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Separation of signal and coherent noise by migration filtering

Tamas Nemeth∗, Hongchuan Sun‡, and Gerard T. Schuster‡

ABSTRACT

A key issue in wavefield separation is to find a domain
where the signal and coherent noise are well separated
from one another. A new wavefield separation algo-
rithm, called migration filtering, separates data arrivals
according to their path of propagation and their actual
moveout characteristics. This is accomplished by using
forward modeling operators to compute the signal and
the coherent noise arrivals. A linearized least-squares
inversion scheme yields model estimates for both com-
ponents; the predicted signal component is constructed
by forward modeling the signal model estimate. Syn-
thetic and field data examples demonstrate that migra-
tion filtering improves separation of P-wave reflections
and surface waves, P-wave reflections and tube waves,
P-wave diffractions, and S-wave diffractions. The main
benefits of the migration filtering method compared to
conventional filtering methods are better wavefield sep-
aration capability, the capability of mixing any two con-
ventional transforms for wavefield separation under a
general inversion framework, and the capability of mit-
igating the signal and coherent noise crosstalk by using
regularization. The limitations of the method may in-
clude more than an order of magnitude increase in com-
putation costs compared to conventional transforms and
the difficulty of selecting the proper modeling operators
for some wave modes.

INTRODUCTION

All seismic data sets contain both signal and noise, and the
principal task of data processing is to extract the signal com-
ponent from the noisy data. In many cases noise is coherent,
consisting of several unwanted wave modes. Examples of co-
herent noise are multiple reflections, air waves, surface waves,
tube waves, and converted waves. To remove coherent noise,
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we sometimes transform the data into a domain where the sig-
nal and coherent noise are well separated from one another.

Many transforms offer convenient ways to filter out the un-
wanted wave modes. The most common transforms are the
Fourier and Radon transforms, where the filtering can elimi-
nate specified frequency bands or dip ranges in the data, re-
spectively. Other useful operators and separation methodolo-
gies are presented in many papers. For example, Harlan et al.
(1984) use a local linear Radon transform and hyperbolic stack
to separate reflections from diffractions. Because the Radon
transform allows for limited dips and apertures in the sum-
mation window, they are able to cleanly separate the reflec-
tions from the other wave modes. Biondi (1992) and Kostov
and Biondi (1991) use localized beam stacks rather than slant
stacks to improve the resolution of the seismic image. Thorson
and Claerbout (1985) separate primary and multiple reflec-
tions by applying a normal moveout to the seismic data and
mute the multiples in the velocity–time domain. Lumley et al.
(1995) extend this method with the use of regularization and
a time-variant modeling operator. Abma (1995) uses a least-
squares inversion method to predict both the signal and the
noise in CDP data. He designs signal- and noise-prediction
filters and applies these filters to the data in an inversion pro-
cess to recover either the noise or signal. In his case the pre-
diction operators are restricted to linear moveout operations.
Blonk et al. (1995) introduce an elastodynamic inverse scat-
tering method to estimate and remove cross-line scattered sur-
face waves that show hyperbolic moveout and resemble body
wave reflections. Duquet and Marfurt (1997) filter coherent
noise during the prestack depth migration process by apply-
ing a depth-variant velocity filter. The filter design requires
a least-squares migration followed by residual moveout ve-
locity estimation. Hu and White (1998) use adaptive beam-
forming for multiple suppression. They apply minimum vari-
ance unbiased beam-forming to extract coherent signals and
obtain superior results compared to the conventional Radon
transforms. Spitz (1998) also uses prediction filters to model
and subtract coherent noise in a pattern recognition approach.
He suggests the use of higher dimensional spaces to decrease
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the probability that the signal and coherent noise patterns co-
incide.

These methods assume that a properly chosen operator
transforms the signal and coherent noise components into
nonoverlapping domains. However, such an operator may not
exist for the given signal and coherent noise components. For
example, the apexes of primary and multiple reflections can be
described equally well with both primary and multiple reflec-
tion modeling operators. In the case of aliased surface waves
or tube waves, the apparent dip of the noise can be the same
as the actual dip of reflected waves. In such cases some of the
coherent noise energy and the signal energy are intermingled
in the transform domain (Marfurt et al., 1996), i.e., there is
crosstalk between the signal and the coherent noise. Claerbout
(1990, 1992) studies the crosstalk phenomenon and finds that
properly chosen linear and non-linear weighting coefficients
might be necessary to mitigate the signal and coherent noise
separation.

