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Wave-equation traveltime inversion

Y. Luo* and G. 1. Schuster*

ABSTRACT

This paper presents a new traveltime inversion
method based on the wave equation. In this new
method, designated as wave-equation traveltime in­
version (WT), seismograms are computed by any
full-wave forward modeling method (we use a finite­
difference method). The velocity model is perturbed
until the traveltimes from the synthetic seismograms
are best fitted to the observed traveltimes in a least
squares sense. A gradient optimization method is used
and the formula for the Frechet derivative (perturba­
tion of traveltimes with respect to velocity) is derived
directly from the wave equation. No traveltime pick­
ing or ray tracing is necessary, and there are no high
frequency assumptions about the data. Body wave,
diffraction, reflection and head wave traveltimes can
be incorporated into the inversion. In the high-

INTRODUCTION

Seismic inversion algorithms span the range between two
extremes: traveltime inversion (Dines and Lytle, 1979;
Pauls son et al., 1985; Ivansson, 1985; Bishop et al., 1985;
Lines, 1988; Justice et al., 1989; and many others) and
full-wave inversion (Tarantola, 1987; Johnson and Tracy,
1983; and others). Traveltime inversion typically uses ray
tracing to compute both the traveltimes and Frechet deriv­
ative (perturbations of traveltimes with respect to veloci­
ties). While computationally efficient, traveltime inversion is
subject to a high-frequency assumption about the data and
can therefore fail when the earth's velocity variations are
characterized by the same wavelength as in the source
wavelet. On the other hand, we can show that the misfit
function to be minimized (sum of the squared errors between
observed and calculated traveltimes) can be quasi-linear
with respect to the relative change between the assumed and
actual velocity models. A gradient optimization algorithm

frequency limit, WT inversion reduces to ray-based
traveltime tomography. It can also be shown that WT
inversion is approximately equivalent to full-wave
inversion when the starting velocity model is "close"
to the actual model.

Numerical simulations show that WT inversion suc­
ceeds for models with up to 80 percent velocity
contrasts compared to the failure of full-wave inver­
sion for some models with no more than 10 percent
velocity contrast. We also show that the WT method
succeeds in inverting a layered velocity model where a
shooting ray-tracing method fails to compute the cor­
rect first arrival times. The disadvantage of the WT
method is that it appears to provide less model reso­
lution compared to full-wave inversion, but this prob­
lem can be remedied by a hybrid traveltime + full­
wave inversion method (Luo and Schuster, 1989).

(e.g., conjugate gradients) can thus make rapid progress in
searching for the correct velocity model and successful
inversion can be achieved even if the starting model is far
from the actual model.

Attempts to bridge the gap between the extremes of
traveltime inversion and full-wave inversion include Born
inversion (Clayton and Stolt, 1981; Weglein, 1982; Keys and
Weglein, 1983;Bleistein and Gray, 1985;Carrion and Foster,
1985; and others) and other amplitude methods which are
subject to restrictive assumptions about the data. These
intermediate methods can be very successful for some data
sets but usually not for data with strong contrasts in imped­
ance. Intermediate methods also include surface-wave inver­
sion (Wattrus, 1989) and diffraction tomography (Lo et al.,
1988)

Full-wave inversion overcomes limitations imposed by the
high-frequency restrictions in traveltime inversion and the
weak scattering approximation of Born methods by perturb­
ing the velocity model until the synthetic seismograms match
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646 Luo and Schuster

(3)

the observed seismograms. No approximations are neces­
sary and the synthetic seismograms are usually computed by
a finite-difference solution to the wave equation. In addition,
the Frechet derivatives are elegantly computed by reverse
time migration of the seismogram residuals. The problem
with full-wave inversion, however, is that the misfit function
(normed difference between observed and synthetic seismo­
grams) can be highly nonlinear with respect to the velocity
models. Gauthier et al. (1986) showed that full-wave inver­
sion can fail for a velocity model with no more than 10
percent velocity contrast. A reason for this failure is that the
misfit function is highly nonlinear with respect to velocity
perturbations in the model. In this case a gradient method
will tend to get stuck in local minima if the starting model is
moderately far from the actual model.

