
Kapitel 1

Inverse problems: an introduction

When the imprecise is preciser

Kirchgraber-Kirsch-Stoffer

A central problem in finance is the calibration of the models with the help of the market
data. It is the aim of the following chapters to sketch the methods which can be used to compu-
te/estimate the volatility from market data. This estimation problem is an inverse problem. In
this first chapter we give an introduction to the theory of inverse problems.

1.1 Inverse terminology

First of all, we have to clarify the notation „inverse“ by mathematical terms.

1.1.1 Problem classification

A model is an image of reality formulated in terms which are well defined and can be handeled
by theoretical investigations. Usually, a model is developed by considering the relation between
causes and effects in the process under consideration.

Suppose that we have a mathematical model of a physical (biological, . . . ) process. We assume
that this model gives a description of the system behind the process and its operating
conditions and explains the principal quantities of the model:

input, system parameters, output

The analysis of the given process via the mathematical model may then be separated into
three distinct types of problems; see Figure 1.1.

(A) The direct problem. Given the input and the system parameter, find out the output of
the model.

(B) The reconstruction problem. Given the system parameters and the output, find out
which input has led to this output.

(C) The identification problem. Given the input and the output, determine the system
parameters which are in agreement with the relation between input and output.

We call a problem of type (A) a direct (or forward) problem since it is oriented towards a cause-
effect sequence. In this sense problems of type (B) and (C) are called inverse problems because
they are problems of finding out unknown causes of known consequences. It is immediately clear
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that the solution of one of the problems above involves a treatment of the other problems as
well. A complete discussion of the model by solving the inverse problems is the main objective
of inverse modelling.

input output
(parameters)

process

system

Abbildung 1.1: An input-output- process

Usually, the system is governed by a
process operator transforming the input in-
to the output. Moreover, the laws of nature
are often expressed as systems of differen-
tial equations containing parameters des-
cribing the concrete physical situation; in a
dynamical consideration the physical quan-
tities are functions of time. These equati-
ons are local in the sense that the physical
quantities (velocity, pressure, current,. . . )
depend on a neighborhood of the current
time only. Another typical feature of the
laws is causality: later conditions depend on previous ones. Locality and causality are features
typically associated with direct problems. Inverse problems on the other hand are most often
nonlocal and noncausal. These properties contribute to the fact that inverse problems are
sensitive to the input data and parameters.

Let us give a description of the input, the output, the parameters and the systems by ma-
thematical terms:

X : space of input quantities;
Y : space of output quantities;
P : space of system parameters;
A(p) : system operator from X into Y associated to p ∈ P.

Later on we will use methods and results from analysis, linear algebra and functional analysis to
describe the quantities X, Y, P, A(p) in various applications.

In these terms we may formulate the problems (A), (B), (C) above in the following way:

(A) Given x ∈ X and p ∈ P, find y := A(p)x .

(B) Given y ∈ Y and p ∈ P, find x ∈ X such that A(p)x = y .

(C) Given x ∈ X and y ∈ Y, find p ∈ P such that A(p)x = y .

At first glance, the direct problem (A) seems to be solved much easier than the inverse
problems (B), (C). However, for the computation of y := A(p)x it may be necessary to solve a
differential or integral equation, a task which may be of the same complexity as the solution of
the equations in the inverse problems.

Inverse modelling involves the estimation of the solution of an equation from a set of observed
data represented by y, p in (B) and y, x in (C) respectively. In applications, the knowledge of
just one „observation“ y is not sufficient to determine p in problem (B). It is the subject of the
identification theory to find out „how many data“ y are sufficient to determine p in a uniquely
way (identifiability).

The theory to solve (B) or (C) falls into two distinct parts. One deals with the ideal case in
which the data are supposed to be known exactly and completely (perfect data). The other
treats the practical problems that are created by incomplete and imprecise data (imperfect
data). It might be thought that an exact solution to an inverse problem with perfect data would
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prove also useful for the practical case. But in general, it turns out in inverse problems that the
solution obtained by the analytic formula obtained from the analysis of the forward problem is
very sensitive to the way in which the data set is completed and to errors in it. Moreover, when
the inverse problem is discribed by an operator-equation, the naive way to solve the equation by
a fit of the data to the range of the related operator does not give necessarily good results: As a
rule of thumb: a good fit to the data does not mean a good fit to the unknown solution.

There are three concepts that are often confused by modelers, in particular in financial and
economic modeling: identification, simulation and extrapolation:

• Identification is building a model from the available (inexact) data.

• Simulation is experimenting with the model to produce new, additional data.

• Extrapolation is producing new data with a model beyond the reference period of the
available data.

Example 1.1 Let us consider the problem to finding the weighted integral of a given function.
A mathematical description is given as follows:

Forward Problem: With a continuous function x : [0, 1] −→ R and a parameter
p > 0 compute

y(t) :=

∫t

0

e−psx(s)ds , t ∈ [0, 1] .

Reconstruction Problem: Given a differentiable function y : [0, 1] −→ R and a
parameter p > 0 determine x : [0, 1] −→ R such that

y(t) =

∫t

0

e−psx(s)ds for all t ∈ [0, 1] .

Parameter Identification Problem: Given a differentiable function y : [0, 1] −→
R and a continuous function x : [0, 1] −→ R, find a parameter p > 0 such that

y(t) =

∫t

0

e−psx(s)ds for all t ∈ [0, 1] .

The term e−pt may be considered as a discount factor.
As we know from integration theory, the forward problem can be solved analytically and nu-

merically in a very stable way. Here we are mainly interested in the the two inverse problems.
Clearly, y(0) = 0 is a necessary condition for solvability of the inverse problems.

The reconstruction problem is equivalent to

y ′(t) = e−ptx(t) for all t ∈ [0, 1] .

Therefore, we get back the function x by

x(t) = y ′(t)ept , t ∈ [0, 1] .

Notice that we have to differentiate the data y .

The parameter identification problem is equivalent to

y ′(t) = e−ptx(t) for all t ∈ [0, 1] .
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Clearly, the parameter is overdetermined – we will come back to this classification – by this set
of equations: we need just one t̂ ∈ (0, 1) where

p = −
1

t̂
ln

(

y ′(t̂)

x(t̂)

)

makes sense. Again, we have to differentiate the data y . �

The prototype of an inverse problem will be an equation of the form

F(x) = y (x ∈ X, y ∈ Y) (1.1)

with a mapping F from the space X into the space Y . For such an equation, the unknown is
x and the data are usually the right-hand side y . If the stability condition is violated, the
numerical solution of the inverse problem by standard methods is difficult and often yields
instability, even if the data are exact (since any numerical method has internal errors acting like
noise). Therefore, special techniques, so called regularization methods have to be used in order
to obtain a stable approximation of the solution. The appropriate construction and analysis of
regularization methods and subsequently (or simultaneously) of numerical schemes is the major
issue in the solution of inverse problems.

1.2 A list of inverse Problems

Let us start with a very short historical view on topics related to Inverse problems.

The term inverse problem is a well known mathematical term dating at least from the 19th

century.

- For many centuries people have been searching for hiding places by tapping walls and
analyzing echo; this is a particular case of an inverse problem.