In this paper, we describe a new separation algorithm called
migration filtering, which separates data arrivals according to
their path of propagation. The algorithm accounts for the tem-
poral moveout and the amplitudes of the actual data arrivals by
using the respective forward modeling operators, so it is not re-
stricted to uniformly weighted hyperbolic or linear moveouts.
In the algorithm the data are modeled by the two modeling
operators in the least-squares sense, and model estimates for
the signal and coherent noise components are obtained. Then,
the estimate of the signal model component is used to pre-
dict the signal component in the observed data. Using model-
ing operators allows one to describe each component with the
minimum number of parameters; therefore, it increases the
resolution and separability of the two components.

BASIC EQUATIONS

In this section the basic equations of the migration filtering
algorithm are derived. The observed data d′ are the sum of
signal (d′s) and coherent noise (d′n) components

d′ = d′s + d′n. (1)

The observed data vector d′ on the left-hand side of equa-
tion (1) is a known quantity, and the signal and coherent noise
components (d′s and d′n) on the right-hand side are unknowns.
Consequently, any filtering scheme based on equation (1) is
underdetermined. Similarly, many transformations of equa-
tion (1) yield an underdetermined system in the transform do-
main. A typical feature of underdetermined schemes is that
many nonzero transform-domain model parameters can rep-
resent a data parameter because of the inadequate constraints
intrinsic to underdetermined problems. As a result, the model
resolution in the transform-domain may be suboptimal. There-
fore, it is essential to find a transform where the signal and
the coherent noise transform-domain model estimates are well
separated from each other.

In conventional filtering methods the observed data are usu-
ally transformed into a transform domain and the signal is ex-
tracted by using a passband filter of the chosen transformation.
The coherent noise is given by the reject band of the transfor-
mation, and usually the pass and reject bands do not overlap.
But a convenient transformation with the necessary resolution
for data separation may not exist. To increase resolution and

separability, we use separate operators for each desired wave
mode, such that the operators provide maximum resolution for
the given wave mode. The transformation is given as a combi-
nation of these operators. Here, the operators are chosen to be
the forward modeling operators for the specified wave modes.
These operators can account for the actual moveout and ampli-
tudes of the data arrivals; thus they need fewer parameters to
represent the data in the transform domain, thereby enhancing
resolution, as illustrated in Figure 1.

In Figure 1 two events, the signal a and the coherent noise b
are modeled using uniform amplitudes and hyperbolic move-
out (signal), and nonuniform amplitudes and nonhyperbolic
moveout (coherent noise). The two events are denoted by gray
areas, with the lower end of the areas indicating the moveout
and the width of the areas indicating the amplitudes. Figure 1a
depicts fitting these events with uniform amplitude hyperbolic
moveout curves, denoted by a solid line for the moveout and
arrows for the amplitudes along the moveout curve. Figure 1b
shows the corresponding transform domain images for the
transformed signal A (black dot) and coherent noise B (black
dot and cross-hatched area). Note that B is not focused since
many fitting curves are necessary to model the event and some
of the coherent noise energy is leaking into the signal pass-
band (white area). Figure 1c depicts fitting these events with
curves obtained by forward modeling, and Figure 1d shows the

FIG. 1. Illustration of the enhanced resolution capabilities of
migration filtering. (a) Signal a and coherent noise b (gray
areas) are fitted with uniform amplitude (arrows) hyperbolic
fitting curves (solid lines). (b) Transform domain images of sig-
nal (A) and coherent noise (B). The gray area denotes the co-
herent noise reject band. The white area is the signal passband.
(c) Signal and coherent noise are fitted with curves obtained
by forward modeling. (d) Transform domain images of signal
and coherent noise from (c).
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corresponding transform domain images. Here, the coherent
noise image is focused and there is no leakage into the pass-
band.

In detail, assume that the forward modeling operator L is
represented by a combination of signal and coherent noise op-
erators (Ls Ln), where

d′ = L m′ = (Ls Ln)

(
m′s
m′n

)
= Lsm′s + Lnm′n, (2)

where m′ is the model vector consisting of two parts: the model
m′s describing the signal d′s and the model m′n describing the
coherent noise d′n. The forward modeling operators Ls, Ln and
models m′s, m′n are chosen such that equation (2) is overdeter-
mined and the model parameters are resolvable. To solve for
m′, the following parametric functional is formed:

P(m) = ‖Lm− d′‖2
. (3)

The model estimate m that minimizes equation (3) is

m = (LT L)
−1

LT d′. (4)

To test the validity of using forward modeling operator L, a
more detailed analysis on the resolution and the invertibility
of the least-squares migration operator is given in Appendices
A and B.