Can one borrow the best characteristics of traveltime
inversion (quasi-linear misfit function and robust conver­
gence properties) and full-wave inversion (no approxima­
tions to the data) to create an inversion method free from
approximations, robust in the presence of data noise, and
quickly convergent for starting models far from the actual
model? Traveltime inversion might achieve this goal if the
wave equation, rather than the approximate method of ray
tracing, is used to compute traveltimes and Frechet deriva­
tives. This paper describes the derivation of a new velocity
inversion method, wave-equation traveltime inversion (WT),
which minimizes traveltime residuals using traveltimes and
Frechet derivatives computed from solutions to the wave
equation. The merits of WT inversion are that it can invert
for some velocity models with more than 80 percent contrast
in impedance, its misfit function is roughly independent of
realistic density variations, it can invert for complicated
velocity models where shooting ray-tracing methods fail, no
high-frequency assumptions about the data are necessary,
and traveltime picking and event identification may some­
times be unnecessary. The disadvantage is that the WT
method is characterized by less model resolution compared
to that associated with a full-wave inversion method. We
first present a derivation of the WT method, and then present
results from synthetic and real data tests.

THEORY

This section presents the derivation of the wave-equation
traveltime inversion (WT) method. The key steps are to (1)
define a connective (Luo and Schuster, 1991) function that
connects the traveltime residual with the pressure seismo­
grams (this step allows for the derivation of the Frechet
derivative), (2) define a traveltime misfit function (the
summed squared difference between observed and synthetic
traveltimes), and (3) derive the perturbation of the misfit
function with respect to velocity using the wave equation.

The following analysis assumes that the propagation of
seismic waves honors the 2-D acoustic wave equation. Let
p(x" t; Xs)obs denote the observed pressure seismograms
measured at receiver location x, due to a line source excited
at time t = 0 and at location X S ' For a given velocity model,
p(x" t; Xs)cal denotes the computed seismograms which
satisfy the acoustic wave equation

1 a
2p(x,

t; x s) [ I ]
c 2(x) at 2 - p(x)V· p(x) Vp(x, t; x s)

= s(t; x), (1)

where p(x) is the density, s(t; x) is the source function, and
c(x) is the wave speed.

Connective function

We now use a crosscorrelation function to define a con­
nective function that connects the traveltimes with the
pressure field. The degree to which the synthetic and ob­
served seismograms match each other can be estimated by
the crosscorrelation function

f p(x" t + T; X s lobs
f(x" T; x s) = dt A( .) p(x" t; Xs)cal,

x, X s obs

where A(x,; Xs)obs is the maximum amplitude of p(x" t;
Xs)obs and T is the shift time between synthetic and real
seismograms. The divisor A(x,; xs)obs normalizes the ob­
served seismograms to a maximum amplitude of 1 and
eliminates amplitude problems due to inconsistent coupling
of the geophones or source to the earth.

We seek a T that shifts a synthetic seismogram so that it
"best" matches the observed seismogram. The criterion for
"best" match is defined as the traveltime residual IlT that
maximizes the crosscorrelation function j'(x., T; x s ) , i.e.,

f(x" IlT; x s) = max {f(x" T; x, )IT E [ - T, TJ}, (2)

where T is the estimated maximum traveltime difference
between the observed and calculated seismograms. For the
examples in this paper, we use only the transmitted wave­
forms by windowing out all other arrivals so that the IlT

corresponds to the traveltime difference between the ob­
served and calculated transmitted arrivals. Note IlT = 0
indicates that the correct velocity model has been found
which generates a transmitted wave arriving at the same time
as the observed transmitted wave.

The derivative of f(x" T; x s) with respect to T should be
zero at IlT unless its maximum is at an end point IlT = T or
IlT = -T:

. _ [af(x" T; x s)]
ft -

..T aT
T ~ ~T

f jJ(x" t + IlT; Xs )obs
= dt A(') p(x" t; Xs)cal = 0,

x, Xs obs

where jJ = apex, t; xs)lat. Equation (3) is the connective
function which will be used to compute the Frechet deriva­
tive.

Misfit function

The WT method attempts to determine a velocity model
c(x) which predicts seismograms p(x" t; xs)cal that minimize
the following misfit function:

(4)
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Wave-equation Traveltime Inversion 647

where ~T is defined by equation (2) and the factor 1/2 is
introduced for subsequent simplifications. This criterion can
be generalized to account for the estimated observation
errors or a priori information in model space.

