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Introduction

major application of seismology is the determination of the
ibution of seismic velocities, and hence elastic properties,
in the earth. This distribution, known as earth structure,
gs the basic constraint on the mineralogical, chemical, and
irmal state of the earth’s interior. Seismological data are
gportant for this purpose because their resolving power is
rally superior to that of other geophysical methods. For
ample, although gravity and magnetic data indicate the pre-
of a dense fluid core at depth, they provide only relatively
constraints on its density and size. By contrast, seismo-
cal data indicate the depth of the core-mantle boundary
dthe sharp change in properties that occurs there. Above the
indary, both P and § waves propagate in the solid mantle,
ereas in the liquid outer core no § waves propagate and the
ave velocity drops sharply. The observed velocities are the
mary basis for our models of the physical properties and
mical composition of the material on either side of this
ndary. Similarly, the distinction between the crust and the
atle and many inferences about their structure and composi-
b come from seismological observations. More generally,
establishing the essentially layered structure of the earth,
smology provides the primary evidence for the process
differentiation whereby material within planets became
mpositionally segregated during their evolution. As a result,
crucial issues about the other terrestrial planets could be
jolved if seismological data were available.

Seismology and Earth Structure

unanswerable argument

Ordinary language undergoes modification to a high pressure form when applied to the interior of the earth; a few examples of equi-

Francis Birch, 1952

Constraints from seismology are crucial for other disciplines
of the earth sciences, and vice versa. Seismology gives earth
models describing the distribution of P- and S-wave velocities
and density. Going from an earth model to a description of
the chemical, mineralogical, thermal, and rheological state of
the earth’s interior requires additional information. There are
thus two types of uncertainty in our knowledge of the earth’s
interior. In some cases, such as the structure of the inner core,
the seismological results are still under discussion. In others —
for example, the nature of the 660 km discontinuity in the
mantle — the basic seismological results are generally accepted,
but their mineralogic and petrologic interpretations remain
under investigation. Given our scope here, we only summarize
the implications of seismological data for models of the earth’s
interior.

The fundamental dara for seismological studies of the
earth’s interior are the travel times of seismic waves. The meas-
urements available are the arrival times of seismic waves at
receivers. To convert these to travel times, the origin time and
location of the source must be known. These parameters,
which are known for artificial sources, must be estimated from
the observations for earthquake sources. Hence travel time
data include information about both the source and the pro-
perties of the medium, and separating the two is a challenge
in many seismological studies.

The travel times are used to learn about the velocity structure
between the source and the receiver. As we saw in the last
chapter, waves follow paths that depend on the velocity
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structure. Hence the structure must be known to find the paths
that the waves took. To illustrate this, consider the travel time
between two points. If the velocity were constant, the ray path
would be a straight line, and the velocity could be found by
dividing the distance by the travel time. If, instead, an interface
separates media with different velocities, the ray path would
consist of two line segments, depending on the velocities, and
the travel time would be the sum of the time spent along each
segment. For a more complicated velocity distribution, the ray
path would also be more complicated.

This problem can be posed mathematically by writing the
travel time between the source (s) and receiver (7) as the integral
of 1/velocity, or slowness, along the ray path

T(s,7) =J$d%. I

In simple cases, where the ray path is a set of segments with
constant velocity, the integral is just a sum over the time
in each segment. Thus the travel time gives an integral con-
straint on the velocity distribution between the source and
the receiver, but does not indicate which of the many paths
satisfying the constraint the ray followed. As a result, an
individual measurement is inadequate to show the distribution
of velocities. Fortunately, as we shall see, a set of travel times
between different sources and receivers provides much more
information. In addition, useful information is derived from
the amplitudes and waveforms of seismic waves.

This example illustrates an interesting feature of determining
velocity structure from travel times. If the velocity structure is
known, the forward problem of finding the travel times and
amplitudes is straightforward. However, the inverse problem
of using the travel times and amplitudes measured at the sur-
face to find the velocity structure at depth is more difficult, and
various methods are used. For example, in addition to using
travel times directly, we have seen that velocity structure is
studied using the dispersion of surface waves (Section 2.8) and
the eigenfrequencies of normal modes (Section 2.9), quantities
that correspond to travel times.

In this chapter, we follow the approach discussed in Section
1.1.2 of treating the earth with a series of progressively more
complex and, hopefully, more accurate models. We begin with
the homogeneons, isotropic, elastic, layered halfspace used in
Chapter 2 to derive seismic wave propagation. This approx-
imation of uniform flat layers is often used in crust and upper
mantle studies, where the distance between source and receiver
is less than a few hundred kilometers. We then consider larger
source-receiver distances, for which spherical geometry is
required, and then the anisotropic and anclastic behavior of the
earth. Throughout these discussions, we will see that although
velocity varies primarily with depth, there are important lateral
variations, or heterogeneities. Finally, we consider the implica-
tions of the observed heterogeneous, anisotropic, and anelastic
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velocity structure for the composition of the earth. Later, in
Chapter 7, we discuss further how seismic data can be used t0
study laterally variable velocity structure.

3.2 Refraction seismology

3.2.1 Flatlayer method

The simplest approach to the inverse problem of determining
velocity at depth from travel times treats the earth as flat layers
of uniform-velocity material. We thus begin by deriving the
travel time curves for such a model, which show when seismig
waves arrive at a particular distance from a seismic source,
The travel times, especially those of waves that are critical
refracted at the interfaces, are used to find the velocities of the
layers and underlying halfspace and the layer thicknesses. As

result, this technique is called refraction seismology.

Refraction seismology is used on vastly differing scales
Near-surface structure at depths less than 100 meters can bé
studied using a sledge hammer or a shotgun as a source and
single receiver. Similar methods are used to study the crust an
the upper mantle, with carthquake or explosion sources an
many receivers at distances of hundreds of kilometers.

The simplest situation, shown in Fig. 3.2-1, is a layer
thickness b, with velocity v, overlying a halfspace with
higher velocity, v;. We write the velocities as “v” to indicaté
that the analysis applies for either P or S waves. There are threg
basic ray paths from a source on the surface at the origin to
surface receiver at x. The travel times for these paths can b
found using Snell’s law.

The first ray path corresponds to a direct wave that travel§
through the layer with travel time

Tp(x) =xlv,. i

This travel time curve (Fig. 3.2-2) is a linear function of dis
tance, with slope 1/v, that goes through the origin.

The second ray path is for a wave reflected from the intes
face. Because the angles of incidence and reflection are equal

Source Receiver

Direct wave

Reflected wave

Velocity vy

Head wave Velocity v,

Fig. 3.2-1 Three basic ray paths for a layer over a halfspace model. The
directand reflected rays travel within the layer, whereas the head wave
path also includes a scgment just below the interface. For the head wave
toexist, the layer velocity v, must be less than the halfspace velocity ;.
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3.2 Travel time versus source-to-recciver distance plot for the three
paths in Fig. 3.2-1. The dircct wave is the first arrival for receivers
than the crossover distance . Beyond x, the head wave arrives

. The head wave exists only beyond the crifical distance x,.

e wave reflects halfway between the source and the receiver.
e travel time curve can be found by noting that x/2 and
jp form two sides of a right triangle, so

) = 24 + b 21y, 2)
is curve is a hyperbola, because it can be written
i) =xvd+4hiv3. (3)

for x = 0 the reflected wave goes straight up and down, with a

wel time of T,(0) = 2h,/v,. At distances much greater than

the layer thickness (x >> h), the travel time for the reflected
ave asymptotically approaches that of the direct wave.