The two key steps in our model-based filtering scheme are
(a) to estimate ms from equation (4) and (b) to find the signal
estimate by computing ds = Ls ms. The practical implementa-
tion of equation (4) is achieved by using a conjugate gradient
scheme described in Nemeth (1996).

AN APPLICATION TO SYNTHETIC DATA

In this section some numerical tests are conducted to demon-
strate the separation capabilities of the migration filtering
method. The method is tested on synthetic data computed
for the multiple P- and S-wave scatterer models depicted
in Figure 2. Some point scatterers generate diffractions with
both compressional- (vp= 3000 m/s) and shear-wave veloci-

Table 1. Notations for Tables 2–5.

ds(.) = predicted signal
ms(.) = signal model estimate
dn(.) = predicted coherent noise
mn(.) = coherent noise model estimate
W(t) = time history of the source
τP R = traveltime between image point and receiver
τSP = traveltime between source and image point
τSR= traveltime between source and receiver
1/AP R = amplitude decay between image point and receiver
1/ASP = amplitude decay between source and image point
1/ASR= amplitude decay between source and receiver
xr , zr , or Exr = spatial coordinates of receiver
xs, zs, or Exs = spatial coordinates of source
δ() = Dirac delta function

Table 2. Signal and coherent noise modeling operators for separating P- and S-diffractions in the synthetic example.

Explicit modeling formulas Velocity restrictions

Ls ds(xr , zr , xs, zs, t) =
∫∫

ms(x, z) δ(t−τP R−τSP)
ASPAP R

∗W(t) dx dz v = 3000 m
s

Ln dn(xr , zr , xs, zs, t) =
∫∫

mn(x, z) δ(t−τP R−τSP)
ASPAP R

∗W(t) dx dz v = 1750 m
s

ties (vs= 1750 m/s), and some generate diffractions with only
compressional- or shear-wave velocities. The modeling opera-
tors and their values are given in Tables 1 and 2. The objective is
to separate the compressional velocity scatterers (here, signal)
from the shear velocity scatterers (here, coherent noise) in the
common-shot gather. Both the correct and incorrect (±7%)
velocity distributions are used for migration filtering. The in-
correct velocity distribution is used to evaluate the robustness
of migration filtering in the presence of velocity errors.

The compressional and the shear velocity scatterer models
are shown in Figures 2a and 2b, and generate diffractions shown
in Figures 2c and 2d, respectively. The observed common-shot
gather is depicted in Figure 2e, where the shot location is at
0 m offset. Only this single gather was used for the subsequent

FIG. 2. Test with multiple scatterers. (a) Point scatterers for
compressional waves. (b) Point scatterers for shear waves. (c)
Single shot gather obtained from (a). (d) Single shot gather ob-
tained from (b). (e) Observed shot gather obtained by stack-
ing (c) and (d). Conventional filtering methods have difficulty
in completely separating the compressional and shear compo-
nents from a single gather.



Migration Filtering 577

tests. The receiver interval is 50 m, and the maximum offset
is 1000 m. Figure 3 depicts the results of migration filtering
where the correct Ls and Ln operators are used. Figures 3a
and 3b show the estimated scatterers, Figures 3c and 3d de-
pict the estimated compressional and shear components, and
Figure 3e shows the estimated data. Note that the estimated
compressional and shear components approximately resemble
their original components. The artifacts seen in the estimated
gathers are mostly from the tangency problem, that is, when
the apparent moveout curves of the compressional and shear
scattered energy are locally collinear.

Figure 4 depicts the results of migration filtering, where the
incorrect operators Ls and Ln are applied. Figures 4a and 4b
show the estimated image of the scatterers, Figures 4c and 4d
depict the estimated compressional and shear components, and
Figure 4e shows the estimated data. Note that the incorrect
velocity distribution introduces additional artifacts in the esti-
mated data components. This is because the tangency problem
is now different, since different velocities give rise to different
apparent moveout curves. In our experience, the migration fil-
tering method appears to be effective if the migration velocity

FIG. 3. Test with multiple scatterers. (a) Migrated section esti-
mate of the signal model. (b) Migrated section estimate of the
coherent noise model. (c) Single shot gather predicted from the
estimated signal model. (d) Single shot gather predicted from
the estimated coherent noise model. (e) Predicted shot gather
using both the estimated signal and coherent noise models. The
migration velocity is the correct one.

errors are not more than 10% of the correct velocity. Out-
side this range, the apparent moveout of the predicted arrivals
might differ too much from the actual arrivals.

