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Abstract 

This paper presents least-squares wave equation AVP (Amplitude versus Ray Parameter) migration with non-quadratic 
regularization. We pose migration as an inverse problem and propose a cost function that makes use of a priori information about 
the AVP common image gather. In particular, we introduce two regularization goals:  smoothness along the ray parameter 
direction and sparseness in the depth direction. The latter yields a high-resolution AVP gather with robust estimates of amplitude 
variations with ray parameter. An iterative re-weighted least-squares conjugated gradients algorithm minimizes the cost function. 
We test the algorithm by solving a multi-channel deconvolution problem and a 2-D wave equation AVP migration problem. We also 
discuss the difficulties and a potential pitfall of this new imaging scheme.  

Introduction 

In seismic exploration, we are often interested in two types of information about an earth model: structural information and rock 
property parameters. For structural imaging, this is emphasized by improving the spatial resolution. In recent years, much attention 
has been paid to high-resolution structural imaging algorithms. At the same time, with the development of AVO technologies, 
geophysicists are more and more interested in amplitude-preserving migration/inversion methods. It has been shown (Nemeth et 
al., 1999; Duquet et al., 2000; Kuehl, et al., 2002, 2003) that seismic resolution can be improved by inverting the De-
migration/Migration kernel and by enforcing a regularization constraint, for example, by introducing smoothness in the solution. 
However, as the results of these methods show, there are many artifacts present in the solution due to operator mismatch, wave-
field sampling and noise. 

One possible way to further enhance the resolution and attenuate artifacts is by taking advantage of the solution itself. Iteratively 
using the result as model-space regularization can lead to high-resolution artifact-free seismic images. This idea has been used in 
many fields of signal processing (Sacchi and Ulrych, 1995; Charbonnier, et al., 1997; Youzwhisen, 2001; Sacchi, et al., 2003; Trad 
et al., 2003; Downtown and Lines, 2004.). In this paper, we utilize a model-dependent sparse regularization and a model-
independent smoothing regularization for an AVP imaging problem. The first regularization arises from an update of the stacked 
image, and the second regularization is implemented via a convolutional operator applied to AVP common image gathers along 
the ray parameter direction. With such regularization strategy, we try to develop an algorithm to simultaneously improve the 
structural interpretability and amplitude accuracy of seismic images. 
 
Methodology 

Regularization is very important for inversion since it takes advantage of a prior information of the model, and it allows us to efficiently 
solve ill-posed problems. For example, Kuehl and Sacchi (2002, 2003)  showed that applying smoothing  regularization in ray-
parameter direction can help to remove artifacts introduced by missing information, aliasing, noise and operator mismatch. The 
scheme is based on the minimization of a quadratic cost function. Sacchi et al. (2003) showed that higher solution can be acquired by 
solving a non-quadratic problem. In this paper we reformulate the cost function for least-squares wave-equation AVP/AVA migration 
problem as follows:  

||)(||||)(||)( 22
2 SDmFdLmWmJ λ+−= ,                                                                                                                                             (1) 

where m is the earth model, AVP common image gathers,  L  is a wave-equation based modeling operator that transforms the 

model to seismic data, d  is the seismic data, and W  is a sampling matrix to simulate the geometry of data acquisition. D is a 

model-independent high-pass filter to penalize non-smooth solutions, S  is a stacking operator that converts common image gathers 

to the stacked image, F is a model-dependent function used to enforce sparseness, and λ is a trade-off parameter to control the 

amount of regularization . By using Cauchy norm (Sacchi and Ulrych, 1995),  the sparse regularization operator F  can be formulated 
as the following: 
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where 
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mσ is a scale parameter. By adopting a preconditioning strategy (Wang, et al., 2004) , the cost function can be recast  as 

bellow: 

||)(||||)(||)( 22
2 SzFdLPzWzJ λ+−= ,                                                                                                                                   (3) 

where P is the preconditioner, and z  is the model modified by the preconditioner. Here we use a Hamming window as P to remove 

artifacts and fill in gaps of neighboring amplitudes. Obviously, the final solution is Pzm = . The problem can be efficiently solved by 

Iterative Re-weighted Least-squares algorithm (IRLS) (Scales and Smith, 1994). The cost function of k th iteration of IRLS algorithm is: 
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where 1−kQ is a  diagonal weighting matrix, its diagonal elements are calculated by 
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where 
1−k

sim  is the i th element of the vector Sz at ( k-1 ) th iteration of IRLS, and 
1−k

msσ  is a scale parameter, which is empirically set 

to some percentage of the maximum amplitude of the mentioned vector. Please note that some scaling factor has been absorbed into 
the trade-off parameter µ . IRLS for the above problem is applied in the following way. First, we initialize m with zeros and Q with an 

identity matrix. Then we minimize cost function (3) via the CG algorithm.  We then update the diagonal matrix, and  restart the CG 
algorithm. We repeat this procedure for a few updates (4-5 iterations) until sparsity in the vertical direction has been achieved. In a 
few words, IRLS contains two loops.  The inner loop is the CG iteration, and the outer loop is the update of the weighting matrix.  