The third type of wave is the head wave, often referred to as
arefracted wave. This wave results when a downgoing wave
impinges on the interface at an angle at or beyond the critical
angle. Its travel time can be computed by assuming that the wave
travels down to the interface such that it impinges at the critical
angle, then travels just below the interface with the velocity of
the lower medium, and finally leaves the interface at the critical
angle and travels upward to the surface. Thus the travel time is
the horizontal distance traveled in the halfspace divided by v,
plus that along the upgoing and downgoing legs divided by v:

- 2h 2h,
T, x ptani; 0
v vy cos i,

1 tan i

=X o —— 4
v vy cos i, v

The last step used the fact that the critical angle (Section 2.5.5)

satisfies
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SavA%22ane

sini, = vyl ()

Tosimplify Eqn 4, we use trigonometric identities showing that

cos i, =(1—sin? i )2 =(1-vd/v})? (6)
and
. vl
tanf — 7,
¢ cosi, (- v 2
50 Eqn 4 can be written
Tylx) =xfvy + 2by(1vd— 1w} P =xlv, + 7, (8)

Thus the head wave’s travel time curve is a line with a slope
of 1/v, and a time axis intercept of

7, =2hy(110]— 132 9)

This intercept is found by projecting the travel time curve
back to x = 0, although the head wave appears only beyond the
critical distance, x_ = 2h tan i_, where critical incidence first
occurs.

Because 1/v, > 1/v,, the direct wave’s travel time curve has a
higher slope but starts at the origin, whereas the head wave has
a lower slope but a nonzero intercept. At the critical distance
the direct wave arrives before the head wave. At some point,
however, the travel time curves cross, and beyond this point the
head wave is the first arrival even though it traveled a longer
path. The crossover distance where this occurs, x, is found by
setting Tp,(x) = Ty (x), which yields

1/2
v+ vy

x4=2h, (10)

v -

Hence the crossover distance depends on the velocities of the
layer and the halfspace and the thickness of the layer.!

Thus we can solve the inverse problem of finding the velocity
structure at depth from the variation of the travel times ob-
served at the surface as a function of source-receiver distance.
This simple structure is described by three parameters. The two
velocities, v, and vy, are found from the slope of the two travel
time curves. We then identify the crossover distance and use
Eqn 10 to find the third parameter, the layer thickness, b;.
Alternatively, the layer thickness can be found from the reflec-
tion time or the head wave intercept (Eqn 9) at zero distance.
Each of these methods exploits the fact that there is more than
one ray path between the source and the receiver.

' A simple analogy is driving to a distant point by a route combining streets and a

highway. If the destination is far enough away, it s quicker to take a longer route
including the faster highway than a direct route on slower streets. The point at which
this occurs depends on the relative speeds and the additional distance required to use
the highway.
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Fig. 3.2-3 Generation of an upgoing head wave by Huygens’ sources due

toa refracted pulsc propagating along a boundary. The head wave travels
in the upper layer at a slower velocity (v, than the refracted wave creating
it, which travels in the layer below at velocity . (After Griffiths and King,
1981.)

Despite this solution’s elegance, the basic assumption about
the travel time of the head wave may seem unsatisfying, because
it is unclear why energy should follow this path. However,
the result conforms with observations — the experiment
diagrammed in Fig. 3.2-1 yields an arrival whose travel time is
given by Eqn 8. To understand why, we can view the head wave
in several ways. As shown in this chapter’s problems, it cor-
responds to a minimum time path between the source and the
receiver, so, by Fermat’s principle (Section 2.5.9), we expect
such a wave. Another approach, using Huygens® principle
(Section 2.5.10), is to consider the refracted wave traveling
horizontally below the boundary at the velocity of the half-
space, generating spherical waves that propagate upward in the
lower-velocity layer (Fig. 3.2-3). The spherical waves interfere
to produce upgoing plane waves that leave the interface at the
critical angle. However, our analysis of postcritical incidence
(Section 2.6.4), which showed that an evanescent wave pro-
pagates along the interface, does not fully describe the head
wave. A more sophisticated analysis than is appropriate here
shows that the geometry in Fig. 3.2-1 gives the head wave’s
travel time, but not its amplitude, because geometrical optics
are not applicable. Thus, although the energy propagation is
more complicated than along the geometric ray path, the travel
time predicted is correct.

Seismic refraction data led A. Mohorovici¢? in 1909 to
one of the most important discoveries about earth structure.
Observing two P arrivals (Fig. 3.2-4), he identified the first as
having traveled in a deep high-velocity (7.7 km/s) layer, and
the second as a direct wave in a slower (5.6 km/s) shallow layer
about 50 km thick. These layers, now identified around the
world, are known as the crust and the mantle. The boundary
between them is known as the Mohorovici¢ discontinuity,
or Moho. We now denote the head wave as P, and the direct
wave as P (“g” for “granitic”). Corresponding arrivals are also
observed for § waves. The Moho, which defines the boundary

3

2 This siruation is analogous to a bow wave from a boat or a supersonic wave froma
jet airplane, in that the energy source travels faster than the wave it produces.

3 Andrija Mohorovicié (1857-1936), working in Zagreb, Croatia (then part of the
Austro-Hungarian Empire), studied travel times from carthquakes in the region using
recently invented pendulum seismographs.

500
Distance (km)

Fig. 3.2-4 Schematic of Mohorovicié’s results showing th f
distinct crust and mantle. The travel time curves are labeled using modern
nomenclature: the direct waves are P, and $,, and the head waves arc B,
and S,.. (After Bonini and Bonini, 1999. Eos, 60, 699-701, copyright by
the American Geophysical Union.)

between the crust and the mantle, has been observed around
the world. One of the first steps in studying the nature of the
crust is characterizing the depth to Moho, or crustal thickness
and the variation in P, velocity from site to site.

Travel time plots for refraction experiments can be made b
displaying seismograms in record sections. Because seismo
grams are functions of time, aligning several as a function of
distance yields a travel time plot showing the different arrivals

P, and F,, the reflection off the Moho, known as P,,P, is well
recorded. As expected, the direct and head wave travel time
ate linese itk discaiiee, wherdas thereflscion hasa byperholl

divided by a constant velocity. This reduces the size of the plof
and makes waves arriving at the reducing velocity appear as
line parallel to the distance axis.
The geometry discussed here can correspond to differé
physical experiments. A single source can be recorded sim
taneously at receivers at different distances. Alternatw
multiple sources at different distances can be recorded by a
receiver at different times. A single receiver can be movedai
from a fixed source, so the same source is recorded at diffe
distances. Similarly, a source can be moved away from a fi
receiver. Results of various experiments can be combin
using the principle of reciprocity, which states that the t
time is unchanged if the source and the receiver are i
changed. As a result, we can use travel time measurel
without considering whether the source was at one posit
and the receiver at another, or the reverse. Moreover, be
earth structure presumably is not changing during the exp
ment, data collected at different times can be combined.
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325 Seismograms from a refraction
e, plotted with a reducing velocity of
ks, The direct wave £, Moho head
P,,and Moho reflection B, P are
ved. P, does notasymprorically
roach P, P as in Fig. 3.2-2 because
crust, instead of being homogeneous,
increasing velocity with depth. (Bott
al,, 1970. From Mechanism of Igneous
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ion, ed. G. Newall and N. Rast,
1970 by John Wiley & Sons Lid.
roduced by permission.)

Refraction data often show other arrivals in addition to F,

,and P, P. Figure 3.2-6 shows a record section that also con-

ins head waves P and P,2 from boundaries within the crust

d the mantle and P.P, a reflection off a mid-crustal interface,

hich is analogous to the B, P reflection off the Moho.