These tests demonstrate that the accurate specification of
operators Ls and Ln allows a satisfactory separation of signal
and coherent noise even from a single gather. The information
about the spatially variable moveouts and amplitudes for each
component were captured the most compact way by the mod-
eling operators. Therefore, it allowed the most optimal resolu-
tion of the two components. The tests also show the limitation
of the method in the present form illustrated in the tangency
problem. This limitation arises when the spaces of operators
Ls and Ln overlap; it is studied in Appendix B.

TUBE-WAVE ATTENUATION IN CROSSWELL FIELD DATA

The migration filtering method is applied to a crosswell
common-shot gather to attenuate tube waves in the data. The
common-shot gather contains both reflected waves and tube
waves, and it is f -k filtered in the range from 0.011 to 0.03 ms/ft
(Figure 5a). The tube waves are aliased and their apparent dip
coincides with the true dip of the reflections. For the reflected
waves the modeling operator is the acoustic modeling operator

FIG. 4. The same as in Figure 3 except the compressional veloc-
ity distribution is 7% higher and the shear velocity distribution
is 7% lower than the correct one. Acceptable separation has
been achieved in the presence of realistic errors in migration
velocity.
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that employs a high-frequency approximation (see Table 3).
The velocity distribution used for the forward modeling is ob-
tained by traveltime tomography. The tube waves are modeled
by using a modeling operator with linear moveout characteris-
tics, as depicted in Table 3.

To assess the difficulty of removing these tube waves, we first
examine how well the modeling operators can predict the data.
The common-shot gather is f -k filtered, and the remaining fil-
tered data (reflections and tube waves) should be predictable
by the reflection modeling operator because the tube waves
have the same apparent moveout as the real reflections. The
tube-wave modeling operator is more restricted. It can predict
most of the tube waves (except some local amplitude varia-
tions), but it cannot predict most of the reflections because
they are not characterized by periodic arrivals with a linear
moveout and a tube-wave velocity. Based on these considera-

FIG. 5. Separation of crosswell reflections and tube waves.
(a) A filtered crosswell common-shot gather. Note the aliased
tube waves characterized by the periodic linear events that
slant from left to right. The apparent dip of the aliased tube
waves corresponds to the dip of the reflected waves. (b) The
reconstructed common-shot gather; (c) the reconstructed re-
flections; (d) the reconstructed tube waves.

Table 3. Signal and coherent noise modeling operators for separating reflections and tube waves in crosswell data.

Explicit modeling formulas Velocity restrictions

Ls ds(xr , zr , xs, zs, t) =
∫∫

ms(Ex) δ(t−τP R−τSP)
ASPAP R

∗W(t) dx dz v = vmigration

Ln dn(zr , zs, t) =
∫

mn(z) δ (t − τSZ− τZ S) ∗W(t) dz v = 4570 f t
s

tions, it is expected that there will be some residual coherent
noise energy left in the predicted signal component.

Figure 5b shows the reconstructed common-shot gather, and
Figure 5c shows the reconstructed reflections after 15 iterations.
The normalized objective function is 18% of the original objec-
tive function, where most of the misfit energy originates from
the lower-left corner of the data in Figure 5a. This part of the
data is not accessible because of restrictions on the dimension
of the computational model. Some of the tube waves are re-
moved, but considerable tube-wave energy still remains in the
data after migration filtering. Apparently the reflection mod-
eling operator is capable of predicting some of the tube waves
because they are aliased in the same apparent dip direction as
the reflections. Figure 5d shows the reconstructed tube waves
after migration filtering.

Figures 6a–6d show the f -x spectrum of the observed data,
the reconstructed data, the estimated reflections, and the esti-
mated tube waves. The energy of the tube waves is partially
removed from the estimated reflections, and the reflection

FIG. 6. Separation of crosswell reflections and tube waves.
(a) The f -x spectrum of the crosswell common-shot gather;
(b) the f -x spectrum of the reconstructed common-shot gather;
(c) the f -x spectrum of the reconstructed reflections; (d) the
f -x spectrum of the reconstructed tube waves.
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patterns are now revealed. However, the estimated reflections
still contain considerable tube-wave energy.