- Platon1 is talking in his allegory of cave in a philosophical context about the reconstruction
of reality from observations of shadows (distorted blurred images from objects outside the
cave) on a wall. Today we may consider Platon’s problem as an inverse problem to solve.

- The problem which may be considered as one of the oldest inverse problem in applied
science is the computation of the diameter of the earth by Eratosthenes2 in 200 b. Chr.;
see [6].

- In 1800 Gauss3 used the method of least squares to reconstruct the orbit of a comet
from earlier orbit data. This method became fundamental in the applied sciences.

- When astronomer Urbain Le Verrier worked out the mathematics to successfully predict
where the planet Neptune would be discovered in the night sky back in 1846, he was really
solving an inverse problem. By that, he used the observations that had been recorded about
Uranus’ position in its orbit to infer how that orbit might have been affected by what was
then a hypothetical eighth planet in the solar system.

1Platon, 427 - 347
2Eratosthenes, 284 – 202
3C. F. Gauss, 1777 – 1855
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- In 1917 Radon4 published a paper entitled by „Über die Bestimmung von Funktionen durch
ihre Integralwerte längs gewisser Mannigfaltigkeiten“; see [20]. In this paper a transforma-
tion is studied which is nowadays called the Radon transform and which is the basis of
the X-ray tomography.

- It was Heisenberg5 who conjectured that quantum interaction was totally characterized
by its scattering matrix which collects information of the interaction (at infinity). The
discovery of neutrinos by measuring consequences of its existence is in the spirit of inverse
problems too.

- The weakly electric nocturnal fish Gnathonemus petersii is well known for its ability to use
its electro-sensory system in the dark for active electrolocation of objects; see [4].

Over the past 40 years, the number of publications on inverse problems has grown rapidly.
Nowadays there are several mathematical journals devoted to this topic. Especially, the subject of
image processing and non-invasively, non-destructively mapping became very important (Making
the unseen visible with mathematics).

The following list of problems gives a good impression of the wide variety of applications.
Several of the listed problems may be seen under the motto making the invisible visible.

• Estimation of a correlation matrix from data;

• the inverse problem of geomagnetic induction;

• X-ray tomography, ultrasound tomography, laser tomography;

• acoustic scattering, scattering in quantum mechanics;

• inverse problem of elastography;

• radio-astronomical imaging, image analysis;

• locating cracks or mines by electrical prospecting;

• seismic exploration, seismic tomography;

• the use of electrocardiography and magnetocardiography;

• evolution backwards in time, inverse heat conduction;

• the inverse problem of potential theory;

• „can you hear the shape of a drum/manifold?“

• deconvolution, reconstruction of truncated signals;

• compartmental analysis, parameter identification;

• data assimilation;

• determing the volatility in models for financial markets;

• discrete tomography, shape from probing.

1.3 Ill-posedness/Well-posedness

In a complete analysis of an inverse problems – we denote the collection of methods and results
in this field by „inversion theory“ – the questions of existence, uniqueness, stability and
construction of objects have to be considered.

4J. Radon, 1887 – 1956
5W. Heisenberg, 1901 – 1976
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1.3.1 Definition of well-posedness

The question of existence and uniqueness is of great importance in testing the assumption behind
any mathematical model. If the answer in the uniqueness question is no, then we know that even
perfect data do not contain enough information to recover the physical quantity to be estimated.
By questioning for stability we have to decide whether the solution depends continuously on the
data. Stability is necessary if we want to be sure that a variation of the given data in a sufficiently
small range leads to an arbitrarily small change in the solution. This concept was introduced by
Hadamard in 1902 in connection with the study of boundary value problems for partial differential
equations and he designated unstable problems ill-posed6 otherwise well-posed. The nature of
inverse problems (irreversibility, causality, unmodelled structures, . . . ) leads to ill-posedness as
a characteristic property of these problems.

When solving ill-posed problems (numerically), we must certainly expect some difficulties,
since any error acts as a perturbation on the original equation and so may cause arbitrarily
large variations in the solution. Since errors cannot be completely avoided, there may be a range
of plausible solutions and we have to find out a reasonable solution. These ambiguities in the
solution of inverse problems which are unstable can be reduced by incorporating some sort of
a-priori information that limits the class of allowable solutions. By a-priori information we
mean an information which has been obtained independently of the observed values of the data.
This a-priori information may be given as a deterministic or a statistical information. We shall
restrict ourselves mainly to deterministic considerations.

As we already have seen, an inverse problem may be formulated as the problem to solve an
equation governed by an operator A(p) . Ill-posedness tells us that the inverse A(p)−1 does not
exist and/or is not continuous. The remedy is regularization. The idea of the regularization
theory is to replace the inverse of such an operator by a one-parameter family of continuous
operators and to choose the „best approximation“ in this family by a clever strategy. Such a
regularization strategy is usually based on a merit function and uses two main ingredients
for solving an inverse problem in a stable way: a-priori information and signal to noise ratio
(SNR). The signal to noise ratio is a quantity which describes the relation of the size of the
true solution (signal, image, . . . ) to the size of the noise contained in the measured quantity
(right-hand side of the equation,. . . ).

The Hilbert space l2 and operators on l2 (see Appendix 1.6 for informations concerning these
objects) are used to formulate toy-problems; see the example below. In the course of the lecture
we will see that these toy-problems may be seen at least from the theoretical point of view in
a one-to-one correspondence to applied problems via the singular value decomposition. Let us
present a first example using this elementary framework.

Example 1.2 Consider the problem of solving the equation

Ax = y

where A is a linear mapping from l2 into l2 ; see Appendix 1.6. Therefore, x and y are sequences
in l2 :

x = (x1, x2, . . . ) , Ax = y = (y1, y2, . . . ) ;

6Hadamard believed – many mathematicians still do – that ill-posed problems are actually incorrectely posed
and artificial in that they would not describe physical systems. He was wrong! Nowadays we know that such
problems arise in a fundamental way in the modelling of complex (physical) systems.
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Consider the specific case

Ax := (x1,
1

2
x2,

1

3
x3, . . . ) , x ∈ l2 .

A is bounded since

‖Ax‖ =

(

∞∑

k=1

1

k2
x2

k

)
1
2

≤
(

∞∑

k=1

1x2
k

)
1
2

= ‖x‖

and the candidate of the inverse of A is given by

A−1y := (y1, 2y2, 3y3, . . . ) .

Existence of a solution: For the right-hand side

y := (1,
1

2
,
1

3
, . . . )

no solution (in l2) exists!
Uniqueness of a solution: It is easy to see that uniqueness holds.
Stability: For the right-hand side

yn := (0, 0, . . . , 0,
1√
n

, 0, 0, . . . )

the solution is given by
xn := (0, 0, . . . , 0,

√
n, 0, 0, . . . )

and we have
lim
n

‖yn‖2 = 0 , lim
n

‖xn‖2 = lim
n

√
n = ∞ .

Therefore A−1 cannot be a bounded operator!
Regularization: Approximate the mapping A by Aα := A + αI where I is the identity operator
from l2 into l2 . Then the inverse A−1

α of Aα is given as follows:

A−1
α y = (

1

1 + α
y1,

2

1 + 2α
y2,

3

1 + 3α
y3, . . . ) .