Such data require 2 model with multiple layers. Figure 3.2-7
ws a model in which a head wave arises at each interface
ere the velocity increases with depth. The travel time curve
2 head wave at the top of the #™" layer is a line with slope
/» that can be extrapolated to its intercept on the £ axis, 7,
d written

i (6)= x/0, + T, (11)
ere, by analogy to the layer over the halfspace case (Eqn 9),
-t
=23 b1} = w2, (12)
=0
thickness of successive layers can be found by starting with

top layer, whose thickness b is given by Eqn 9 or 10, and
tinuing downward using the iterative formula

n-2
7,-2 2;)177(1/1/% — 12
=

2102

1

— 1"

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

Range (km)

Thus for two layers over a halfspace, the thickness of the
second layer is found by setting 7 =2, s0

b Tam 2hllivg — 1whte
i 21/v?2 - 1102

(14)

A few examples illustrate some other complexities of refrac-
tion experiments. If the velocity increases with depth, the travel
time curve for the head wave at the top of each successive
layer has a shallower slope. By contrast, a low-velocity layer
(Fig. 3.2-8) does not cause a head wave, so the travel time curve
does not have a first arrival with the corresponding velocity,
and depths to interfaces calculated using Eqn 13 are incorrect.
Another possible problem occurs if a layer is thin or has a small
velocity contrast with the one below it. Although a head wave
results, it may never appear as a first arrival (Fig. 3.2-9), caus-
ing a blind zone that can be missed in the interpretation.

3.2.2 Dipping layer method

The refraction method can also be applied if the interfaces be-
tween layers are not horizontal. Conducting a reversed profile
yields the travel times for ray paths in both the down-dip
and the up-dip directions. This can be done using receivers on
either side of a source, sources on either side of a receiver,
or both. In this geometry, the depths to the interface below the
source and the receiver differ due to the dip angle, 6. Consider

i
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the down-dip ray path (Fig. 3.2-10) from a source, below along the interface divided by v, plus that for the upgoing an
which the perpendicular distance to the interface is by, to a  downgoing legs divided by v,

receiver at a distance x, below which the perpendicular dis-

tance to the interface is (b, + x sin 8). The travel time for the Ty(x)
head wave in the down-dip direction is the sum of the distance

_ X080 2y + xsinBjani; | @by +x5in6) g
A vocosi,
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Travel time

327 Ray paths and travel times for a
tilayered mode in which velocity

ases with depth. Each layer gives rise to
dwave H,, whose intercept on the time

isis 7, and a reflection R . The direct wave
alisalso shown.

Time

3-8 Travel time curves, showing first arrivals only, for
with three layers over a halfspace. Because the middle
isalow-velocity layer with v, <y, no head wave arises
top.

2:9 Travel time curves, showing first arrivals only, for
2one geometry where the head wave from the top of
s never the first arrival because this layer is too thin.

Time

2:10 Head wave ray path in the down-dip direction for a dipping
ce over a higher-velociy halfspace. The layer thickness is measured
dicular ro the interface.

Source Receiver

*xsing =

the flat case, (8= 0), this is just Eqn 4. Simplifying using
Sand 7 yields

xcosOsing, | (2by + xsin 6)(1 —sin? i)
v, vy cosi,
+0) , 2hy cosi

_ xsin (i,

X by (16)
Yy Y Yd

Slope = 17v,

Slope = 1/v,

[
R
Vo g
L3
Vi hy
H v
Distance
Source Receiver

Slope = 17v;

Slope = 1/v,

Distance

Source

“"Slope = 1y,

Slope = 1/,

N

Tayer 2

Distance

which is a straight line with slope 1/1; and intercept 7.
Similarly, the travel time for the head wave in the up-dip
direction is

_xsin(, =)  2h,cosi, _ x

TA%) (17)

Yo Yo

where b, is the perpendicular distance to the interface below
the receiver. Thus the apparent velocities, corresponding to the
slopes of the head wave travel time curves, differ in the up-dip
and down-dip directions by a factor depending on the dip
angle,

v,

volsin (i,—8)  vg=yy/sin (i +6). (18)

u

The apparent velocity in the up-dip direction is greater than
the halfspace velocity, and that in the down-dip direction is
smaller. The time axis intercepts

,=2b, cosifvy  Ty=2hycosi vy (19)
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Fig. 3.2-11 Travel time plot for a reversed profile and i
The up-dip and down-dip slopes and interceps differ.

interpretation.

also differ. The direct wave travel time is the same in both direc-
tions, so the crossover distances differ.

The results of a reversed profile are often displayed in the
form shown in Fig. 3.2-11. The time axis is common to both
directions, but distance is measured from one end of the axis
for the up-dip experiment and from the other for the down-dip.
The slopes of the direct and head wave travel times yield the dip
angle

1

6=—|sint Lo _gin1 20 (20)
2 y

Ya 0

and the critical angle

21

The halfspace velocity v, is found from the critical angle and vy,
and the intercept times then yield the layer thickness.

Two additional points about reversed profiles are worth
noting. First, the different up-dip and down-dip head wave
travel time curves do not imply that for a given pair of loca-
tions, it makes a difference whether the source is up-dip and the
receiver down-dip, or the reverse (Fig. 3.2-12). By reciprocity,
the two experiments give the same travel time. Thus, for a ray
path connecting two points, it does not matter whether the
wave travels up-dip or down-dip. By contrast, for two receivers
at the same distance from a source, one up-dip and one down-
dip, the travel times differ because the ray paths encounter the
dipping interface at different depths. Similarly, the travel times

Source Receiver Receiver Source
Receiver Source Z

Different travel times
down-dip and up-dip

Same travel times.
down-dip and up-dip

Fig. 3.2-12 Left: ithe source and the receiver are interchanged ona
reversed refraction profile, the travel time is unchanged. Right: Different
up-dip and down-dip travel times occur because, for a given source
position, waves going the same distance along the surface in opposite
directions sample the dipping interface differently.

differ for two sources at the same distance from a receiver,
up-dip and one down-dip. If the dip were zero, then the tra
times would be the same for all these cases because all ray pat
encounter the interface at the same depth. Another way
view this is that for a flat geometry the travel time depends o
on the distance between the source and the receiver. For a di
ping geometry, the position as well as the separation matt
because the depth to the interface varies.

Second, the dip found from a reversed profile is not a
dip if the profile is not perpendicular to the strike of the la
Instead, the measured dip is an apparent dip along the prof
The true dip can be found from the apparent dips along
reversed profiles that cross at a reasonably large angle, usi
a standard technique in structural geology.

3.2.3 Advanced analysis methods

Because the analysis above has been for simple geometries a
uniform-velocity layers, refraction seismology might seem
little use in understanding the real earth. Fortunately, this
not the case. The simple geometries give models that fit
reasonably well and provide starting models for more sophis
ated analyses.

Data from experiments showing travel times more compl
than predicted by simple geometries can be interpreted wi
a computer program to trace rays using Snell’s law throl
possible velocity structures. The predicted travel time c
is found by taking rays that arrive at a given distance,
integrating the slowness along their paths (Eqn 3.1.1
Figure 3.2-13 shows a record section and the inferred veloci
structure for a refraction survey in central California. Ray pat
calculated through the structure shown yield a good fit to
complicated travel time data. For example, the late arriv:
about 8 km from the source are interpreted as resulting from
low-velocity region associated with a set of faults. The mof
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fits the travel times showing several velocity increases
ond this distance.

