acceptable. 2013; Prieux et al, 2013) to retrieve different parameter classes
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Fig. 6. 2D inversion results. a) True S-wave velocity model, b) initial S-wave velocity model which is a constant velocity model, c) inverted S-wave velocity model using the 1D
method and d) inverted S-wave velocity model using the 2D method.
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Fig. 7. True and inverted S-wave velocity profiles ata) x = 10 mand b) x = 90 m.

successively. To be more specific, we implement 1D inversion for the
first several iterations and then invert for the 1D model and lateral
variations simultaneously.

4. Numerical examples

The skeletonized inversion method is first tested on synthetic
data and then applied to field data.

4.1. 1D inversion of synthetic data

An example of inverting for the S-wave velocity distribution
by skeletonized surface-wave inversion is now presented. A shot
gather is computed by a finite-difference solution to the 2D elastic
wave equation and is shown in Fig. 4a for the 3-layer model in
Fig. 4f (red line). Here, the traces are the vertical-component particle-
velocity measurements on the free surface. The source is simulated
as an explosive point source in the 2D modeling code, where the
source wavelet is a Ricker wavelet peaked at 80 Hz. This means
that the effective source bandwidth is between 60 Hz and 200 Hz.
An FK transform is applied to the shot gather to give the spectrum
shown in Fig. 4b, which is then transformed into the phase-velocity
spectrum depicted in Fig. 4c. The blue dots correspond to the
measured curve and the red dots represent the actual phase-velocity
curve. The paucity of low-frequency information and long-offset
traces prevented an accurate estimate of the phase velocities at low
frequencies.

The model is discretized into 5 homogeneous layers with the
same thickness and each layer having an unknown S-wave velocity.
The steepest descent algorithm after 50 iterations gives the phase-
velocity curve in Fig. 4e and the blue S-wave velocity profile in Fig. 4f.
It is obvious that the inverted S-wave velocity model closely agrees
with the actual one.

4.2. Extension to a 2D medium
The skeletonized inversion procedure can be extended to models

with lateral heterogeneity in the S-wave velocity by assuming a
quadratic velocity variation c(x); in the ith layer:

c(X) = ¢ + Vix + X2, (4)

where ¢;, y; and ¢; are unknown constants that are to be inverted
for by the steepest descent formula (2). Instead of inverting for just
one unknown in each layer, three unknowns are to be inverted
which triples the computational cost. However, the total compu-
tational cost is quite affordable for velocity profiles with no more
than several dozen layers. As an example, Fig. 5 depicts the actual
and predicted lateral velocity variations using the steepest descent
method to invert for y; and ¢; in each layer for 3 shot gathers. The
lateral velocity variations are acceptably reconstructed as shown in
Fig. 5. The velocity gradient in the shallowest layer is most accurately
reconstructed, as one might expect for this data where the lowest
frequency is only 60 Hz. Surface waves are typically sensitive only to
velocity variations down to a depth of about 1/3 of a wavelength.
We also compared the perfomances of the 1D and 2D inversion
methods on the more complicated S-wave velocity model shown
in Fig. 6a. The lateral velocity variations are not restricted to one
layer and there are 3 shots separated by 8.5 m and each shot shoots
into the same 200 receivers/shot spaced at a 0.5 m receiver interval.
The dominant frequency of the source is 20 Hz to allow the surface
wave to penetrate to the deepest part of the model. We calculate the
Fréchet derivatives and misfit functions for each shot and then stack
the misfit gradients for different shots to get the total misfit gradi-
ent for all the data. The initial velocity model is the constant velocity
model shown in Fig. 6b, and both the 1D and 2D inversion results are
shown in Fig. 6¢ and d respectively. For a more precise comparison,
we plot the S-wave velocities versus depth at the offsets of 10 m and
90 m in Fig. 7a and b, respectively. It is obvious that the tomogram
computed from the 2D WD method is more accurate than the one
computed by the 1D WD method. We use the hierarchy inversion
strategy to eliminate the variable influence of different parameters
in our objective function. As shown in Fig. 8, the normalized data
residual decreases in two stages, the monoparameter inversion stage
(blue arrow) and the multiparameter inversion stage (green arrow).