Clearly A−1
α is a bounded operator. Now, A−1

α should approximate the inverse A−1 . The question
arises which is the best parameter α with respect to the approximation property. �

1.3.2 The evaluation problem

A well-conditioned problem is, roughly speaking, one whose solution changes by only a small
amount if the problem data are changed by a small amount; see above. In order to study this
property in mathematical terms it is enough – for our purpose – to consider the problem of
evaluation of a given mapping at a given point. When we want to find the solution of a (nonlinear)
equation the solution can be found by evaluating the inverse of the mapping which governs the
equation. From the numerical point of view it is enough to study the problem in the finite–
dimensional context only. Therefore we consider:

Evaluation problem E(f, x)

Given a mapping f : U ⊂ R
n −→ R

m and x in U .

Find the value f(x) .

Here the domain of definition U of f is an open subset7 of R
n .

7A subset U of R
n is called open when for each x ∈ U there exists a ball Br(x) with r > 0 and Br(x) ⊂ U.

Here Br(x) is a ball with respect to any norm in R
n ; see appendix ??.
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x

f

U

Abbildung 1.2: Illustration of the condition

Since the input x may be available not as an ex-
act quantity we have to study the evaluation of f

in a neighborhood of x . It is the goal to find out
the size of the image of such a neighborhood; see
Figure (1.2). Continuity of the mapping f in x im-
plies that the mapping f near x is well-behaved. But
this statement is of qualitative nature only and is
not sufficient for numerical considerations. We need
a quantitative formulation! This leads to Lipschitz–
continuity. We study the related questions in more
detail in the discussion of the solution of linear equa-
tions.

Well-posedness of E(f, x) may be considered also quantitatively. We define

κabs,Uf(x) := sup
x∈U

|f(x) − f(x)|

|x − x|
(1.2)

κabs,Uf(x) is called the absolute condition number of f . When x 6= θ and f(x) 6= θ then we call

κrel,Uf(x) := sup
x∈U

|f(x) − f(x)|

|f(x)|

/ |x − x|

|x|
(1.3)

the relative condition number of f .

Remark 1.3 Suppose we want to solve a linear equation in the infinite-dimensional case gover-
ned by the operator A:

Ax = y

Then the evaluation problem for the inverse A−1 is unstable when the operator A−1 is unbounded.
As a rule, this is the case when the problem to solve the equation is ill-posed. �

Under the assumption that f in the evaluation problem is a differentiable function defined
on R – in the general case we would have to consider partial differentability – we obtain an
infinitesimal relative condition number:

condrelf(x) :=
|x||f ′(x)|

|f(x)|
(1.4)

This number could also be called the elasticity of the function value with respect to its argument.
From this number the problems of evaluating the function f in x can be read off.

Sensitivity analysis, which characterizes the change in model output due to variations
in model input parameters, is of critical importance in simulation models; see Section 2.1.4.
Sensitivity coefficients, defined as the partial derivatives of the model output with respect to
the input parameters, are useful in assessing the reliability of the output from a complex model
with many uncertainty parameters. Thus, we can state that condition numbers, as defined above,
characterize the sensitivity of a mathematical problem to data perturbations.
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1.3.3 Types of errors

Consider again the problem E(f, x) of evaluating the mapping f in (a neighborhood of) x . From
the numerical point of view we have to take into account the presence of various sources of errors:

Model-error f may be considered as a model for a „physical process“: instead of f an approxi-
mation f̃ is available only.

Errors in the data x is known approximately only (due to measurement errors): instead of x

an approximation x̃ is available only.

Truncation errors The value f̃(x̃) can be computed not exactly, arising from the fact that an
infinite number of operations has to be replaced by a finite number of operations.

Rounding errors We have to expect errors due to the fact that in the computation process a
finite number of real numbers is available only.

Example 1.4 Consider the evaluation of the function

f(t) := ceat + debt , t ∈ R (1.5)

in t. The function f may be considered as a model for a chemical reaction: a, b are certain
reaction constants, c, d describe the mixing relation.

A source of error in the evaluation of f in a point t may be:

• a, b, c, d are known approximately: model error.

• t is known approximately: error in the data.

• The exponential function can be computed via the potential series by truncating the infinite
summation process only: truncation error.

• The evaluation of an exponential yields an irrational number in general; rounding is neces-
sary.

�

Example 1.5 As we shall see, the price C = C(S, t) at time t with value S of the underlying for
an European call option in the Black-Scholes model is given by

C(S, t) = SN (d+(σ)) − Ke−r(T−t)N (d−(σ)) (1.6)

with

d±(σ) =
ln(

S

K
) + (r ± σ2

2
)(T − t)

σ
√

T − t
, σ ≥ 0 ,

where N denotes the density of the standard normal distribution:

N (a) :=

a∫

−∞

1√
2π

exp(−
s2

2
)ds , a ∈ R .

Here r, σ, K, T are the usual constants.
In the evaluation of this price formula various sources of errors should be regarded. Above all,

the evaluation of the distribution function N is a source of errors due to the fact that it contains
the exponential function which is difficult to evaluate in a stable way, especially for large and
small arguments. �
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1.3.4 Over- and underdetermined linear systems

One of the most basic and important problems in science and engineering is the accurate and effi-
cient simultaneous solution of a system of linear equations. Moreover, most numerical techniques
in optimization and differential equations involve repeated linear equation solving.

A system of m linear equations in n unknowns consists of a set of algebraic relations of the
form

n∑

j=1

aijxj = yi, i = 1, . . . ,m (1.7)

where xj are the unknowns, aij are the coefficients of the system and yi are the components of
the right hand side. System (1.7) can be written more conveniently in matrix form as

Ax = y (1.8)

where we have denoted A = (aij) ∈ K
m×n the coefficient matrix, by y = (yi) ∈ K

m the right
hand side vector and by x = (xi) ∈ K

n the unknown vector, respectively; here K is the field of
real or complex numbers. We call a solution of (1.8) any n-tuple of values xj which satisfies (1.7).
We call a system (1.8) consistent if there exists a solution otherwise inconsistent. The case
that (1.8) is not consistent is not an unimportant situation. This situation occurs in virtually
every branch of science and engineering.

We say that (1.8) is overdetermined8 if we have more equations than unknowns: m > n .

Normally we do not expect that an overdetermined system has a solution. Clearly, we may decide
by Gaussian elimination applied to the rectangular system whether a solution exists from the
analytical point of view. But from the numerical point of view it may be difficult to decide this
since rounding errors may destroy the solvability and vice versa.

We can reformulate the problem of solving the system (1.8) in another way to ask for the
vector x such that the residual r := Ax − y is minimized in a given vector norm. In the case
where we use the euclidean norm, | · |2, this becomes precisely the important statistical problem
of finding the best least squares solution of (1.8). Under the assumption that the rank of A is
n then this least squares solution x† can be found, using the transpose matrix At of A, in the
following way:

x† = (AtA)−1Aty (1.9)

Here the matrix (AtA)−1At is the so called Moore-Penrose inverse or pseudoinverse. Notice
that this pseudoinverse exists since AtA is a n × n-matrix with rank n . As we know from
numerical analysis, this solution x† can be computed by the QR-factorization.