A gradient method can be used to find the velocity model
that minimizes equation (4). For simplicity, we discuss the
steepest descent method although the conjugate gradient
method can also be used (Tarantola, 1987). To update the
velocity model, the steepest descent method gives

'Y = _,_I._ L L Jdtil(x, t i x.: 0) *p(x, t;x5)5T(X" t;x 5 ) ,

c-(x) S I

(8a)

where 5T is the pseudotraveltime residual,

2
OT(X" t ; x,) = --f;P(x" t + ~T; Xs)obs~T(X" x5 ) . (8b)

Using the identities (Tarantola, 1987)

Using equation (3) and the rule for an implicit function
derivative, we get

where 'V(xh is the steepest descent direction of the misfit
function S and Uk is the step length (see Appendix B) for the
kth iteration. The central problem is how to compute 'Y( x)

using the wave equation. To obtain 'V(x), take the derivative
of S with respect to the velocity model c(x):

Jdt [f(t) * g(t)]h(t) = Jdt g(t)[f( -t) * h(t)],

g(x, r I ; x', 0) = g(x, 0; x', t),

(9)'V = _,_1_ L Jdt p(x, t; XS)jJ'(X, t; x 5 ) ,

c: (x) S

we can rewrite equation (Sa) as

where

p'tx , t; x s ) = L g(x, <t ; x" 0) * 5T(X" t; x,),

(5)

(6)
as a(~T)

'V(x) =--= - L L - ~T(X,., x,).
ac(x) ac(x)s r

ap(x" t; X s leal 2
----- =--3 il(x, t; x" 0) * jJ(x, t; x.), (7c)

ac(x) c(x)

where g(x, t; x', t'l is the Green's function for equation (I);
that is, the pressure field at point x and time t due to the
impulse source 5(x - x ')5(t - t'). The asterisk represents
time convolution. Substitution of equation (7c) into equation
(7b) gives

= Jdt p(x" t + ~T; x, )obsjJ(X" t; Xs )eal·

In Appendix A, we show that the Frechet derivative of the
pressure field p(x" t: xs)eal is

(l2a)

We show that in the high-frequency limit and under a
linear perturbation assumption the WT method reduces to
ray-tracing traveltime tomography. We also show that the
WT method is approximately equivalent to full-wave inver­
sion if the starting model is close to the true model.

According to 3-D asymptotic ray theory,

pix.; t; Xs)eal = A(xr; Xs)eal0[t - T(Xr ; xs)caIJ, (II)

where T(Xr ; Xs)cal is the traveltime computed along rays for
a given velocity model and A(xr; Xs)cal is the amplitude
factor which accounts for spherical spreading losses
(Bleistein, 1984). Substituting equation (II) into (7b) yields

op = pt x.; t; X,)obs -p(x" t: X5)eal' (10)

Combining equations (9) and (5) yields an iterative method
to invert for a velocity model c(x) from traveltime residuals.
In Appendix B, we describe the computer implementation of
this theory.

. aT(Xr ; Xs)cal}
- A(xr; X, lealO[t - T(Xr; Xs)eal] ac(x) ,

RELATIONSHIP OF WT INVERSION TO RAY·TRACING
TRAVELTIME TOMOGRAPHY AND FULL·WAVE INVERSION

pi x, t; x s ) is the pressure field calculated for the current
velocity model c(x) and p't x, t; x s ) is the field computed by
reverse time propagation of the pseudoresidual 5T(X" t; xs )

acting as a source at receiver location x.. This result is the
same as that offull-wave inversion except 5T is used instead
of

a(~T) I J
-- = - dt jJ(xn t + ~T; Xs)obs
ac(x) E

{

aA(Xr ; Xs)cal
x o[t - T(Xr; Xs)obs]

ac(x)

i7b)

(7d)

(7a)

jJ(x" t + ~T; X5)obs

E
x

a(~T) 2 J
-- = -3- dt !lex, t; x,, 0) * p(x, t; X,)
ac(x) c (x)

I J ap(x" t; X, )eal
=-E dt jJ(x" t + ~T; XsJobs

aC(X)

E = - Jdt jj(X" t + ~T; Xs)obsP(X" t; X,)eal

where

a(~T)

ac(x)

and substituting equation (7d) into equation (6) gives
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648 Luo and Schuster

where

E = f dt p(x" t + ~T; Xs)obsA(X , ; Xs )calB[t - T(X, ; Xs )calJ.