A toy example: multi-channel deconvolution 

We tested the idea of forcing sparseness and smoothness at the same time by a simple multi-channel deconvolution problem. This is 
an unrealistic scenario in seismic deconvolution but yet it is a good example to test our algorithm. The procedure, however, could be 
used to deconvolve time-migrated common image gathers. Figure 1a is a time domain model with 20 offsets. We convolve the model 
with a zero-phase wavelet, and mute three offsets (trace number equals 2, 6 and 9) to also test the procedure in situations of missing 
information. The data are portrayed in Figure 1b.  

We compared two methods of inversion, preconditioned LS inversion (Wang et al. , 2004) and sparse LS inversion (proposed in this 
paper). Figure 1c is the result of the precondioned LS inversion after 50 iterations of the CG algorithm. It is evident that the inversion 
successfully fill in the gap in the incomplete data. However, the vertical resolution is not satisfactory. Spurious sidelobes are present in 
the inverted reflectivity model. On the other hand, the sparse inversion provides a superior result (Figure 1d). It is almost identical to 
the real reflectivity model. The wavelet has been properly compressed. In addition, the AVO signature has been preserved. 

A 2-D synthetic example: Sparse LS Migration 

We prepared a set of 2D synthetic data to test the sparse least-squares migration. The model for the data set consists of four flat 
layers and a half-space. We use a ray tracer that accounts for the correct reflector AVA, cylindrical divergence (line sources), and 
interface transmission losses in a laterally invariant earth model. Each CMP gather has 61 offsets with a spacing of 25m. 10 CMP 
gathers are produced with a spacing of  25m. Then we randomly removed 70% of the traces to simulate a very sparse 2D survey. 

We compared three methods of 2-D AVA imaging, conventional migration (the adjoint of modeling operator), preconditioned least-
squares migration (PLSM) and sparse least-squares migration (SLSM, proposed in this paper). Figure 2 displays a zoomed view of 
three common image gathers produced by these methods. It is clear that both PLSM and SLSM provide much better result than 
conventional method. Artifacts are efficiently removed by the algorithms. SLSM provides a solution with higher resolution than PLSM. 
The method has the ability of suppressing the sidelobes introduced by the band-limited nature of the data. To complete our analysis, 
we have extracted the amplitude of the first event and plotted AVA curves for three methods in Figure 3. It can be seen that SLSM 
slightly improves the peak amplitude within the invertible angle range. Figure 4 compares the stacked images for three methods. It is 
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clear that PLSM better resolves the image than conventional migration, but some  artifacts are  still present. On the other hand, SLSM 
suppresses these artifacts by forcing sparseness in the vertical direction. However, the improvement is not so impressive as in the 
deconvolution example that we have shown in the previous section. Two reasons may account for this observation. First is the 
ubiquitous problems of operator mismatch (the forward  operator utilized in LS migration is an approximation to the operator used to 
generate the synthetic wavefields). The second is the wavelet distortion introduced by the conversion from time domain (data) and 
depth domain (model).  

Conclusions and discussion 

SLSM slightly improves the accuracy of amplitude of image gathers. At the same time, the algorithm removes spurious artifacts during 
inversion by forcing a gradually updated diagonal weighting. It might be expensive to apply SLSM due to the requirement of two  
optimal trade-off parameters. Furthermore, tests on data generated with  more complex earth models are necessary to confirm the 
validity of this method. In some of our tests we found that over regularization leads to loss of valuable information that is contained in 
events with small amplitudes. This is a potential pitfall of  SLSM. This a problem also encountered in popular techniques for post-stack 
inversion of seismic data that are based on the sparse reflectivity assumption. 
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Figure 1 A multi-channel deconvolution example to compare linear inversion and non-linear inversion. (a) Reflectivity 
model. (b) Incomplete multi-channel data. (c) Linearly inverted model. (d) Non-linearly inverted model (sparse solution). 
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Figure 2 Zoomed view of common image gathers produced by migration (a), PLSM (b) and SLSM (c). Only first four traces 
of each image gathers are displayed. 

Figure 3 AVA curves for the first event of common image gathers produced by migration (a), PLSM (b) and SLSM (c). Blue 
solid curves: inverted AVA; Red dashed curves: theoretical curves. 

Figure 4 Stacked images from migration (a), PLSM (b) and SLSM (c). 