When we restrict our consideration to the case of real-valued square systems of order n, that
is to systems of the form (1.8) with A ∈ K

n×n and y ∈ K
n, then as we know from linear algebra

existence, uniqueness and stability of the solution of (1.8) are ensured if one of the following
(equivalent) hypotheses holds:

1. det(A) 6= 0 ;

2. A is invertible, i.e. there exists a matrix B with AB = E ;

3. range(A) = R
n, i.e. Ax = y has a solution for each y ∈ R

n;

4. the columns of A are linearly independent;

5. rank (A) = n, i.e. the rows are linearly independent;
8„Die erfolgreichsten Theorien der Physik sind massiv von Daten überbestimmt“. C. Smeenk, University of

Ontario, zur Diskussion der Modelle zur Entstehung des Universums
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6. ker(A) = {θ}, i.e. Ax = θ implies x = θ ;

7. all eigenvalues of A are nonzero.

We say that (1.8) is underdetermined if we have less equations than unknowns: m < n .

An underdetermined system of linear equations has infinitely many solutions (if there are any)
and they form an affine space. All methods for solving underdetermined systems introduce some
additional, artificial constraints. The advantage of the maximum entropy method is that it
uses the most natural additional constraint. For most large underdetermined systems of linear
equations the minimal l1-norm solution is also the sparsest solution. We shall come back
to this property which is important in solving problems in image processing.

Suppose we have to solve the system (1.8) in the situation where A is invertible; see above.
The solution of such a system may be stated as an evaluation problem as considered above.

Given a regular matrix A ∈ K
n,n .

Consider the mapping fA : K
m ∋ y 7−→ A−1y ∈ K

n .

Given y ∈ K
n, find x := fA(y) = A−1y .

But in practical situations y is not known exactly and instead of y an approximation y ∈ K
n is

available only. Then the question arises whether y is contained in ran(A) .

1.4 Tutorial example: numerical differentiation

Let us present a first example of an ill-posed problem: (numerical) differentiation of a function.
The analysis of this problem can be done by using elementary considerations only. Here we
consider just the elementary questions. In Chapter 2 we shall present the numerical differentiation
based on Bernstein polynomials.

1.4.1 Numerical differentiation as an inverse problem

The differentiation of a (measured) function is involved in many inverse problems. In a mechani-
cal system one may ask for hidden forces and since Newton’s law relates forces to velocities and
accelerations one has to differentiate observed data when we want to compute the forces. Moreo-
ver, one can see that the numerical differentiation is implicitely present in the problem of X-ray
tomography, in parameter identification, in the determination of heat flow, and edge detection.
We will see that this problem is important too in finding the volatility from market data. In the
third chapter we present a method based on the approximation theorem of Weierstrass.

Let us consider the problem of finding the integral of a given function. This can be done
analytically and numerically in a very stable way. When this problem is considered as a di-
rect (forward) problem then to differentiate a given function is the related inverse problem. A
mathematical description is given as follows:

Direct Problem: With a continuous function x : [0, 1] −→ R compute

y(t) :=

∫ t

0

x(s)ds , t ∈ [0, 1] .

Inverse Problem: Given a differentiable function y : [0, 1] −→ R determine
x := y ′.
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We are interested in the inverse problem. Since y should be considered as the result of mea-
surements the data y are noisy and we may not expect that the noisy data ỹ is presented by
a continuously differentiable function. Therefore, the inverse problem has no obvious solution,
especially when ỹ(0) 6= 0 . (In practice we simply subtract ỹ(0) from ỹ .)

Moreover, the problem should not be formulated in the space of continuous functions since
perturbations due to noise lead to functions which are not continuous. But the analysis and the
message of the results is not very different from the following in the more elementary case of
continuous perturbations.

Suppose that instead of the continuous function y : [0, 1] −→ R a „measured“ function
yε : [0, 1] −→ R is available only. We assume:

|yε(t) − y(t)| ≤ ε for all t ∈ [0, 1] .

Clearly, ε is the level of noise in the measurement of yε . It is reasonable to try to reconstruct
the derivative x := y ′ of y at τ ∈ (0, 1) by

xε,h(τ) := Dhyε(τ) :=
yε(τ + h) − yε(τ)

h

where h 6= 0 has to be chosen such that τ + h ∈ [0, 1] . We obtain

|xε,h(τ) − x(τ)| ≤ |
y(τ + h) − y(τ)

h
− x(τ)| + |

(yε − y)(τ + h) − (yε − y)(τ)

h
| .

Under the assumption that x is continuously differentiable we have

y(τ + h) − y(τ)

h
− x(τ) =

1

2
y ′′(η)h for some η ∈ [0, 1] .

Moreover, when we know a bound

|x ′(t)| ≤ E for all t ∈ [0, 1] , (1.10)

then the estimate

|xε,h(τ) − x(τ)| ≤ 1

2
hE + 2

ε

h
(1.11)

follows. Now it is clear that the best what we can do is to balance the terms on the right hand
side in (1.11). This is done by the choice

h := hopt := 2

√

ε

E
. (1.12)

This gives
|xε,h(ε)(τ) − x(τ)| ≤ 2

√
E ε . (1.13)

The Diagram 1.3 which is a graphical presentation of the bound (1.11) is typical for approximati-
ons in ill-posed problems: there are two terms in the error estimate, a term due to approximation
of the inverse mapping and a term due to measurement error. The balance of these two terms
gives an „optimal“ reconstruction result. Thus, in contrast to well-posed problems, it is not the
best to discretize finer and finer. One may consider ill-posed problems under the motto „When
the imprecise is preciser“.9 Moreover, the bound in (1.13) shows that halving the (measurement)
error ε does not lead to a halving of the absolute error in the result (as it is usually the case in
direct problems).

9This is the title of [11].
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h E

ε
h

h

error bound

Abbildung 1.3: Error balance

The requirement of the bound in (1.10) descri-
bes an information concerning the solution we
want to find. Therefore this information is cal-
led a priori information/a priori knowledge.
The quantity

SNR :=
E

ε

may be be considered as the signal to noise ra-
tio. The merit function we have used is the norm
of the deviation of the approximation from the
(unknown) solution. The regularization strategy
to balance the merit function with respect to the
a priori information (E) and the signal to noise
ratio SNR is called an a priori strategy since it
can be done without calculating some approximations.

Remark 1.6 The equation ∫s

0

x(t)dt = y(s) , s ∈ [0, 1]

is the simplest example of a Volterra equation of the first kind which is an equation of the form

∫b

a

κ(t, s)x(t)dt = y(s) , s ∈ [c, d] ,

where κ is a kernel function from [a, b] × [c, d] into R . �

1.4.2 Numerical differentiation realized with floating point numbers

We consider the problem of the numerical differentiation realized on a computer with floating
point numbers. Floating numbers are elements x of

F := F(g, t, emin, emax) :=

{
σ[d1 . . . dt] ge−t |

d1, . . . dt ∈ {0, 1, . . . , g − 1}, d1 6= 0,

e ∈ Z, emin ≤ e ≤ emax, σ ∈ {+,−}

}
∪ {0} .