(l2b )

Ray-tracing tomography employs a linear perturbation as­
sumption , i.e. , when the velocity c(x) is perturbed, the
raypath remains unchanged for first-order variations in ve­
locity and traveltimes. An unperturbed raypath leads to an
unperturbed amplitude with a constant ray tube . Therefore ,
setting the derivative of A(x, ; Xs) cal with respect to c(x ) to 0
in equation (l2a) and substituting equat ion (l2b) into equa­
tion (l2a), we get

gram p(x" t;Xs)ca l differs by only a time shift from pi x., t:
Xs )obs,

p(X" t; Xs)cal ee pt x , t + ~T; Xs)obs

This assumes that the amplitude differences are negligible.
Therefore,

p(X" t + ~T; Xs)obs-p(x" r: Xs)obs
jJ(x" t + ~T ; Xs)obs ""------------­

~T

p(X" t; Xs)cal - p(x" t; Xs)obs
""

~T

Substituting the above equation into equation (8b) yields

where ~T' = T(X,; Xs)obs - T(X, ; xs )caJ and T(X,; Xs)obs is the
traveltime picked from real data . This result shows that the
Jacobian matrix in ray-tracing tomography is a special case
of our Jacobian operator in equation (7) for the high­
frequency and linear perturbation assumptions.

To establish the relationship between WT and full-wave
inversion, assume p(x" t; X,)obs is the seismogram for the
true velocity model c(x). If the current velocity model is
c(x) + lk(x) and Bc(x) is small, then the calculated seismo-

a(~T)

ac(x)

aT(X,; Xs)cal a(~T')

ac(x) ac(X) ,
(l2c) 2 2

BT(X" t; xs) ""E[p(x" t; Xslob s - p(x" t; Xs)cal] = EBp.

(13)

This result shows that BT equals Bp except for a factor of 2/E;
the WT inversion method is similar to full-waveinversion when
the current velocity model is close to the true model. In
practice, however, it is difficult to determine ~T by crosscor­
relation [equation (2)] when ~T is small. This results in less
velocity resolution compared to that from the full-wave inver­
sion method. An optimal method might be to use the WT
method to reconstruct a moderately coarse velocity model and

a

2000 m/s

b c d

4000 m/s

FIG. 1. (a) Dipping layer + fault model. (b) Initial starting model for both WT and full-wave inversion algorithms. (c) Velocity
field reconstructed by full-wave inversion method after 20 iterations. Source and receiver parameters given in text. (d) Same
as (c) except the WT method is used for the velocity reconstruction.
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Wave-equation Traveltime Inversion 649

use full-wave inversion for the finer velocity details. This
hybrid strategy is successfully exploited in Luo and Schuster
(1989).

NUMERICAL EXAMPLES

uration and velocity are the same as that in the Langan
velocity model (Figure 2b), except the den sit y profile is that
in Figure 4a. This densit y function was computed with a
formul a deri ved from well-log measurements (Gardner et al.,
1974)

(14)

True Veloci Model

100 200 300 400

Depth(m)

3000

! 2500

,~ 2000
~
~ 1500

1000
30l 0

[

( ] 1/4

:l= C;l '

'T1mI(IIII)

'l) IClO UD _

Cross· Well SeismoiWN rot Un.an Veloclly Model

100 200

Horizoul DiswIte (m)

100

where c is the velocity (Figu re 2b), Co = 2000 mis, and
I/po = 2.5 x 10--4 m' /kg. In the inversion , the incorrect
lightne ss profile in Figur e 4b is used . Despite an incorrect
ass umption of homogeneous den sity, the WT method still
achieves an accurate velocity reconstruction (Figure 4d)
afte r 10 iterations.

Exxon crosswell data

Calnan and Schuster (1989) inverted the first arrival time s
from an Exxon crosswell dat a set using a ray tracing
tomography algorithm . The cross well geometry consisted of
96 evenly spaced downhole sources and receivers , 23 evenly
spaced surface sources and rece ivers, the source and reo
ceive r well depths were 305.0 rn, and the well offset was
183.0 m. The data and first arriva l picks were of superb
qualit y, partially due to the use of explosive sources . Figure
5 depict s a typical common shot point gather from the Exxon
data set. Figure 6 shows the to mogra ms inverted from this
crosswell data set.