ATTENUATION OF SURFACE-RELATED WAVES
IN 3-D FIELD DATA

Migration filtering is now used to attenuate surface-related
waves from a 3-D common-shotpoint (CSP) gather collected
in West Texas. The traces contain two dominant wave com-
ponents: reflections and surface-related waves. The surface-
related waves are partly comprised of Rayleigh waves, direct
waves, and shallow multiple reflections. The low-frequency
Rayleigh waves are first removed by a low-cut (0–20 Hz) filter
to give the results shown in Figure 7. Although the surface-
related waves do not pose a serious threat for imaging 2-D
or 3-D in-line data, they become increasingly challenging for
3-D off-line data because these waves have an x–t moveout
character that is hyperbolic on the far-offset off-lines.

The signal modeling operator (for the reflections) is selected
to be the high-frequency acoustic modeling operator. The ve-
locity for this operator is the migration velocity, and the mi-
grated reflectivity events are obtained by the adjoint modeling
operator (Kirchhoff migration). The coherent noise modeling
operator for the surface-related waves is chosen to be a point
scatterer modeling operator with a range of velocities from
7000 to 11 000 ft/s (2134–3354 m/s). The scatterers are restricted
to be no deeper than 100 ft (26.3 m) from the surface. A sum-
mary of the modeling operators is given in Table 4.

A difficulty in separating wave modes is that the diffraction-
based reflection modeling operator can predict most of the
arrivals for each observed shot gather. Therefore we need to
constrain the range of this operator. For this purpose we use ge-
ological a priori information by limiting the dip of the imaged

FIG. 7. The 3-D shot gather after 20-Hz low-cut filtering. The
maximum in-line offset for the gathers is 7800 ft (2378 m); the
maximum cross-line offset is 8600 ft. (2622 m)

Table 4. Signal and coherent noise modeling operators for separating reflections and surface-related waves in 3-D data.

Explicit modeling formulas Velocity restrictions

Ls ds(Exr , Exs, t) =
∫∫∫

ms(Ex) δ(t−τP R−τSP)
ASPAP R

∗W(t) dEx v = vmigration

Ln dn(xr , xs, 0, t) = ∫∫ mn(xs, y, v) δ(t−τSR)
ASR

∗W(t) dy dv 7000 f t
s < v < 11 000 f t

s

reflections within a range of±15◦ from the horizontal because
the expected maximum dip of the subsurface layers does not
exceed this range. In this way the constrained modeling op-
erator cannot predict most of the surface-related waves. The
surface-wave modeling operator predicts events with off-line
hyperbolic moveouts in the given velocity range. Most of the
surface-related waves satisfy this criterion, except for arrivals
strongly affected by local surface velocity variations or ampli-
tude fluctuations. The surface-wave modeling and reflection
modeling operators are not likely to predict these fluctuations.
As a result, we expect these features will remain in the residual
data after inversion.

Figure 8a depicts an off-line shot gather taken from traces
642–720 in the 3-D data set in Figure 7. Figures 8b–8d depict
the estimated signal, coherent noise, and residual data compo-
nents. The misfit function value is 9% of the original data.

The estimated reflections and surface-related waves differ
from each other in several features. The frequency range of
the two components is different. The frequency ranges of the

FIG. 8. Separation of reflected and surface-related waves in
3-D data. (a) An off-line common-shot gather extracted from
the 3-D common-shot gather; (b) the reconstructed reflec-
tions; (c) the reconstructed surface-related waves; (d) the resid-
ual data between the observed and the reconstructed wave
modes.
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reflections and louder surface-related waves are 30–82 Hz and
2–40 Hz, respectively. The frequencies for arrivals near the
apexes (where the x–t moveouts are similar) are different for
the two components, with a small overlap in the 30–40-Hz
range. Near the flanks of the hyperbolic moveout curves, how-
ever, both components have similar frequencies but their dip is
different. The frequency range of the residual data is 20–65 Hz,
but the main events in the center of the gather have the same
frequency as the surface-related waves. The dip of the resid-
ual data also corresponds to the dip typical for the surface-
related waves. Considering all these observations, we conclude
that the estimated reflections and surface-related waves have
different characteristics. Thus, migration filtering is successful
in separating the surface-related waves and the reflection ar-
rivals. The characteristics for the residual data are similar to
those of the surface-related waves and dissimilar to those of the
reflections.

SURFACE-WAVE ATTENUATION IN 2-D FIELD DATA

The migration filtering method is now applied to 2-D seismic
field data to attenuate surface waves. The data were collected
by Arco at their test site several miles west of Sulphur Springs,

FIG. 9. Separation of reflected and surface waves in 2-D data.
(a) A common-shot gather after 1–55-Hz bandpass filtering
and muting; (b) the reconstructed surface waves; (c) the re-
constructed reflections [1 s automatic gain control (AGC) is
used for display]; (d) the predicted reflection by using f -k fan
filtering (with 1 s AGC).