4.3. 1D inversion of field data

A seismic land survey was carried out near the Red Sea coast in
Saudi Arabia to give the recorded shot gather in Fig. 9a. The geophone
spacing is 5 m, the source is a hammer on a metal plate, and the
dominant frequency in the traces is about 40 Hz. An FK transform
is applied to the Fig. 9a shot gather and the phase-velocity curve
for the fundamental-mode is picked and displayed as the red dots

Residual vs lter. #
T
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1st Stage Inversion

0.1 L L L L L
0 2 4 6
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o]
o
-
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Fig. 8. Normalized data residual versus number of iterations. Only ¢; in Eq. (4) is
inverted in the first stage (see blue arrow) of iterations, and then both v; and {; are
inverted (see green arrow) at the later iterations.
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Fig. 9. Surface wave inversion results for data recorded by a land survey near the Red Sea. a) CSG for the vertical particle velocity traces, b) residual vs iteration number, c)
measured (red) and inverted (blue) phase-velocity values C(®) for the fundamental mode, and d) inverted S-wave velocity model (blue curve).

in Fig. 9c. Using a 5-layer velocity model, these phase velocities are
inverted using the steepest descent formula in Eq. (2) to give the
predicted blue points in Fig. 9c. The P-wave velocity values were
extracted from a P-wave velocity tomogram, and a constant density
model is assumed. Fig. 9d shows the initial velocity model depicted
by the green curve and the inverted S-wave velocity profile shown in
Fig. 9d provides a reasonable range of S velocities for these types of
sediments.

To evaluate the uncertainty of our inversion result, a sensitivity
matrix is computed to assess the sensitivity of the data to changes
in the S-wave velocity model. The elements of the sensitivity matrix

are the computed Fréchet derivatives Aij = #ﬁ’l)l for different fre-
quencies and layer numbers. As an example, Fig. 10 plots these values
for the 5-layer model in Fig. 9d and shows that for the available
frequency band, the dispersion curve is most sensitive (i.e., hotter
colors) to the velocity variations to a depth of about 3 m. Thus, these
are the layers which should provide the least uncertainty in velocity
reconstruction.

Sensitivity Matrix

Layer Number

Frequency (1/s) 32

Fig. 10. Sensitivity matrix of Fréchet derivative values for the 5-layer model in Fig. 9d.
As expected, higher frequencies in the data are mainly influenced by the S-velocities
in shallow layers.

5. Conclusions

We presented a wave-equation method for inverting the dis-
persion curves associated with surface waves. The main benefits of
this approach are that it mitigates cycle skipping problems associ-
ated FWI of surface waves, it is efficient for a limited number of
layers, and is applicable to 2D and 3D velocity models. It is easily
extended to higher-order modes and dispersion curves for Love
waves. In our examples, the dispersion curve for the fundamental
mode is automatically picked and inverted by a steepest descent
method in conjunction with finite-difference solutions to the elastic
wave equation. Higher-order modes can also be picked and inverted.
Results for both synthetic data and field data verify the effectiveness
of this method and reveal some of its limitations.

The 2D inversion example demonstrates that our inversion result
can reconstruct the horizontal variations of the S-wave velocities
as long as there is sufficient smoothness in the velocity model, a
sufficient number of shot gathers with wide aperture recording,
and a wide enough bandwidth in the source wavelet. The proposed
method has a good vertical resolution if the velocity increases with
depth.

A limitation of this method is that the computational cost
becomes prohibitive if there are a large number of unknown param-
eters because each one requires a FD solution of the elastic wave
equation. To overcome this expense, Li and Schuster (Accepted)
developed the analytic formulas for implementing skeletonized sur-
face wave inversion with the adjoint state method.
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