The restriction of uniform-velocity layers can also be sur-
nounted. Geological instincts (a useful but occasionally unreli-
tool) lead us to expect that rock types, and thus velocities,
uld often vary smoothly rather than in discrete jumps. Thus
expect velocity gradients with depth, rather than sharp in-
ces. This possibility can be tested using advanced methods
analysis that predict both the travel times and the amplitudes

the expected arrivals. The amplitudes make it possible to
istinguish gradients from uniform layers, even if the travel
es predicted are the same. Although the methods are beyond
scope here, we discuss some results briefly.
To illustrate the relation between velocity structure and
iplitudes, consider theoretical, or synthetic, seismogram re-

licted by two crustal models (Fig. 3.2-14). The seismo-
ms were computed using a method known as reflectivity,
avoids the limitations of ray and plane wave analysis.
e travel times are reduced at 8 km/s, and the direct wave
not shown. Both models have the same average velocity

Distance (km)

structure, a 30 km-thick layer of 6.5 km/s material over an
8 km/s halfspace, so the travel times are similar. However, the
amplitudes of the arrivals differ noticeably because the models
have different fine structure near the Moho.

For the sharp Moho model (Fig. 3.2-14, top) the reflected
wave is small for distances less than the critical distance
(subcritical reflection), largest near the critical distance, and
large for distances greater than critical (supercritical, postcrit-
ical, or wide angle reflections). Because the boundary is sharp,
this amplitude behavior is similar to that predicted for plane
waves (Fig. 2.6-11). P, P also shows the expected phase shift
for reflection past critical incidence (Section 2.6.4). The head
wave first appears near the critical distance, 83 km, and is
small, as expected from the plane wave approximation that
predicts no transmitted wave past the critical angle.

Figure 3.2-14 (bottom) shows the effect of velocity gradients
above and below the Moho. Seismic energy trapped near the
Moho yields larger P, amplitudes than for the sharp Moho
case. In addition, for subcritical distances, the reflection is
smaller than without a gradient above the Moho, because it
no longer reflects off a sharp interface. Hence the amplitudes
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of P, and P, P indicate the presence or absence of gradients at
the Moho.

Figure 3.2-15 illustrates these ideas for the oceanic crust
and the mantle. Theoretical seismograms (Fig, 3.2-15, center)
computed for a layered model that fics travel fimes predict
strong reflections off the top of layer 3 (P;3P) and the Moho
(P,,P). The observed data (Fig. 3.2-15, bottom) show strong
EuP reflections, suggesting a sharp Moho transition. However,
strong P P reflections are not observed, impl ying that the trans-
ition between layers 2 and 3 is a gradient rather than a sharp
jump. Thus, although the results of refraction studies are often
reported as layered models that fit the travel times, amplitude
studies are needed to show whether sharp interfaces exist.

An interesting point is that, because layers are distinguished
from gradients by interpreting the amplitudes of seismic waves,
this distinction depends on the wavelength of the wave used to
study the structure. A reasonable approximation is that waves
“see” only structures longer than their wavelengths. In other
words, waves are affected by the medium properties averaged
over their wavelengths. For example, the velocity structures
in Fig. 3.2-16 appear identical to waves with a wavelength
of 1km, but look quite different for a wavelength of 1 m.
Thus profile 3 appears as a sharp interface for waves with

Fig. 3.2-14 Synthetic seismograms showing
how the amplitudes of the head wave, P,
and the reflected wave, P, P, depend on the
velocity structure at the Moho. Two cases
with the same average-velocity structare
are shown. At the top the Moho is a sharp
transition, and at the bottom there are
gradients above and below the Moho. The
velocity scale shows the slopes of arrivals
150 with different velocities. (After Braile and
Smith, 1975.)

wavelength 1 km, a gradient for 100 m wavelength, and a stack
of layers for 10 m wavelength. The velocity structure depends
on the wavelengths under discussion, so a velocity “gradient”
is a structure that cannot be distinguished, with the wave-
lengths used, from one in which velocity changes smoothly,
Similarly, an “interface” is a region that cannot be distin-
guished from a sharp velocity change with the wavelengths
used.

3.2.4  Crustal structure

Information about crust and upper mantle structure around
the world has been acquired by refraction surveys conducted
on different scales. The size of the sources and the source-to-
receiver distances increase with the depth of the structures
being studied. Earthquakes or large explosions, including
nuclear weapons tests, have enough energy to reveal the Moho,
For example, the profile in Fig. 3.2-5, which showed clear
Moho arrivals, was almost 250 km long and used sources con-
taining 136 kg of explosive. Shorter profiles are used to study’
structure within the crust, as in Fig. 3.2-13. The recording
stations are either permanent seismic stations or, in most cases,
portable seismometers. Refraction studies are also conducted:
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at sea. In some cases, disposable sonobuoys or retrievable
ocean bottom seismometers are deployed, and a ship steams
away firing “shots.” In other cases, two ships are used. Marine
refraction data (e.g., Fig. 3.2-15) are analyzed by treating
the water as an upper layer of known velocity. The refrac-
tion results are combined with those from seismic reflection
techniques, discussed in the next section, in which the velo-
city structure is derived from the travel times of subcritical
reflections, rather than refractions. Refraction and reflection
results are complementary and yield improved knowledge of
structure.

The oceanic crust is about 7 km thick, and is relatively uni-
form from site to site, except at mid-ocean ridges. As a result, a
single simple model like that in Fig. 3.2-15 is often applicable.
By contrast, the continental crust is thicker and variable, as
illustrated in Fig. 3.2-17 for a cross-section across the west
coast of the United States. The thin crust beneath the Pacific
Ocean thickens across the continent—ocean transition, such
that beneath the coast ranges the Moho is about 25 km deep.
Beneath the Sierra Nevada range, the depth to the Moho
reaches 35-40 km. The refraction data also show complicated
and variable-velocity structures within the crust. Thus the crust
is not a uniform layer, or even a uniform set of layers, because
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Fig. 3.2-17 Crustal velocity model and
inferred geologic structure for a cross-
section across the west coast of the USA.
“SAF” denotes the San Andreas fault.

B Dashed lines indicate low-velocity zones.
(After Mooney and Weaver, 1989.

From Geophysical Framework of the
Continental United States, ed. L. . Pakiser
and W. D. Mooney, with permission of
the publisher, the Geological Society of
America, Boulder, CO. © 1989 Geological
Society of America.)

in some places it contains velocity gradients. Although early
refraction studies suggested the existence of the Conrad dis-
continuity dividing the upper and lower crust, it now appears
that high (greater than about 6.5 km/s)-velocity lower crust
is present in some places but not in others. Furthermore, some
areas show low-velocity zones within the crust.

Refraction studies show regional variations in crustal
thickness and P, velocities, as illustrated for North America
in Fig. 3.2-18. East of ~104°W, the crust is typically thick
(~42 km), and P, velocities are high (~8.1 km/s). To the west,
the crust is often thinner, with lower P, velocities. The thin
crust and low P, velocities beneath the Basin and Range pro-
vince may reflect hotter material near the surface, consistent
with active extension. As seen here and globally (Fig. 3.2-19),
mountain ranges often have thick crust. The thick crust is
thought to be due to isostasy, whereby the excess mass of the
mountains is at least partially compensated by a crustal root
with density less than that of the mantle.

The continental Moho can be modeled as a simple inter-
face for the wavelengths used in most refraction studies. How-
ever, scismic reflection studies, with shorter wavelengths,
sometimes show a laminated structure of high- and low-velocity
layers (Fig. 3.2-20). In other cases, however, the Moho is not
observed in reflection data. Some of these complexities may
reflect difficulties associated with seismic reflection studies in
laterally varying media (Section 3.3). Nonetheless, the Moho
appears to be a complicated transition zone 0-5 km wide, with
properties varying between locations (Fig. 3.2-21). Rather than

layer, it is better to view it as a zone where velocities increas
rapidly with depth to values above about 7.7 km/s.