These numbers are called normalized since d1 6= 0 is required. The parameters of this set are:

g ∈ N, g ≥ 2 base of the numbers
t ∈ N number of significant digits di ∈ {0, 1, . . . , g − 1} (precision)
m := d1 . . . dt ∈ N mantissa of x

e ∈ Z exponent of x

[emin, emax] range of exponents

The consequences of the use of these numbers in the differentiation is the subject of this subsec-
tion. We restrict us to the case g = 10 .

Consider the approximation of the derivative f ′(x) by difference quotients

f ′(x) =
f(x + h) − f(x)

h
+ O(h) ;

the term O(h) is from of the remainder of the approximation. If the step with h is given as h =

10−s then the difference quotient is an approximation of f ′(x) with approximately s significant

13



digits. In the evaluation of the nominator in the difference quotient cancellation may occur. This
can lead to a loss of s digits. Therefore the precision of the result has

min(s, t − s) , i.e. t/2

significant digits. If we choose the approximation method

f ′(x) =
f(x + h) − f(x − h)

2h
+ O(h2)

with step width h = 10−s then the precision is

min(2s, t − s) , i.e. 2t/3 .

A further improvement results from

f ′(x) =
4

3

f(x + h) − f(x − h)

2h
−

1

3

f(x + 2h) − f(x − 2h)

2h
+ O(h4)

for a step width h = 10−s since the precision is now

min(4s, t − s) , i.e. 4t/5 .

The observation is that going ahead in the same way the gain-rate of significant digits is poor.

Each of the formulae above may be used to approximate the derivative. An improvement of
the accuracy can be achieved by halving the stepsize h . Notice that in halving the stepsize the
cost is different: one new evaluation for the first formula, 2 additional evaluation for the second
and 4 evaluations for the third.

1.5 Numerical algorithms

Algorithms are the main tools to formulate methods to solve problems. Here we formulate the
main goals in the analysis of algorithms. In Chapter 3 we shall consider the questions again under
more realistic assumptions.

1.5.1 Algorithms

The solution of a problem by numerical methods is usually formulated by an ordered list of steps
where each of which uses data of the problem and results from an earlier step; the evaluation
problem may be considered as such a problem when we are forced to decompose the mapping f

as follows: f = fl ◦ · · · ◦ f1 . Such a list of instructions (of length l) is called an algorithm when
certain requirements are fullfilled:

An algorithm is a finite set of well–defined feasible ordered instructions for accom-
plishing some task which, given an initial state, will terminate after a finite number
of operations in a corresponding recognizable end-state.

Different algorithms may complete the same task with a different set of instructions in more
or less time, space or effort than others. The analysis of an algorithm is concerned with the
following characteristics:
Accuracy: Accuracy refers to the absolute or relative error of an approximate quantity. The
numerical approximation should be as accurate as possible. This requires the algorithm to be
numerically stable.
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Robustness/Reliability: The algorithm should solve many problems well and it should warn
the user, if the result is inaccurate. Hence it should be possible to estimate the error.
Efficiency/Complexity: The amount of operations and the size of the memory required should
be as small as possible.
Precision: Precision is the accuracy with which the basic arithmetic operations are performed.
In all our analyses there is an implicit assumption that the given arithmetic is of arbitrarily high
precision just in the more principal consideration of numerical algorithms precision may play a
role.

To discuss whether a numerical solution approximates the solution of a problem, we need a
measure of the distance between a numerical solution and the exact solution to the problem and
a method parameter which we can use to vary the numerical method.

A numerical method is convergent if the distance between the numerical solution and the
exact solution goes to zero as the method parameter approaches some limit. In order to obtain
this property, the numerical method must be stable. This means that the error growth factor
is bounded is bounded independent of the method parameter. Stability is purely a property
of the numerical method and is independent of the problem. To have any hope of establishing
convergence, it is necessary to establish some kind of connection between the problem and the
numerical method. This connection is consistency. In the following we will discuss the properties
convergence, stability, consistency in mathematical terms.

1.5.2 Analysis of numerical algorithms

Let X be a space endowed with the metric d . Let x† in X be the object which we want to compute.
We assume that we have computed by an algorithm a sequence (xn)n∈N in X which should be
an approximating sequence of x† .

Definition 1.1 The pair (x†, (xn)n∈N) is called consistent iff

lim
n

xn = x† .

�

In practice, an algorithm which is designed to construct the approximating sequence (xn)n∈N

is never exact due to

• rounding errors during the calculations,

• truncation errors due to approximating certain variables and results,

• data errors which come in when certain data of the problem to solve are available by
measurements only.

Therefore, instead of (xn)n∈N we obtain a sequence (xn,τ)n∈N where τ ∈ [0,∞) is the quantity
which collects the errors in the computation. Clearly, we don’t have limnxn,τ = x† when τ > 0 .

In Chapter 4 we will discuss methods which are appropriate to extract from the sequence
(xn,τ)n∈N good approximations for x† . The main idea is to search for a stopping-index n(τ) such
that xn(τ),τ becomes such a good approximation.
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1.5.3 Numerical algorithms: inverse crime

Often, tests of the exact or approximate theoretical models employed in inversion schemes are
made with synthetic data. Generating the latter also requires a theoretical model, which, ma-
thematically speaking, can be identical to, or different from, the one employed in the inversion
scheme. In [3] the authors coin the expression inverse crime to denote the act of employing the
same model to generate, as well as to invert, synthetic data. Moreover, they warn against com-
mitting the inverse crime, in order to avoid trivial inversion and go on to state: it is crucial that
the synthetic data be obtained by a forward solver which has no connection to the inverse solver.
These assertions raise the following questions:

• What does the term „no connection“ mean?

• Provided a definition can be given, what kind of reconstructions of the unknown parameters
can one obtain when there is „no connection“ between the forward and inverse solvers?

• Should the inverse crime always be avoided?

• Are inverse crime inversions always trivial?

Shortly:
The term „inverse crime“ is saying that sampling the data in the forward problem and solving
the inverse problem are done in the same manner. Inverse crime arises when

• the numericallly produced simulated data is produced by the same model that is used to
invert the data;

• the discretization in the numerical simulation is the same as the one used in the inversion.

When inverse crimes are not avoided a numerical algorithm may lead to unreallistically optimistic
results. Note that inverse crimes are not possible in situations where actual real-world measured
data are used, they are only a problem of computational simulation studies.

1.6 Appendix: Several facts in Hilbert and Banach spaces

Here we collect some functional analytic results which are useful for the analysis of inverse
problems.

Let X be a K–vector space where K ∈ {R, C} is the scalar field. In the following, we denote
the null vector by θ .

Definition 1.2 A mapping ‖ · ‖ : X −→ R is called a norm if the following properties are
satisfied:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 iff x = θ.

(2) ‖ax‖ = |a|‖x‖ for all x ∈ X, a ∈ K.

(3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X.