Texas. Figure 9a shows a portion of the data, which will be used
as the input data for the migration filtering algorithm. Note
the strong surface waves, which we will attempt to eliminate
by migration filtering and f -k filtering. The source is located
at the surface with an offset of 0 ft, there are 60 geophones
located at the surface with offsets ranging from 1800 to 3570 ft
(549–1088 m), the geophone interval is 30 ft (9.14 m), and the
time sampling interval is 4 ms. No group arrays were used for
these data.

Figure 10a shows the f -k Fourier spectrum of the original
traces. In the spectrum, the energy is focused into two fre-
quency zones: 4 to 21 Hz, which is predominantly the surface-
wave energy, and 22 to 40 Hz, which contains the reflection
energy. We expect that migration filtering will effectively re-
move surface waves without attenuating the reflection energy.

The migration velocity is taken as a constant value of 8000 ft/s
(2439 m/s). This use of a constant migration velocity also has
important implications for computational efficiency because
Kirchhoff’s method of migration can be replaced by the much
more efficient Stolt-type f -k migration. By inspection of the
common-shot gathers, the surface-wave migration velocity is
estimated to range from 850 to 2750 ft/s (259–838 m/s). The
source wavelet is extracted directly from the seismograms. The
central frequency of the Ricker wavelet is taken to be 10 Hz
for the surface-wave migration and 30 Hz for the reflection
migration operator. A summary of the modeling operators is
given in Table 5.

Figure 9b shows the predicted surface waves after 50 itera-
tions, which agree very well with the apparent surface waves in
the original seismograms shown in Figure 9a. Figure 10b shows

FIG. 10. Separation of reflected and surface waves in 2-D data.
(a) The f -k spectrum of a common-shot gather shown in Fig-
ure 9; (b) the f -k spectrum of the reconstructed surface-related
waves; (c) the f -k spectrum of the reconstructed reflections; (d)
the f -k spectrum of the fan-filtered observed data.
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Table 5. Signal and coherent noise modeling operators for separating reflections and surface waves in 2-D data.

Explicit modeling formulas Velocity restrictions

Ls ds(xr , zr , xs, zs, t) =
∫∫

ms(x, z) δ(t−τP R−τSP)
ASPAP R

∗W(t) dx dz v = vmigration

Ln dn(xr , xs, t) =
∫∫

mn(xs, y, v) δ(t−τSR)
ASR

∗W(t) dy dv 850 f t
s < v < 2750 f t

s

the f -k Fourier spectrum of the predicted surface waves, which
also agrees well with the original surface-wave energy shown
in Figure 10a.

Figure 9c shows the migration-filtered common-shot gath-
ers after 50 iterations. Compared with the original data in
Figure 9a, this migration-filtered section contains less surface-
wave energy, indicating an effective removal of surface waves.
Figure 10c shows the f -k Fourier spectrum of the migration-
filtered common-shot gather. Compared with the original data
spectrum in Figure 10a, most of the surface-wave energy has
been filtered out, but there is no significant attenuation of re-
flected wave energy. In comparison, Figure 9d shows f -k fil-
tered common-shot gathers, and Figure 10d depicts their f -k
spectrum. Migration filtering succeeds to correctly predict both
components’ f -k spectrum without the surgical cut required by
f -k filtering.

DISCUSSION AND CONCLUSIONS

The key element in separating the signal and coherent noise
is to find operators that separate these components in some
transform domain. In this paper we described an algorithm that
separates data arrivals according to their actual path of prop-
agation. The modeling operators are not restricted to linear or
hyperbolic moveout and uniform amplitudes. The benefits of
using the modeling operators are (1) better wavefield separa-
tion capability as a result of increased resolution (also fewer
artifacts) in the respective transform-domain model estimates,
(2) capability of mixing any two conventional transforms for
wavefield separation under a general inversion framework, and
(3) capability of mitigating the crosstalk problem by adding
model- and data-dependent regularization terms to the algo-
rithm (Nemeth, 1996). Results with synthetic and field data sug-
gest that migration filtering provides better separation than the
separation obtained by using some other conventional trans-
form because the moveout and amplitude information of the
data is captured in the most compact way.