Velocity structures are often interpreted in terms of coms
position, as in Fig. 3.2-17. To do this, seismological results ar
combined with other geophysical data (e.g., gravity), geolog-
ical fieldwork, and laboratory studies of the seismic velocities
of rocks. The laboratory data show that velocity varies with
composition, as shown in Fig. 3.2-22 for igneous rocks of
the crust and upper mantle. Moreover, velocity increases with
pressure and decreases with temperature. Inferences about
composition are thus made by comparing predicted velocit-
ies to seismic observations. For pressures expected at greater
depths, as for the lower mantle and core, laboratory experi-
ments are more difficult, so thermodynamic calculations are
also used to extrapolate experimental data to higher temper-
atures and pressures.

Such analyses imply that the upper continental crust has
an average composition like granodiorite, whereas the upper:
oceanic crust is gabbroic.* Historically, two types of models
have been suggested for the Moho. In one, the Moho divides
chemically different rocks, whereas in the other, it is a phase
boundary separating rocks with the same bulk chemistry but
different minerals. These models correspond to different com-
binations of rocks on either side. Two candidates for the lower
continental crust are gabbro or rocks of intermediate composi-
tion in the granulite facies. The most popular candidate for the
upper mantle is peridotite, which would make the Moho a

regarding the Moho as the base of a h crustal

levant rock and mineral

tion 3.2.5.
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3.2-18 Crustal thickness (depth to
1) (top) and P, velocity (botton)
for part of North America. Contour
ptervals are 5 km and 0.1 km/s. (Braile et
,1989. From Geophysical Framework
fthe Continental United States, ed. 1200
.C. Pakiser and W. D. Mooney, with
ermission of the Geological Society of
ica, Boulder, CO. © 1989 Geological

Upper mantle seismic
velocity (Py, km/s)
¥
70°

1000 km

of America.)

mpositional boundary. Another candidate is eclogite, a rock
the same bulk chemistry as gabbro, but denser mineral
hases. If the upper mantle were eclogite and the lower con-
ental crust gabbroic, the continental Moho would be a phase
pundary. However, although eclogite and peridotite have
ar seismic velocities, peridotite seems a more likely com-
gsition for the upper mantle. One of the reasons is that
jine, a major component of peridotite, yields anisotropic
ismic velocities due to its crystal structure. Such anisotropic

P, velocities are observed in the oceanic upper mantle and in
some locations in the continental upper mantle (Section 3.6).

The status of the lower continental crust is more contro-
versial. A granulite model is popular, but gabbro cannot be
ruled out. Similarly, the origin of the laminated structure of the
Moho is still unclear. Possible explanations include meta-
morphosed sediments, cumulate layering, tectonic banding,
and lenses of partial melt. In any event, this structure seems to
be laterally variable.
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3.2.5 Rocks and minerals

Interpreting seismological results for the crust and mantle
in terms of composition requires knowing something about
rocks and the minerals that compose them. Although these are
complicated subjects, we summarize a few essential terms.

For our discussions of crust and upper mantle structure,
the most important rocks are the igneous rocks formed by
cooling a molten magma. These rocks are classified primarily
by the weight percent of silica, $i0,. A common nomenclature
describes rocks as acidic or silicic for a weight percent of Si0,>
66%, intermediate for 66-52%, basic or mafic for 52-45%,
and ultrabasic or ultramafic for < 45%.

Physical properties of rocks, such as density and seismic
velocity, depend on their mineral composition. Figure 3.2-23

Fig.3.2-19 Global map of crustal
thickness. (Mooney et al., 1998.

J. Geophys. Res., 103, 727-47. Copyright
by the American Geophysical Union.)

Fig. 3.2-20 Seismic reflection profile from
the Wichita Mountains of southeasern
Oklahoma. The “ringing” Moho reflections
at14.5-15 s in the middle of the section
suggest that the Moho has a laminated
velocity structure over several km. (Hale
and Thompson, 1982. . Geophys. Res.,
87,4625-35, copyright by the American
Geophysical Union.)

summarizes the major minerals in various rocks at near-
surface temperatures and pressures. Because rock names refer
to a range of compositions, those shown are averages. Rocks
of the same composition have different names depending on
whether they form at the earth’s surface (extrusive rocks) or
below it (intrusive rocks). Hence an extrusive rock of gabbroic
composition is a basalt.

Several important silicate (SiO,-bearing) minerals are
mentioned in the figure. Quartz is pure SiO,. Olivine is a
solid solution, (Mg, Fe),Si0,, whose composition varies from
pure Fe;SiO, (fayalite) to pure Mg,SiO, (forsterite). Due to
its crystal structure, olivine has anisotropic seismic velocities.
Pyroxene is a solid solution with end members MgSiO,
(enstatite), FeSiO, (ferrosilite), CaMg(SiOs), (diopside), and
CaFe(Si0;), (hedenbergite), though only certain ranges of
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3.2-22 Variation of P-wave velocity with lithology for crust and

mantle rocks, at a pressure of 1.5 kbar (150 MPa). Velocity
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9. From Geophysical Framework of the Continental United States,
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ipositions exist in nature. Feldspar is a solid solution
ith end members CaAlSi, Oy (anorthite), NaAlSi,Oy (albite),
KAISi,O, (sanidine, orthoclase, and microcline). The
- and Ca-rich feldspars are called the plagioclase feldspars.
similar mineral group, the amphiboles, include
mblende, NaCa,(Mg,Fe) (AL Fe)(Si;AlO, ),(OH),. Biotite,
g,Fe),Si,AL0, (OH),, and muscovite, KALSi, AIO,o(OH),,
fein a group of minerals called micas. Garnets are minerals of
form A;B,(SiO,);, where A is usually one of the ions Ca,

Silica content (volume percent)

Fig. 3.2-23 Simplified igneous rock classification. Compositions are
shown as the volume percent of major minerals for a rock of given silica
content (horizontal axis). Thus a granodiorite of abour 60% silica content
contains about 20% amphibole, 5% biotite, 53% plagioclase feldspar,
17% quartz, and §% potassium feldspar. Rack names are given for
intrusive and extrusive forms.

Mg, or Fe, and B is typically any of Al, Fe, or Cr. Garnets are
comparatively dense, and thus significant for discussions of
phase changes.

The figure describes rocks in terms of their mineralogy
at surface conditions. With increasing pressure due to increas-
ing depth in the earth, minerals transform to denser phases.
Thus, for example, a gabbro containing plagioclase feldspar,
pyroxene, and olivine transforms to a chemically identical
eclogite rock containing quartz, pyroxene, and garnet. Hence
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an argument against eclogite being a major component of the
upper mantle is that, by contrast with peridotite, it does not
contain olivine and would not yield the observed anisotropic B,
velocities. However, the gabbro-to-eclogite transformation
may occur in subducting slabs (Section 5.4.2) and play a role in
causing earthquakes there.

3.3 Reflection seismology

In the last section, we concentrated on the use of refracted
arrivals to infer velocity structure with depth, and noted that
reflected arrivals also contain valuable information for this
purpose. Studies using the reflected arrivals, known as reflec-
tion seismology, determine velocities within the crust, and
thus are essential in oil and gas exploration. As a result, data
acquisition and processing methods have often been developed
first by reflection seismologists. For example, digital data were
generally used in exploration before they became common
in earthquake studies. Similarly, because reflection data are
densely sampled in space and time, and the mathematics of
wave propagation in a layered medium is simpler than for
a spherical earth, techniques are often first developed with
reflection data. In this section we survey basic concepts in
reflection seismology, some of which we later apply to earth-
quakes and the spherical earth.