If ‖ · ‖ is a norm then the pair (X, ‖ · ‖) is called a normed space.
�

If (X, ‖ · ‖) is a normed space then (X, d) is a metric space where d is defined by

d : X × X ∋ (x, y) 7−→ ‖x − y‖ ∈ R .
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Definition 1.3 Let (X, ‖ · ‖) be a normed space. A sequence (xn)n∈N in X is convergent with
limit x ∈ X iff

∀ε > 0∃N ∈ N ∀n ≥ N(‖xn − x‖ < ε) .

We use the notation limnxn := x . �

Let (X, ‖ · ‖) be a normed space and let A be a subset of X. Then A is called closed iff for
each convergent sequence (xn)n∈N with xn ∈ A for all n ∈ N we have limnxn ∈ A .

Definition 1.4 Let (X, ‖ · ‖) be a normed space.

(a) A sequence (xn)n∈N is called a Cauchy sequence in X iff

∀ε > 0∃N ∈ N ∀n,m ≥ N(‖xn − xm‖ < ε) .

(b) (X, ‖·‖) is called complete or a Banach space if each Cauchy sequence in X is convergent.

�

Example 1.7 We define

l∞(K) := {x = (xk)k∈N|xk ∈ K for all k ∈ N, supk∈N |xk| < ∞} .

c(K) := {x = (xk)k∈N|xk ∈ K for all k ∈ N, (xk)k∈N convergent} .

c0(K) := {x = (xk)k∈N|xk ∈ K for all k ∈ N, (xk)k∈N is a null sequence} .

cc(K) := {x = (xk)k∈N|xk ∈ K for all k ∈ N, xk = 0 for almost all k ∈ N} .

Obviously,
cc(K) ⊂ c0(K) ⊂ c(K) ⊂ l∞(K) .

Addionally, we set
‖x‖∞ := sup

k∈N

|xk| , x = (xk)k∈N ∈ l∞ .

On can show that (l∞(K), ‖ · ‖∞) is complete. c(K) is a closed subspace of l∞(K) and c0(K) is a
closed subspace of c(K) . This implies that (c(K), ‖·‖∞), (c0(K), ‖·‖∞) are Banach spaces. cc(K)

is not a closed subspace of l∞(K) ; we have that c0(K) is the closure of cc(K) . �

Example 1.8 We set for 1 ≤ p < ∞

lp(K) := {x = (xk)k∈N|xk ∈ K for all k ∈ N,
∑

k∈N
|xk|p < ∞}

and

‖x‖p :=
(∑

k∈N
|xk|p

) 1
p

, x = (xk)k∈N ∈ lp(K) .

Then (lp(K), ‖ · ‖p) is a Banach space. �

Definition 1.5 Let (X, ‖ · ‖X), (Y, ‖ · ‖Y) be normed spaces. A mapping f : D −→ Y,D ⊂ X, is
called continuous in x0 ∈ D iff

∀ε > 0∃δ > 0∀x ∈ D(‖x − x0‖X < δ =⇒ ‖f(x) − f(x0)‖Y < ε) .

The mapping f is called continuous iff f is continuous in each x0 ∈ D. �
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Example 1.9 Let (X, ‖ · ‖) be a normed space. Then the norm considered as a mapping from X

int K is continuous. This follows from

|‖x‖ − ‖y‖| ≤ ‖x − y‖ .

Moreover, the mappings

X ∋ x 7−→ x + w ∈ X , R ∋ a 7−→ aw ∈ X , X ∋ x 7−→ rx ∈ X ,

where w ∈ X and r ∈ R are fixed elements are continuous too. This follows from

‖(x + w) − (x0 + w)‖ = ‖x − x0‖ , ‖aw − a0w‖ = |a − a0|‖w‖ , ‖rx − rx0‖ = |r|‖x − x0‖ .

�

The most interesting mappings in linear algebra are the linear mappings. Let (X, ‖ · ‖X), (Y, ‖ ·
‖Y) be normed spaces. As we know, a mapping L : X −→ Y is linear iff

L(au + bv) = aL(u) + bL(v) for all a, b ∈ K, u, v ∈ X .

The following theorem is easy to prove.

Theorem 1.6 Let (X, ‖·‖X), (Y, ‖·‖Y) be normed spaces and let L : X −→ Y be a linear mapping.
Then the following conditions are equivalent:

(a) L is bounded, i.e. there exists c > 0 with ‖L(x)‖Y ≤ c‖x‖X for all x ∈ X.

(b) L is continuous in each x0 ∈ X.

(c) L is continuous in x0 := θ.

Definition 1.7 Let (X, ‖ · ‖X), (Y, ‖ · ‖Y) be normed spaces and let L : X −→ Y be continuous.
Then the number ‖L‖ := sup{‖L(x)‖Y|‖x‖X ≤ 1} is called the operator norm. �

Important is the estimate
‖L(x)‖Y ≤ ‖L‖ ‖x‖X , x ∈ X , (1.14)

for all x ∈ X . It is easy to prove

Corollary 1.8 Let (X, ‖ · ‖X), (Y, ‖ · ‖Y), (Z, ‖ · ‖Z) be normed spaces and let L : X −→ Y,K :

Y −→ Z be continuous. Then
‖K ◦ L‖ ≤ ‖K‖‖L‖ .

Let (X, ‖ · ‖X), (Y, ‖ · ‖Y), (Z, ‖ · ‖Z) be normed spaces. We set

L(X, Y) := {T : X −→ Y|T linear and continuous} .

The space L(X, Y) endowed with the operator norm is a Banach space.

Definition 1.9 Let X be a vector space with scalar space K ∈ {R, C} . A mapping σ : X×X −→ K

is called an inner product on X if the following conditions are satisfied:10

10Here, as usual, z denotes the complex conjugate of z
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(a) σ(x, x) ∈ R, σ(x, x) > 0 for all x ∈ X\{θ} ;

(b) σ(x, y) = σ(y, x) for all x, y ∈ X ;

(c) σ(ax + by, z) = aσ(x, z) + bσ(y, z) for all x, y, z ∈ X, a, b ∈ R .

A vector space X endowed with the inner product σ is called a pre-Hilbert space. �

Let (X, σ) be a pre-Hilbert space. Then we have for all x, y ∈ X

|σ(x, y)| ≤
√

σ(x, x)
√

σ(y, y) ,

with equality when x, y are linear dependent. This inequality is called the Cauchy–Schwarz
inequality. A consequence of this inequality is the fact that the pre-Hilbert space (X, σ) becomes
a normed space since ‖ · ‖σ, defined by

‖x‖σ :=
√

σ(x, x) , x ∈ X ,

is a norm in X .

Definition 1.10 The pre-Hilbert space (X, σ) is called a Hilbert space if the normed space
(X, ‖ · ‖σ) is complete. �

Let (X, σ) be a pre-Hilbert space. In the following we want to use the notation which is
common in physics:

〈·, ·〉 := σ(·, ·) .

Cauchy-Schwarz’ inequality becomes now

|〈x, y〉| ≤ ‖x‖‖y‖ .

x

y

K
y

y

m

n

Abbildung 1.4: Projection theorem

Here are three further identities in a pre-Hilbert
space (X, 〈·, ·〉) .

Parallelogram identity ‖x+y‖2+‖x−

y‖2 = 2‖x‖ + 2‖y‖2 , x, y ∈ X .