Figure 6 compares the Calnan and Schuster ray-tracing
tomogram on the right with the WT tomogram on the left.
The ray-tracing and WT tomograms are quite similar. al-

FIG . 2. (a) Crosswell geometry with eight sources evenly
distributed along left well and 83 receivers evenly distributed
along right well. (b) Sonic log, and (c) pressure seismogram
for a source at depth 300 m.

Figure I illustrates a faulted cro sswell velocit y model
where both the full-wa ve and WT methods are used to
reconstruct the velocities from sy nthetic data. Figure la
shows the true velocity model from which we calcul ate the
synthetic seismograms by a finite-difference method . The
vertical source and receiver wells are along the left and right
margins of the model, the two wells are offset by 90 rn, and
the well depth is 210 m. The peak frequency of the Ricker
source wavelet is 80 Hz , 21 sources are evenly spaced in the
left well, and 36 geophones are evenly spac ed in the right
well. Figure Ib shows the initial velocity model where the
velocity linearly increases with depth . Figure Ie shows the
reconstructed velocity model after 20 iteration s using a
standard full-wave inver sion (or nonlinear inversion )
method. Figure ld is the veloci ty model reconstructed by the
WT method after 20 iterations. Th e average traveltime ( = I
ms) residual did not significantly decrease after 15 iterations.
For this example, the full-wav e method fails while the WT
method provides an accurate velocity reconstruction.

The WT method is te sted on three different cro sswell data
sets: synthetic crosswell dat a ass ociated with a dipp ing layer
and a fault model, sy nthetic crosswell data associated with
an earth model (Langan velocity model ) derived from a well
log in Southern California (Langan et aI. , 1988), and real
crosswell data colle cted by Exxon in Tex as. Th e dipping
layer + fault model is used to ver ify that WT inve rsion is
more robust than full-wave inversion , and the Langan ve­
locity model is used to show that WT inversion succeeds
when ray tracing fails. The real dat a inversion is used to
demonstrate that the WT meth od can successfully invert
velocities from real data.

Langan velocity model

Crosswell fault model

Figure 2 (courtesy of R. Langan) is associated with an
earth model derived from a sonic log in southern California.
The crosswell configuration in Figure 2a consists of eight
sources in the source well and 83 receivers space d 4.8 m
along the recei ver well ; the sonic log is given in Figure 2b. In
this case, ~x = ~ z = 2.4 m, ~t = 0.5 ms, and 700 time steps
are calculated. Figure 2c shows the synthetic seismograms
for the source at depth 168 m. To avoid aperture probl ems,
the velocity is assumed to be known from the depth s of 0-4 8
m and 350-400 m.

Langan et al. (1988) showed that a shooting ray-trac ing
method could not accurately compute the traveltimes in the
shadow zones of the model , sugges ting that a ray- trac ing
tomography algorithm may be inappropriate for a veloc ity
reconstruction . Figure 3 shows the velocity profile recon ­
structed by the WT inversion method using a steepest
descent method.

In the Langan velocity model , the density is kept constant
(4.0 102 kg/m') for both forw ard modeling and inversion. In
the Langan velocity-density model , the acquisition config-
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650 Luo and Schuster

though the WT tomogram appears to be smoother. The input
data in each case consisted of the same picked traveltimes
associated with the well-to-well (8104 traveltimes) and well­
to-surface (4037 traveltimes) first arrivals. In these figures,
darkest red corresponds to 2286.0 mis, darkest blue corre­
sponds to 1219.2 m/s, and the offset (depth) scale is 183.0
(305.0) m. The ray-tracing result required three iterations
using a Gauss-Newton method with a conjugate gradient
solver, while the WT method associated with Figure 6 used
9 iterations with a preconditioned steepest descent method.
The ray-tracing algorithm used a slowness parameterization
of a 51 by 31 grid of unknown slownesses, while the WT
algorithm used a grid of 120 by 200 unknown velocities.

The associated WT traveltime residuals after 0,3,6, and 8
iterations are shown in Figure 7. The CPU time per iteration
is about 2 hours for each method, although the WT method
used a 30 Mflop Stellar 2000 computer while the ray-tracing
tomogram was calculated on a 20 Mflop Stellar 1000 com-

puter. Also, the ray-tracing code was considered to be
inefficiently written.