The modeling operators might not be able to separate
the two components completely. For example, separation of
tangent data components will be incomplete. The synthetic
and field data examples show different separation results
depending on the predictability of one component with the
other component’s operator. The 2-D surface wave and the 3-D
surface-related wave separations resulted in an almost com-
plete separation of coherent energy from signal, while some
residual coherent energy was left in the signal for the tube-wave
case and the synthetic example. To further improve these last
two cases, some regularization may be necessary. Model-based
regularization can mitigate the crosstalk by using constraints
on the model domain parameters, and data component-based
regularization provides additional information by using data
constraints (Nemeth, 1996). Further research on the regular-
ization issues is also necessary.

The effectiveness of the migration filtering method relies on
the accurate specification of the two modeling operators, Ls and
Ln. In practice, only approximate estimates of these modeling
operators are available, and they may have (slightly) differing
ranges than those of the original operators. For example, the
velocity distributions used for modeling might be suboptimal,
leading to some artifacts in separation. However, the numerical
examples suggest that migration filtering can tolerate moderate
velocity errors (±7%). Random noise and additional unspec-
ified wave modes also affect the separation capabilities of the
migration filtering method. If these wave modes lie beyond the
spaces spanned by the modeling operators, the filtering algo-
rithm will leave them in the residual vector.

The present form of migration filtering is cast into a least-
squares inversion formalism where numerous (in practice, a
few tens of) iterations may be necessary to achieve acceptable
convergence. This is usually the consequence of using ineffi-
cient modeling operators Ls and Ln for the inversion. To speed
up convergence, both Ls and Ln can be preconditioned to bal-
ance the convergence rates of Ls and Ln. Of course, a general
computational speed-up can be achieved by providing compu-
tationally faster modeling operators.

Possible extensions of the migration filtering method include
(1) separation of primaries and multiples, (2) separation of
reflections and surface waves, (3) separation of S-waves and
converted P-S-waves, (4) separation of reflections and aliased
tube waves, (5) separation of on-line and off-line reflections
in a 3-D survey, and (6) separation of multicomponent data
(Wang and Nemeth, 1997).
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APPENDIX A

MATRIX EXPRESSIONS FOR THE LEAST-SQUARES MIGRATION OPERATOR

In this section the explicit matrix expressions are derived
for the Hessian matrix associated with equation (4), the least-
squares migration operator, and the data resolution matrix.

The Hessian matrix is given as

H =
(

H11 H12

H21 H22

)
= LT L =

(
LT

s Ls LT
s Ln

LT
n Ls LT

n Ln

)
. (A-1)

Its inverse, D = H−1, is given as

D11 =
(
H11 −H12 H−1

22 H21
)−1
,

D12 = −
(
H11 −H12 H−1

22 H21
)−1H12 H−1

22 ,

D21 = −
(
H22 −H21 H−1

11 H12
)−1H21 H−1

11 ,

D22 =
(
H22 −H21 H−1

11 H12
)−1
. (A-2)

Similar expressions can be found in Tarantola (1987, problems
4.2, 4.3, 4.4). Substituting the terms of the Hessian matrix into
the above expressions yields the inverse of the Hessian:

H−1 =
 [

LT
s (I−Nn)Ls

]−1 −[LT
s (I−Nn)Ls

]−1LT
s Ln

(
LT

n Ln
)−1

−[LT
n (I−Ns)Ln

]−1LT
n Ls

(
LT

s Ls
)−1 [

LT
n (I−Ns)Ln

]−1

 , (A-3)

where

Ns = Ls
(
LT

s Ls
)−1LT

s ,

Nn = Ln
(
LT

n Ln
)−1LT

n (A-4)

are the data resolution matrices of the signal and the coherent
noise, respectively. Matrices (I − Ns) and (I − Nn) are called
signal and coherent noise rejector matrices (with Ns and Nn

being projector matrices), respectively, because they filter out
the signal and the coherent noise components from the data.
For example, if the signal filter matrix is applied to the data
described by equation (2), the signal component is filtered out
and part of the coherent noise component lying outside space
defined by I−Ns is passed ((I−Ns) d′ = (I−Ns)Lnm′n).

The least-squares migration operator is given by

H−1LT =
([

LT
s (I−Nn)Ls

]−1LT
s (I−Nn)[

LT
n (I−Ns)Ln

]−1LT
n (I−Ns)

)
. (A-5)

Equation (A-5) shows how the least-squares migration oper-
ator estimates the model from the data. First, the data d′ are
filtered by both the coherent noise rejector matrix (I−Nn) and
the signal rejector matrix (I − Ns) to eliminate the coherent
noise and signal components, respectively. These rejector ma-
trices not only eliminate the above-mentioned components but
may also reject part of the passed components lying within the
spaces defined by the corresponding rejector matrices. Then,
standard adjoint modeling operators are applied to these re-
maining components to give the model estimates, e.g., for the
signal ms ≈ LT

s (I − Nn) d′. Finally, inverse Hessian-like oper-
ators, e.g., [LT

s (I − Nn)Ls]−1, are applied to these model esti-
mates to provide a least-squares estimate of the model. If the
inverse Hessian-like operators, as above, are invertible, the two
components can be separated perfectly. In the opposite case

some approximate inverses are used and parts of the signal
and coherent noise lying in the same space spanned by both
operators are only partially separated. To mitigate this situa-
tion, some regularization might be needed. For a more detailed
analysis on the invertibility issue, see Appendix B.