Polarization identity11

〈x, y〉 = 1
4
(‖x + y‖2 − ‖x − y‖2)+ i

4
(‖x +

iy‖2 − ‖x − iy‖2) , x, y ∈ X .

Theorem of Pythagoras ‖x + y‖2 =

‖x‖2 + ‖y‖2 for x, y ∈ X with 〈x, y〉 = 0 .

A subset K in a vector space X is convex iff

ax + (1 − a)x ∈ K for all x, y ∈ K,a ∈ [0, 1] .

Theorem 1.11 (Variational inequality) Let X be a pre-Hilbert space and let K ⊂ X be non
empty and convex. Then for all y ∈ K the following conditions are equivalent:

(a)
‖x − y‖ = inf

z∈K
‖x − z‖ . (1.15)

11This is the case of complex scalars.
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(b)
ℜ〈x − y, z − y〉 ≤ 0 for all z ∈ K . (1.16)

Theorem 1.12 (Projection theorem) Let X be a Hilbert space and let K ⊂ X be non empty
and convex. Then there exists for each x ∈ X a uniquely determined y ∈ K with

‖x − y‖ = inf
z∈K

‖x − z‖ . (1.17)

The vector y in Theorem 1.12 is called the projection of x with respect to K . We denote this y

as PKx . The result of the theorem above is the fact that the mapping

X ∋ x 7−→ PKx ∈ K

is well defined. This mapping is called the projection of X onto K .

Definition 1.13 Let X be a pre-Hilbert space.

(a) A set O ⊂ X is called an orthonormal system (in X) iff

‖e‖ = 1 for all e ∈ O , 〈e, f〉 = 0 for all e, f ∈ O, e 6= f .

(b) An orthonormal system is called an orthonormal basis iff there exists no orthonormal
system O ′ with O ⊂ O ′, O ′ 6= O .

�

Clearly, every orthonormal system is a linearly independent set. Due to Zorn’s lemma, each pre-
Hilbert space possesses an orthonormal basis. If the underlying pre-Hilbert space X is separable,
i.e. when X is the closure of a denumerable subset A, then there exists an orthonormal basis in
X which is denumarable. Such an orthonormal system can be constructed with the help of the
Gram–Schmidt orthogonalization.

1.7 Bibliographical comments

Inverse problems are considered for instance in [2, 8, 12, 15, 21, 24, 25]. Early sources for the
treatment of inverse and ill-posed problems are [5, 7, 14, 13, 16, 19, 22, 23].

A monography concerning the important subject tomography is [17]; see also [18]. The theme
„inverse crime“ is discussed for example in [3, 9, 10, 26]. A comprehensive bibliography for
numerical differentiation is presented in

file:///C:/Users/gruppe/Desktop/NumericalDiffBib−lnk−3.html

and

http://sourcedb.cas.cn/sourcedb−igg−cas/cn/zjrck/200907/W020100801406250190094.pdf

A useful source for the tools in functional analysis (normed spaces, continuous opperators,
function spaces,. . . ) is [1]. The results concerning Banach and Hilbert spaces in the appendix
can be found in [1] too.
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1.8 Exercises

1.1 Show that under the assumption
„ |x ′′(t)| ≤ E for all t ∈ [0, 1]“

with

xε,h)(τ) := Dhyε(τ) :=
yε(τ + h) − yε(τ)

h

combined with a step-width rule h := h(ε) leads to the error estimate

|xε,h(ε)(τ) − x(τ)| ≤ cE1/3ε2/3 .

Here c is a constant independent of ε, E .

1.2 Suppose that f : [0, 1] −→ R is three times continuous differentiable. Show for τ ∈ [0, 1)

f ′(τ) =
1

2h
(−3f(τ) + 4f(τ + h) − f(τ + 2h)) + O(h2) .

O(·) is the big-O Landau-Symbol.

1.3 Suppose that f : [0, 1] −→ R is twice continuous differentiable. Show for τ ∈ (0, 1)

lim
h→0

|f ′′(τ) −
f(τ + h) − 2f(τ) + f(τ − h)

h2
| = 0 .

1.4 Suppose that f : [0, 1] −→ R is four times continuous differentiable. Show for τ ∈ (0, 1)

and h > 0 such that τ + h, τ − h ∈ [0, 1],

|f ′′(τ) −
f(τ + h) − 2f(τ) + f(τ − h)

h2
| ≤ h2

12
max
s∈[0,1]

|f(4)(s)| .

O(·) is the big-O Landau-Symbol.

1.5 A simple model for the growth of a population is given by

u ′ = qu

where u denotes the size of the population and where q : [0, 1] −→ R is a „parameter“. Find a
method to reconstruct the function q : [0, 1] −→ R from observations of u : [0, 1] −→ R .

1.6 The distance s of a runner from a fixed mark is measured at certain times t:

t 0.0 0.5 1.0 1.5 2.0

s 0.00 3.65 6.80 9.90 12.15

(a) Use central differences in order to reconstruct the velocity of the runner at times t = 0.5

and t = 1.25 .

(b) Describe a method in order to reconstruct the acceleration of the runner and apply this
method for t = 1.5 .

1.7 Derive a formula for approximating the second derivative based on five equidistant nodes
symmetric to the evaluation point. What is the error of the approximation?

1.8 Let X be the Hilbert space l2 and define the linear operator A : X −→ X by the formula
A(x)k = ωkxk, k ∈ N, where (ωk)k∈N is a given sequence of real numbers.
Show: Then λ is an eigenvalue of A if and only if there is an index k such that λ = ωk .
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1.9 Consider the Volterra integral equation

λy(t) +

∫t

0

sin(t − s)y(s)ds = 1 , t ∈ R ,

with λ 6= 0 . (Then the integral equation is said to be of the 2nd kind and - as opposed to the
case λ = 0 (integral equation of the 1st kind) a well-posed equation.)

(a) Show that this equation can be transformed into an initial value problem of 2nd order.

(b) In order to solve the integral equation, solve the initial value problem.

1.10 Let X be the Hilbert space L2([0, 1]) of all equivalence classes of square-integrable functions
on the interval [0, 1] . Define an operator A onto X by declaring A(x)(t) := g(t)x(t) , t ∈ [0, 1],

for some bounded and measurable function g .

Show: A possesses no eigenvalues if g is chosen appropriate.

1.11 Consider the problem of calculating the fractional derivative of a function f given in
L2(R) :

Dαf(x) :=
1

Γ(n + 1 − α)

dn+1

dxn+1

∫x

−∞

f(t)

(x − t)α−ndt

for n ∈ N, n < α < n + 1. Such problems are frequently encountered in many practical contexts.
It is well known that if 0 < α ≤ 1, then Dαf(x) is a formal solution of the Abel integral equation

Iαu)(x) =
1

Γ(α)

∫x

−∞

u(t)

(x − t)1−α
dt = f(x),−∞ < x < ∞ .

Compute Dαf for

f(x) := e−x2

, f(x) :=






0 , x ≤ −1

1 + x ,−1 < x ≤ 0

1 − x , 0 < x ≤ 1

0 1 < x

, f(x) :=






0 , x ≤ −1

1 ,−1 < x ≤ 1

0 1 < x

, f(x) := 0 .