CONCLUSION

A new seismic inversion method is presented which re­
constructs velocities from traveltimes computed from solu­
tions to the wave equation. No high-frequency assumptions
about the data are needed, traveltime picking and event
identification are sometimes unnecessary, velocities are
practically decoupled from densities, and the computer time
is no more than that of full-wave inversion. Synthetic tests
show that successful reconstructions can be achieved with
models having large velocity contrasts. This is an improve­
ment over standard full-wave inversion which can fail
for velocity models with little more than 10 percent
velocity contrast. Real data tests suggest that this method
can be as accurate as ray-tracing tomography, and it can

lniIial Veloci Model After 10 iterations CROSSWELLSH'51 UNFILTERED
l00r-------~---~---~---_,

FIG. 3. (a) Actual velocity profile (solid) and initial velocity
model (dashed line) for WT inversion. (b) Actual (solid line)
and reconstructed (dashed line) velocity model.

300250200150100
o
50

10

60

90

30

40

20

50

80

70

100 200 300 400
Depch(m)

b

12.500
.~2000

j 1'00

100 200 300 400 lOOOOL..--"'--"""'--.........--J

DepdI(m)

12.500
.~2000

j 1'00

11ME(MS)

11ME(MS)

CROSSWELLSH '51 DOWNOOINO WAVE

100 200 300 400
DepdI(m)

d

100 200 30lI 400 lOOOO·~-""""-"""'--""""'-....J

DepdI(m)

2.8 x .. Tille Dens' M I 2.8 110" Density Modelfor Inversion

1 2.6
}

2.6!

I 2.4 i 2.4
::l

2.2
0

2.2
100 200 300 400 0 100 200 300 400

DepdI(m) Depch(m)

FIG. 4. (a) Density log computed from equation (14) and the
velocity profile in Figure (2b). (b) Assumed density profile
for WT inversion. (c) Actual (solid line) and reconstructed
(dashed line) velocity profile. (d) Reconstructed velocity
profile (dashed line) after 10 WT iterations compared to
actual velocity profile (solid line).

FIG. 5. Common shotpoint gather from shothole number 51
associated with the Exxon crosswell experiment described
in the text. Top figure is unfiltered CSP gather and bottom
figure isf-k filtered gather to highlight downgoing reflections.
Reflections from interfaces are labeled Rl, R2, and R3. Note
the impulsive quality of the transmitted wavelets.
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FIG. 7. WT traveltime residuals versus geophone number for
0, 3, 6, and 8 iterations. Note the variance of the residual
decreases as iteration number increases.
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652 Luo and Schuster

APPENDIX A

FRECHET DERIVATIVE

To obtain the Frechet derivative of the pressure field with
respect to the velocity [equation (7c)], we introduce the
pressure field p(x, t; x s ) which satisfies the wave equation

- p(x)V . [p(~) Vg(x, t; x', t')] = fl(x - x')fl(t - t')

(A-Z)

1 a
2p(x,

t; x s ) [ I ]
e(x)2 at2 - p(x)V· p(x) Vp(x, t; x) = s(t; x s ),

(A-I)

The corresponding Green's function obeys

I a2g(x, t; x', t')

e(x)2 at2

ojJ(x, 0; x s ) = O.op(x, 0; x s ) = 0

f
Z· oe(x')

op(x" t; x s ) = dv(x')g(x" t; x', O)*jj(x', t; x s ) 3 '
V e(x')

(A-5)

Using the Green's function, the solution of equation (A-4)
can be written

and subtracting equation (A-Z) from equation (A-3) gives

I a
2op(x,

t; x s ) [ I ]
-- - p(x)V· - Vop(x, t; x s )
e(x)2 at2 p(x)

a2p(x, t; x s ) Z . oe(x)
---2-- 3 + O(oe(x)2), (A-4)

at e(x)

for (t ::s t').f;(x, t; x', t') = 0g(x, t; x', t') = 0

A perturbation of velocity e(x) ~ e(x) + oe(x) will produce
a field pt x, t; x s ) + op(x, t; x s ) which obeys

I a2[p(x, t; x s ) + op(x, t; x,)]

[c(x) + oe(x)]2 iU2

- p(x)V· [_1_ V[p(x, t; x s ) + op(x, t; x s )]] = s(t; x)
p(x)

(A-3)

where the asterisk denotes time convolution. Since the
perturbation occurs only at one point, set

oe(x') = aeo(x' - x).