Finally, the data resolution matrix is given as

L H−1LT = Ls
[
LT

s (I−Nn)Ls
]−1LT

s (I−Nn)

+Ln
[
LT

n (I−Ns)Ln
]−1LT

n (I−Ns), (A-6)

where the first term on the right-hand side is the data resolution
matrix associated with the signal and the second term is the data
resolution matrix associated with coherent noise.
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APPENDIX B

INVERTIBILITY OF THE HESSIAN OF THE LEAST-SQUARES MIGRATION OPERATOR

In this section the invertibility properties of the Hessian of
the least-squares migration operator in equation (A-5) are an-
alyzed. While equation (A-5) demonstrates that both the sig-
nal and the coherent noise components can be reconstructed
theoretically from the data, it also shows the limitations of the
reconstruction. Here, we will analyze only the upper row of ex-
pression (A-5) for its ability to reconstruct the signal estimate
ds. A similar analysis can also be made for the case of coherent
noise reconstruction with the lower row of expression (A-5).

We chose modeling operators such that (LT
s Ls)−1 and

(LT
n Ln)−1 are invertible. Then the signal reconstruction is lim-

ited by the crosstalk of the coherent noise rejector matrix
(I−Nn). That is, matrix

Q = [LT
s (I−Nn)Ls

]
(B-1)

in equation (A-5) may not be invertible. There are several cases
where Q is not invertible because of the structure of the data
resolution matrix Nn.

Nn = I, or the range of Nn covers the full data range

In this case

Nn = Ln
(
LT

n Ln
)−1LT

n = I, (B-2)

with I being the unity matrix so that the matrix Q= 0 and its
inverse do not exist. Here, matrix 0 denotes a matrix with zero
values. In this case operator Nn predicts any possible data in the
least-squares sense. Examples of invertible operators are the
continuous Fourier transform and the continuous Radon trans-
form over closed surfaces (related to the Fourier transform via
the slice-projection theorem). Equation (B-2) also implies that
operator Ln is invertible.

A necessary condition for the complete separation of signal
and coherent noise is that the Ls and Ln operators must span
different regions in the data space. For example, if Ls predicts
all data in the 30–50-Hz range and Ln predicts all data in the
70–90-Hz range, then the signal and the coherent noise can be
separated exactly. If one of the operators spans the full range,
as in this case, complete separation is not possible without mod-
ifications. For illustration, see Figure B-1a.

Ln = Ls, or coincident operator ranges

In this case

Nn = Ls
(
LT

s Ls
)−1LT

s or Ln = Ls, (B-3)

so that the matrix Q= 0 and its inverse do not exist. This
case shows that if the two operators (Ls and Ln) are too close

to one another, they have the same range and the signal and
coherent noise cannot be separated. For example, if both Ls and
Ln predict the same data in the 30–50-Hz range, then the signal
and coherent noise cannot be separated by equation (A-5). For
illustration, see Figure B-1b.

Partially coincident operator ranges

This is the case when the ranges of Ls and Ln partially over-
lap, or Q 6= 0 and its inverse still do not exist. In such cases some
parts of the signal and the coherent noise are fully separable
and some parts are not separable. For example, if Ls predicts
data in the 30–50-Hz range and Ln predicts data in the 40–60-
Hz range, then the 30–40-Hz range of data will be predicted as
signal, the 50–60-Hz range of data will be predicted as coherent
noise, and the 40–50-Hz range of data will be predicted by some
combination of signal and coherent noise. For illustration, see
Figure B-1c.

FIG. B-1. Overlapping operator ranges. D denotes the full data
range, S denotes the range of the signal modeling operator, and
N denotes the range of the coherent-noise modeling operator.
(a) The range of the coherent-noise modeling operator covers
the full data range; (b) the ranges of signal and coherent-noise
modeling operators fully overlap; and (c) the ranges of signal
and coherent-noise modeling operators partially overlap.