3.3.1 Travel time curves for reflections

We first consider the simplest geometry: a flat layer of uniform-
velocity material underlain by a halfspace with a higher
velocity (Fig. 3.2-1). Although most applications use P waves,
we write the velocity as “v” because the results also apply to
S waves. For a layer of thickness b, with velocity v, we saw
in Section 3.2.2 that the travel time as a function of source-to-
receiver distance, known as offset in reflection seismology, is

T(x) =503+ 43 Ivg =l + 2. (1)

The travel time curve T(x) is a hyperbola (Fig. 3.3-1) that
intercepts the T axis at £, = 2k,/v,, the travel time at zero
offset. This time is called the two-way vertical travel time,
because the corresponding ray traveled vertically down to
the reflector and back. Although this curve is the same as the
“reflected wave” curve in Fig. 3.2-2, the convention in reflec-
tion seismology is to plot time increasing downward,! because
later arrivals reflect deeper in the earth.

The layer velocity is found from the slope of the hyperbola.
Because the slope decreases with increasing velocity, “flatter™
travel time curves indicate higher velocities. To see this, note
that a plot of T(x)? versus x* has slope 1/v3. Alternatively, the
variation in travel time with offset is often stated in terms of

! Earthquake seismologists generally follow the opposite convention,

0 Distance, x —

- Time, t

Fig. 3.3-1 The travel time curve for a reflection off a flat interface isa
hyperbola, with the minimum at x = 0 corresponding to a vertical ray
path. The slope is zero at.x = 0 and increases with the offset distance.

Fig. 3.3-2 Two rays showing the relationship between the angle of
incidence, ray parameter, and the slope of the travel time curve for a
flat medium.

normal moveout (NMO), the difference between the trayel
time at some offset and that at zero offset,

Tlx)—ty= (2 + 2921, )

Once the velocity is found, the layer thickness is given by th
vertical travel time.

To sce the relation between the travel time curve and ray
paths, consider the ray paths to two points dx apart, which dif-
fer in travel time by dT (Fig. 3.3-2). Because the ray paths differ,
in length by vdT, the angle of incidence can be found using

sinf=P9L, 3
dx

or, in terms of the ray parameter p (Section 2.5.7),

sini _ dT

it “
v dx

This is consistent with our earlier definition of the ray para-

meter as the reciprocal of the apparent velocity along the



3.3 Reflection seismology 135

*n

-3 Ray geometry for a reflection in a flat-layered medium. Layer
cknesses are f, horizontal distances traveled in the layers are x,, and
way travel times spent in the layers are AT,.

ace of the wave front, which moves a distance dx in time
IT, because

/e, =1/(dx/dT). (5)

s Lhe ray parameter and the angle of incidence of the ray
ging at a distance x can be found from dT/dx, the slope
fthe travel time curve evaluated at x. From Eqn 2, the slope
2ero at x = 0 and then increases with offset; so the angle of
tidence is nearly zero (vertical incidence) at short distances
id becomes closer to 90° (horizontal) at larger distances
3.3-1).
is lets us find the travel time curve for reflections in a
ometry with multiple horizontal layers. Figure 3.3-3 shows
itthe reflection R, from the top of the (#+ 1) layer (or the
m of the n layer) has traveled through # layers, each
ickness /; and velocity v;. Such rays, which have been
d only once, are known as primary reflections. Because,
Snell’s law, the ray parameter p is constant along a ray, (he
e angles /; in each layer can be found from the incidence
n the top layer,
iniy ®
Yo
ow gomg ray, which lravels a horizontal d)s(ance x;in the

lup again, the ray travelsa total honzontal distance
Zx—th tan i, 7)
i=0

total time

|=2) AT, = 2
,2{, D v cosi;

(8)

feexplicitly write x(p) and T(p), because the two sums are
lated in terms of the ray parameter. To see how they

SavA% 200

allow us to compute the corresponding travel time curve T(x),
consider a single layer, where x, (= x/2) is the horizontal dis-
tance along each of the downgoing and upgoing legs. In this
case, Eqn 8 becomes

(%) =2[(x/2)2+ b3] /v, 9)
because
cos iy =hy(x2+ Y12, (10)
0 0ro 0;

Hence Eqn 8 yiclds Eqn 9, which is equivalent to the relation
we derived earlier showing that the travel time curve for the
reflection is a hyperbola (Eqn 1).

For multiple layers, we approximate the travel time curve
for the reflection R,,; off the top of the (n + 1) layer as a
hyperbola,

Tx)2, =x V2422, (ay
and find the two parameters, V, and ¢,.. ¢, is the total two-way

(up and down) vertical travel time at zero offset, which is twice
the sum of the one-way vertical travel times At;for each layer

rv
t, =23 Ay,
=0

2 (b 1v,). (12)

The velocity term, V,, is a little trickier. From the geometry, the
distance traveled by the downgoing ray in layer j is

x

AT, sin i/:(vrzluo)ATy sin ({p), (13)

where the last step used Snell’s law (Eqn 6). Hence, by Eqa 7,
the total distance, x, can be written

x=2Y % =220 9 2T, (14)
=0 Yo j=0

Because the ray parameter is constant along a ray, the slope of

the travel time curve is, by Eqn 4,

dT _sini, <

—=—L=x/(2Y vIAT}). 15
i ( E)v, i) (15)
For the hyperbolic approximation (Eqn 11), the slope of the
travel time curve is

dr _ x
& T (16)
so we define
"
= QX IATYT. 17)

j=0
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Because this was derived for an arbitrary i angle,
vertical incidence can be used for simplifications, so in each
layer the travel time equals the one-way vertical travel time,

AT} =At;, and the total travel time is T=2 iAz’. Hence
-0

" "

vi=|Xvia| /|3 Ay (18)
=0 i=0

V,» the appropriate average velocity for the travel time curve, is

the time-weighted root mean square, or rms, velocity for the

first # layers. This hyperbolic approximation and the exact

solutions agree well except for large offsets.

These results let us find the layer velocities from the travel
time curves. Given a reflection from the top of the n™ layer,
with vertical two-way travel time ¢,_; and rms velocity V,_,
and a reflection from the top of the (7 + 1) layer, with vertical
two-way travel time ¢, and rms velocity V,,, the velocity in the
nhlayer is
2o Vit~ Vit (19)

tn o t",!

This relationship is called the Dix equation.? The resulting
velocity, called an interval velocity, is better determined for
larger offsets, where the slope of the travel time curve is greater.
Because the later reflections have higher velocities, and hence
flatter travel time curves (Fig. 3.3-4), larger offsets are required
to determine velocities at greater depths.

Travel time calculations are more complicated for dipping
layers. Figure 3.3-5 shows the geometry for a reflector of dip 6,
whose depth along the perpendicular to the reflector below the
origin is b. The travel times can by derived using an imaginary
source on the line from the surface source normal to the reflec-
tor, at the same distance below the layer, so that travel times
from the imaginary source to the receivers are the same as from
the true source. Applying the law of cosines to triangle RIS
shows that

T2= [x2+ 4h2 — 4hx cos (6+ w/2))ivd
= [x2+ 4b? + 4bx sin 6)/v3. (20)

This travel time curve is a hyperbola with minimum at
~2h sin 6, so it is not symmetric about x = 0. Reflections from
a stack of dipping layers yield travel time curves of approxi-
mately this form.