Then equation (A-5) becomes

zae
op(x" t; x s ) = g(x" t: x, 0) * jj(x, t; x s ) --3'

e(x)

p(x, 0; x s ) + op(x, 0; x s ) = 0

jJ(x, 0; x s ) + ojJ(x, 0; x s ) = o.
Dividing by ae on both sides, we get equation (7c):

Using

I Zoe(x)

[e(x) + oe(x)]2 = e(x)2 - e(x)3'

ap(xr , t; Xs)cal Z
-----= --3 !J(x, t; x ., 0) * jJ(x, t; xs)'

ae(x) e(x)

We use reciprocity to allow the exchange x - x.;

(A-6)

APPENDIX B

IMPLEMENTATION OF WT INVERSION

Forward modeling p(x,., 0; xs ) = 0; w(x,., 0; x,) = O. for (t::s 0)

In principle, one can use any forward modeling scheme
which simulates wave propagation; we use a staggered grid
finite-difference scheme (Virieux, 1984). To use this scheme,
we rewrite equation (I) as two first order equations

Here fis

f(t; x) = it dt s(t; x),

where w is the particle velocity vector and the initial
conditions are given as

ap(x" t; x,)
---- = e(x)2p(x)V . (w(x" t; x s ))

at

aw(x" t; xs ) I
---- = - Vp(x" t; x s ),

at p(x)
(B-1)

where s(t; x) is the source term in the second-order wave
equation.

From equation (B-1), we can get p(x" t; Xs)cal and p(x, t;
xs ) which will be used in the time correlation with the
reverse time propagation field p'(x" t: x,). As for the time
correlation in equation (9), we need to multiply the field p(x,
t; x s ) by p'(x" t; x s ) ' We can either choose to store the entire
history of field p(x, t; x s ) in the computer memory or to
recalculate it, backward in time, simultaneously with the
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Wave-equation Traveltime Inversion 653

calculation of the field p'(x" t;xJ (Gauthier et al., 1986). We
chose the latter option. For recalculation of the field pt x, t ;
x,), we need to store the history of the field of pix , t: x,) at
the boundaries, and, of course, the final two states of the
field.

Backward Propagation

From equation (9), p'(x.; t; xJ should satisfy

I a2
p '(x" t; x s ) [ I ]

c(x)2 at2 - p(x)V· p(x) Vp'(x" t: x s )

= ?'n'(x" t; x s ) '

where the steepest descent method uses

where )I(x) is the negative gradient of the misfit function S
given by equation (9). Another modification is to use a
preconditioned gradient direction

This preconditioning compensates for geometrical expansion
(Beydoun and Mendes, 1989). Of course, one can use the
well known conjugate gradient direction

In the time correlation of equation (9), the field jJ'(x,., t: x,)

is used so that the time derivative can be taken on both sides
of the above equation;

I a
2p'(x"

t; x s ) [ I ]
--2 2 - p(x)V· - Vp'(x" t; x,)
c(x) at p(x)

=&r(x" t; xs ) ' (B-2)

where

and superscript f indicates matrix transpose.

Again, to use a staggered finite-difference scheme, rewrite
equation (B-2) as

ap'(x" t: x s )
----= c(x)2 p(x)V . [w'(x,, t; x,)]

at

aw'(x" t: x s ) I
-----= - VjJ'(x" t; x,),

at p(x)

with initial condition

jJ'(x" T; x s ) = 0; w'(x" T + II21lt; x,) = 0,

where, Ilt is the discretized time-step interval used in the
finite-difference method and T is the total recording length.
The pseudoresidual 1h is calculated from equation (8b) and
the IlT is obtained from equation (2). Since this initial
condition is an approximation, we need to attenuate the
amplitudes at the end of each trace to make this approxima­
tion more reasonable.

Direction of updating the model

Calculation of the step length

Pica et al. (1988) gives a formula for the estimation of step
length Uk in equation (B-4). The final formula is

(B-5)

where

and

g[c(x) + E\j>d - g[c(x)] op(x" t; x s )
[F\j>d = =.

E E

g[c(x)] implies forward modeling to get seismograms for the
velocity model c(x),

'" I [oP(X" t; Xs )] 2
[F<1>d

l[F<l>d
= ~ dt E '

Instead of using a steepest gradient direction, we can use
some modified direction for updating the model. In general
this update scheme can be expressed as

c(xh+ I = c(xh + Uk . \j>k, (8-4)

where E is estimated by

max {C(xh}
max {E . \j>d:s 100 .
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