1.12 Can you hear the length of string? Consider the boundary value problem

u ′′ = f , u(0) = u(l) = 0

where f : R −→ R is a given continuous function. Suppose that the solution u and f are known.
Find the length l of the interval.

1.13 Consider the boundary value problem

u ′′ + σu = f , u(0) = u(l) = 0

where f : R −→ R is a given continuous function. Find sufficient conditions on f such that the
constant σ > 0 can be computed from an observation u(τ) for some point τ ∈ (0, l).

1.14 The computation of eigenvalues of a given matrix is a standard problem in (numerical)
linear algebra.

(a) If this problem is considered as a direct problem what should be the formulation of the
inverse problem?
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(b) Let λ1 := 1 − i, λ2 := 1 + i . Compute a matrix A ∈ R
2,2 with eigenvalues λ1, λ2 .

(c) Is the matrix A in (b) uniquely determined? Give an argument for your answer.

1.15 Consider the real Hilbert space (l2, ‖ · ‖2) . Let x = (xk)k∈N ∈ l2 and let xε = (xε
k)k∈N, ε ≥

0, be a sequence of real numbers. Suppose

|xk − xε
k| ≤ ε , k ∈ N ,

∞∑

k=1

ωkx2
k ≤ E2 < ∞

where (ωk)k∈N is a sequence of reals with the properties 0 < ωk ≤ ωk+1, k ∈ N, limk ωk = ∞ .

Define for N ∈ N, ε ≥ 0, the sequence xN,ε ∈ l2 by

xN,ε
k :=

{
xε

k , if k ≤ N − 1

0 , if k ≥ N
.

Show:

(a) ‖x − xN,ε‖2
2 ≤ f(N, ε) := Nε2 + ω−1

N E2 .

(b) Minimize (balance) f(N, ε) with respect to N for the choice ωk := k2, k ∈ N .

(c) Minimize (balance) f(N, ε) with respect to N for the choice ωk := ek, k ∈ N .

(d) Compare and comment the results in (b),(c).

1.16 The problem of computing the eigenvalues of given matrix is well known. If this problem
is considered as a direct problem what can be the formulation of the inverse problem?

1.17 Given is a well of depth H . How much time T passes until one hears the impact of a stone
which falls freely into the shaft, starting with zero velocity at time 0? This is the direct problem.
The associated inverse problem is: Is it feasible to determine the depth of the shaft from T?
Due to Galilei, the distance s the stone has fallen after a period t of time is given by

s =
1

2
gt2 .

Here g denotes the gravitational constant. Let c denote the speed of sound, which has to be
taken into consideration when calculating T .

(a) Determine T in dependence of H .

(b) Determine H in dependence T .

(c) What is the precision in H under the assumption that the time T which has passed can be
measured with a precision of ε?

1.18 Let f be a real function defined over the interval [0,∞). The Laplace transform L(f) is
defined as the integral

L(f)(s) =

∫∞

0

e−stf(t)dt

provided the integral exists.
Given the function g : (0,∞) ∋ s 7−→ 1

2s2(2 − 3e−s + e−3s) ∈ R . Find a function f with

L(f) = g .
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1.19 Consider the integral equation

∫1

0

exp(st)x(t)dt = y(s) , 0 ≤ s ≤ 1 (1.18)

which admits the solution
x(t) := exp(t) , 0 ≤ t ≤ 1 ,

when the right-hand side is given by

y(s) :=
(exp(s + 1) − 1)

(s + 1)
, 0 ≤ s ≤ 1 .

If we approximate (1.18) by the trapezoidal rule, we get

∫1

0

exp(st)x(t)dt ≈ h





1

2
x(0) +

n−1∑

j=1

exp(jhs)x(jh) +
1

2
exp(s)x(1)



 , 0 ≤ s ≤ 1 ,

where h := 1/n . With nodes s = ih we get

h





1

2
x0 +

n−1∑

j=1

exp(jhs)xj +
1

2
exp(s)xn



 = yi := y(ih) , i = 0, . . . , n , (1.19)

where the numbers xj are to be considered as approximations of x(jh).
Tackle the following problems for the cases n = 4, 8, 16 with the help of Matlab.

(a) Find the matrix A which governs the system of linear equations (1.19). beschreibt.

(b) Determine the LU decomposition of A.

(c) Calculate the approximation x1+n/2 and compare with the value of the exact solution
x(1/2) .

(d) Calculate a condition number of A .

1.20 Consider the following sets of sequences of real numbers:

l∞ := {(xn)n∈N|‖(xn)n‖∞ := supn |xn| < ∞} ,

lp := {(xn)n∈N|‖(xn)n‖p := (
∑∞

i=1 |xn|p)
1
p < ∞} , 1 ≤ p < ∞

c := {(xn)n∈N| limnxn exists} ,

c0 := {(xn)n∈N| limnxn = 0} .

Show for 1 ≤ p < ∞:
lp ⊂ c0 ⊂ c ⊂ l∞

1.21 Consider the left-shift operator defined for a sequence of real numbers x := (xn)n∈N by

A(x) := (x2, x3, x4, . . . ) .

Show:

(a) A is a linear and continuous operator which maps lp to lp and has operator norm ‖A‖ = 1

for each 1 ≤ p ≤ ∞ . Here the norm ‖ · ‖p is defined as above.

(b) Is there a sequence e with the property Ae = e other than the sequence (0, 0, · · · )?
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1.22 Consider the mapping

T : c(K) −→ c0(K) , (xn)n∈N 7−→ (yn)n∈N with yn :=

{
limk xk , if n = 1

xn − limk xk , else
.

(a) Show that T is bijective and continuous.

(b) Compute ‖T‖, ‖T−1‖ .

1.23 In statistics the sample variance of n numbers x1, . . . , xn is defined as

s2
n :=

1

n − 1

n∑

i=1

(xi − x)2 where x :=
1

n

n∑

i=1

xi (two-pass-formula) (1.20)

s2
n :=

1

n − 1





n∑

i=1

x2
i −

1

n

(

n∑

i=1

xi

)2


 (one-pass-formula) (1.21)

The computational behavior is very poor in the presence of (rounding-)errors. Instead consider
the updating formulae

M1 := x1, Mk := Mk−1 + (xk − Mk−1)/k, k = 2, . . . , n,

Q1 := 0, Qk := Qk−1 + (k − 1)(xk − Mk−1)
2/k, k = 2, . . . , n

(1.22)

(a) Show that the updating formulae (1.22) result in s2
n = Qn/(n − 1) .

(b) Compare the results for s2
n in the case

x1 := 10000, x2 := 10001, x3 := 10002, x4 := 10003

via the formulae in (1.20), (1.21), (1.22) respectively. Compute in single precision arithmetic.

1.24 Consider the Hilbert matrix of order 3:

H3 :=











1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5











.

(a) Compute the inverse T3 of H3.

(b) Compute the inverse T̃3 of H3 by Gaussian elimination by using the floating-point number
system F(10, 3,−∞,∞). Compare T̃3 with rd(T3).
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