It is sometimes useful to think of the earth as having a
continuous distribution of velocity with depth, v(z), rather
than a stack of discrete layers, each with uniform velocity. The
expressions for the ray path and travel time of a ray with ray
parameter p for discrete layers can be generalized. The ray path
(Fig. 3.3-6) is given by Snell’s law, because the ray parameter,

2 Named after its discoverer, pioncering exploration seismologist C. Hewitt Dix
(1905-84).

Time (s)

Distance (km) Velocity (km/s)

Fig. 3.3-4 Travel time curves for reflections (left) from a layered structu
(right) cor from deeper
interfaces are flatter, or have shallower slopes, due to the increase of
velocity with depth.

crust.

—2hsin6 x

Fig. 3.3-5 The travel time curve for a reflection off a dipping interface ca
be derived using an imaginary source (1) ar depth that gives the same trav
times. The resulting hyperbola has a minimum at a nonzero offset. S and
R denote the source and the receiver.

p=sin ifv(z), (21]

is constant along a ray. If velocity increases with depth, sinj
and thus i increase, so the ray bends away from the vertical o
its way down. Once i = 90°, the ray turns, becomes horizontal
and then goes upward. At the deepest point, the turning, of
bottoming, depth z,, the velocity is the reciprocal of d
ray parameter, p = 1/v(z,). If on some portion of the ray pat
the velocity decreases with depth, the ray bends toward th
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SavA%22ens

336 Ray path ina medium with velociy increasing smoothly with
fh, The ray parameter is constant along the ray path, so the angle of
ence changes as the velocity changes. The incidence angle is smallest
surface, where velocity is lowest, and is 90° at the bottoming

h -

ical. The ray does not turn upward until it gets below the
velocity region.

Ve thus replace the sums over layer thickness b; with
fegrals over depth, such that the expression for the distance
led by the ray (Eqn 7) becomes

13 2y

12
1

2| tanidz=2 — - dz,

J 2 pj[m ,,]

0 a

use

22)

and cos i=(1-sin? )"

i=pv(z) =(1=p222)"2 (23)

is sometimes written in terms of the slowness, the recipro-
Jof velocity, as

24)
%
2p (“Z(Z)d,ﬁ (25)
0
ilarly, the travel time sum (Eqn 8) becomes
2, z,
Uzp o
W (2)dz 26)

(t2(z) - P22 '

integral is valid everywhere except at the exact bottom of
e, where u(z) equals p. A useful way to view this is to
that the ray path (Fig. 3.3-6) can be written as an integral
ds, where dz = cos i ds. The travel time is thus

(27)

T(p) :J'£ =Ju(z)d5,
v(z)

the integral of the slowness along the ray path. Slowness,
though less intuitive to use than velocity,’ can lead to simpler
formulations.

3.3.2  Intercept-slowness formulation for travel times

So far, we have given travel time curves as T(x), the travel
time as a function of distance. We now develop an alternative
formulation that offers interesting insights and is useful for
dara analysis. To do so, we note that AT, the one-way travel
time in the /" layer with velocity v,, is related to the thickness,
b, and the horizontal distance traveled, x; (Fig. 3.3-3), by

VAT =(xF+ 1)1 (28)
The incidence angle , for this ray satisfies
< — Fi xr % h! hr
st = 2 24112 cos 1/ gl 2312 :
(a2 + B> AT, (} + B>y AT,
(29)
We rewrite Eqn 28 as
2 bt ;
AT, (;;7’,“‘*/ sin i+ b, cos iy, (30)
e
or
x;sini; b cos
ATV:T yizp,xﬁn,h,‘ (31)
s i
where
p;=(sin iMy;=sinin; and  1);=(cos i )lv;=cos iu;. (32)

Thus in layer j we have entities introduced in Section 2.5.7:
p; is the ray parameter, or horizontal slowness, and 7, is the
vertical slowness. These are the components of the slowness
vector that has magnitude equal to the slowness, and points
in the direction of wave propagation. Hence #,, the slowness in
the layer, is
wl=1w=p}+ 0k (33)

By Eqn 31, the travel time a ray spends in a layer is the sum of
the horizontal slowness times the horizontal distance traveled
and the vertical slowness times the vertical thickness. The total
travel time is the sum over all layers, with a factor of two to
account for both downgoing and upgoing legs,

3 Ttis somehow harder to think of a zone of high slowness than a low-velocity zone.
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Fig. 3.3-7 Relation between the travel time curve T(x) and the line
tangential to a point on it, which has a slope, or slowness, p and
atime axis intercept 7.

Tix)=2Y AT, =2 px, +2Y nh; (34)
=0 =0 =0

By Snell’s law, the horizontal ray parameter is constant along
the ray path, sop;=p, and

T(x)=px + 23 by, (35)
i=0

where x =2 F.x; is the total horizontal distance traveled. This
=y

formulation is equivalent to the way we formulated the travel
time as the scalar product of the distance and slowness vectors
(Eqn 2.5.34).

Formulating the travel time curve in this way gives interest-
ing insight. We define

Tlx)=px+(p), (36)

where the function

P =23 n;h =23 (11} - PA2h =23 (u?
=0 =0 =0

= p*)"2h. (37)
Because p is the slope of the travel time curve (dT/dx) and hence
of a line tangential to it at the point (T, x), 7 is the intercept
of the tangent line with the time axis (Fig. 3.3-7). In general
and p differ for different points on the travel time curve, so the
travel time curve can be described by the values of either (T, x)
or (1, p). Thus the function z(p) is called the intercept-slowness
representation of the travel time curve. Although less intuitive,
the 7(p) formulation is equivalent to T(x).

Given that the slope of the travel time curve T{x) has special
significance, it is natural to investigate the slope of the function
7(p). To do this, we write Eqn 36 with the ray parameter, rather
than the distance, as the independent variable,

N\

7p)=T(p)—px(p),

and differentiate

o _dT =Ty
dp dp dp dx dp dp

—x(p). (3

Thus, just as p is the slope of the travel time curve, T(x),
distance, x, is minus the slope of the (p) curve.

To illustrate these ideas, we show that the 7(p) formulati
gives the travel time curve for the reflected wave in a layer o
a halfspace. Figure 3.3-3 shows that x=x/2, so, using Eqn 3

PR o= by . y
vl (/22 + 127wl + BRI

Hence, by Eqns 36 and 37, the travel time curve is

(22 + 213
T(x)=px+21yhy=——— 02—
(x)=px+2myhy wleI2E 1 R
= 2[(x/2)% + B3| 24w, 1

which is the familiar hyperbola (Eqn 9).
To see how this travel time curve appears when written a
7(p), we write Eqn 37 for a layer over a halfspace:

o(p)=2(1/v} — p*)12h,,. (4
This can also be written as
(w3t (ahd) +v3pt=1, (43)

which is an ellipse whose axes are the Tand p axes (Fig. 3.3-9)
Itintersects the zaxis at (7= t,=2hy/vy, p=0), and the p axis
(=0, p = 1/v;). Both these points have significance. The ﬁrs
whcrL the travel time curve has zero slope and the time a
intercept is the vertical two-way travel time, corresponds
the zero-offset point x =0.

The second, where the travel time curve has slope 1/y; an
time axis intercept 0, is the 7(p) position of the linear trav
time curve for the direct wave. Hence the line for the dire
wave maps to a point in the 7(p) plane that is on the ellij
describing the reflected wave. To understand why this occurs
we use the fact that distance is minus the derivative of the (p}
curve (Eqn 39) and differentiate Eqn 42, giving

x(p) =~dtldp=2phy( 13— p2) 12, (44

so at the point p = 1/u, x = co. This makes sense, because as
X — eo, the reflected wave is asymprotic to the direct wave
(Fig. 3.2-2).

The head wave is easily mapped into the 7(p) plane, because
its travel time curve (Eqn 3.2.8) is
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3-8 Travel time curves Tix) for a layer over a irect 12 1
and their representation in the (7, p) plane. refiscied
jpoint on the T(x) curves has a slope (ray parameter) r i 1
intercepe 7. The linear travel time curves for the L T
and head waves each map into a point (square and Ray
inthe (7, p) planc. The hyperbolic travel time curve - parameter
reflection maps into an ellipse in the (7, p) plane. L |
how an arbitrary point on the reflection’s travel ;
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9 Relation between the travel time curve T(x) and the
1(p) for mulciple layers over a halfspace. D denotes the
wave; R,and H, are reflections and head waves at the top
i layer; x, is the critical distance for H,. (After Dicbold
ffa, 1981, Reproduced by permission of the Society of
Joration Geophysicists.)

=xf, + 2yl U3 - 1>

=xlv, + 7y,

(45)

with slope equal to the reciprocal of the halfspace
ity, p = 1/v;, and intercept 7;. Thus the head wave maps
a point on the ellipse describing the reflected wave, corres-
ading to the critical distance x, where the head and reflected
5 are the same. To see this, note that for p = 1/v;, Eqn 44

)=—dtldp = 2hy(v? - v3) (46)

This point divides the ellipse describing the reflected wave into
a subcritical portion, berween the 7 axis and the head wave,
and a posteritical portion, between the head wave and the p
axis. We will see shortly that the fact that different arrivals
have distinct locations in the 7{p) plane provides the basis for
techniques that can separate these arrivals.

This analysis can be extended to more complex geometries.
For multiple layers, the z(p) curves corresponding to reflec-
tions off successive layers are all portions of different ellipses
(Fig. 3.3-9). For a continuous velocity distribution, the summa-
tion for 7(Eqn 37) becomes an integral
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Fig. 3.3-10 Schematic geometry of a multichannel seismic reflection
survey with a single source (star) and eight receivers {dots) moving along
a survey line. Each physical experiment produces eight seismograms
corresponding to ray paths (dashed lines) with a single source locarion
and a range of receiver locations. Four seismograms from different source
and receiver positions, corresponding to the ray paths shown by solid
lines, sample the same point at depth on a flat reflector. These have the
same midpoint halfway berween source and recciver, but different
source-to-receiver offsets.

% 2 %

7(p) =2 | Ne)dz = 2| (1/v2(z) - p*/2dz = 2| (uP(z) - p?)"2dz.

0 0 0 47)

Formulating travel time curves as 7(p) is useful for some tech-
niques that invert for velocity structure.

3.3.3 Multichannel data geometry

A feature of reflection seismology is multichannel geometry,
the use of multiple source and receiver locations, so that points
on reflecting interfaces are sampled repeatedly. Figure 3.3-10
illustrates how such coverage is accomplished by combining
experiments performed with a seismic source and an array of
eight receivers at fixed distances from the source. Each time the
source is activated, eight seismograms, or traces, are recorded.

Depth

Horizontal
interface

coordinates measured along the survey line. Any two specify an
individual scismogram.

5"‘;"9 Midpoin
20 m=(s+
2
15 1 CMP gather
15
20
10
Receiver
r
| | |
} } t
0 5 10 15 20

Fig. 3.3-12 Anindividual trace is characterized by its positionin a
two-dimensional diagram showing its source, receiver, midpoint, and
offset coordinates. Dots show the traces indicated in Fig. 3.3-10. Physical
experiments cotrespond to a common source point (CSP) gather; the four
traces in Fig. 3.3-10 with the same midpoint form the common midpoint
(CMP) gather shown.

The source and the receivers are then moved, and the experi
ment is repeated, giving eight more traces. Eventually ea
point on the reflector is sampled four times, producing “fours
fold coverage.”

We assume initially that the velocity structure is layered and
varies only with depth. Even so, the four seismograms that
sample the same point are not identical, because they corre-
spond to different source and receiver positions, and thus differ-
ent offset distances between the source and the receiver. Hence
each trace is a record of displacement, or pressure, as a function
of time, ¢, u(s, r, t), characterized by the source and receiver
positions,
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Common receiver gather

Common source gather

3313 Schematic of the four different
types.

Common offset gather

Common midpoint gather

data are analyzed by grouping the seismograms that
pled the same point on the reflector. In this flat-layered
netry, these seismograms have the same point, known as
idpoint, halfway between the source and the receiver. For
midpoint, there is a set of traces with different offsets. The
point 7 and offset f are defined in terms of the source loca-
isand the receiver position r as
4102, f= (48)
individual seismogram is specified by either the source
iver positions, or the midpoint and offset (Fig. 3.3-11).
ge are plotted using two perpendicular axes (Fig. 3.3-12),
the source location and one for the receiver position.
Ipoint and offset for each seismogram are indicated by
nce along axes 45° from the s and 7 axes. Note that the
son these axes differ from the other two.
jillustrate this relationship, consider the four experiments
g 3.3-10, with eight receivers and a single source. Each
iment produced data at points, shown by dots, with
fant source position and successive receiver positions.
Bssive experiments yielded data along a similar horizontal
ut displaced by the motion of the source and the receiver.
data can be sorted and combined in various ways that
fot correspond to an actual experiment (Fig. 3.3-13).
experiment corresponds to a set of records with the same
position, a common source point, or CSP, gather. Traces
e same midpoint and different offsets can be grouped
ommon midpoint, or CMP, gather. Similarly, common
3 pomt and common offset gathers can be formed.

lering traces by midpoint and offset makes no distinction
en a source at position @ and a receiver at position b,
verse. This assumption is justified by the principle of
city, by which these two geometrices should produce
seismograms. Thus a common receiver point gather

can simulate a reversed profile (Section 3.2.2) because, by
reciprocity, it gives the same data as a common source point
gather shot in the opposite direction.

Later in this section, we will discuss a few aspects of the
data collection process. The sources can be explosives, sound
sources in water, or vibration sources on land. The source co-
ordinate is thus sometimes referred to as a source point, shot
point, or vibration point. The receivers are typically single-
component vertical sei: known as b for
land applications, and pressure transducers, or hydrophones,
for marine surveys. The receiver coordinate is thus often
termed the geophone coordinate. Generally large numbers of
receivers, which are themselves groups of receivers, are used.
Increasingly, data are collected over two-dimensional areas, and
so are processed to yield three-dimensional velocity structures.

3.3.4 Common midpoint stacking

Because the traces in a CMP gather have ideally sampled the
same subsurface point with different offsets, they can be com-
bined to enhance reflected arrivals. The process begins with a
set of traces showing the data as a function of offset and time.
The data contain “signals” of interest, primary reflections from
interfaces that are used to determine velocity structure with
depth. The data also contain “noise,” arrivals of no interest, in-
cluding direct waves, head waves,* surface waves (sometimes
termed “ground roll”), and waves from the source that travel in
the air. The data may also contain arrivals (Fig. 3.3-14) that
have been reflected more than once, which are known as mul-
tiples, by contrast with the once-reflected primary reflections.
To enhance primary reflections and suppress everything
else, we exploit the fact that the arrival times of various signals

4 Inthe previous section we focused on dircct and head waves, illustrating the adage

that “one person’s signal is another’s noise.”
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