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Chapter 2

Newton Optimization
Method

2.1 Introduction

The previous chapter presented some of the basic ideas for inverting
seismic traveltimes. Now we broaden our understanding of seismic in-
version by discussing the theory of unconstrained optimization. In op-
timization theory, we seek the optimal model vector x∗ that minimizes
the cost functional (or sometimes referred to as a misfit function) given
by f( x). The misfit functional is a scalar measure of how well the pre-
dicted data (based on some assumed model) fit the observed data, and
in most geophysical problems this functional is non-linear with respect
to the model components.

There are two main classes of optimization methods: gradient meth-
ods and non-gradient methods. In the gradient methods, the local gra-
dient and/or curvature of the functional are used to steer us to a new
model with a smaller value of f( x). The chief merit is that they con-
verge quickly for well-posed quadratic misfit functions, but tend to get
stuck in local minima for highly non-linear misfit functions. In contrast,
the non-gradient methods (e.g., Press et al., 1992; Stoffa and Sen, 1991;
Sen and Stoffa, 1991; Ma, 2001) such as Monte Carlo search and simu-
lated annealing (Aarts and Korst, 1990), conduct global searches over
model space. Global searches by random or semi-random selections
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4 CHAPTER 2. NEWTON OPTIMIZATION METHOD

tend to avoid many local minima that plague gradient methods, but
the penalty is a very slow rate of convergence.

So what do most geophysicists use, fast and locally convergent gra-
dient methods or the slow and possibly globally convergent methods.
Most choose the gradient methods, which is what this book concen-
trates on. In fact, it mainly discusses the unconstrained optimiza-
tion methods where no constraints are used in minimizing the misfit
function. See Gill et al. (1981) for further details about constrained
optimization methods.

This chapter discusses the Newton method, which assumes that the
misfit function can be expressed as a summation of second-order model
parameters. It is a very effective gradient method, but is often im-
practical because it requires a prohibitively expensive matrix inverse.
Nevertheless, it is a good strating point to illustrate many important
ideas in opimization theory. The next chapter will discuss the more
practical iterative gradient methods such as steepest descent, Gauss-
Newton, conjugate gradient and quasi-Newton methods. These meth-
ods are commonly used in tomography to invert for the slowness field
from seismic data.

2.1.1 Notation

In the following sections, it will be assumed (unless otherwise stated)
that the functional f( x) is infinitely differentiable with respect to
model parameters xi, can be approximated by a quadratic functional,
and possesses a global minima. A Nx1 vector x will be denoted with
bold lower case letters, an operator or matrix such as L by bold up-
per case letters, and a scalar by lower case letters such as the function
f( x). The ponderous use of functional analysis (Kreyzig, 1978) nota-
tion will be minimized, but we will occasionally have relapses such as
defining a functional as a mapping from a function space to a real line.
Earth models will mostly be discretized into vector space elements in
RN , so we will mostly use notation such as differentiation w/r to the
model space parameters rather than the more precise variation w/r to
the model space function preferred by the theory of variational calculus.
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2.2 Newton-Type Methods

Newton methods explicitly invert the Hessian matrix associated with
second derivatives of the misfit function. The Hessian will be introduced
starting from the 1-D functional minimization problem and working our
way to the multi-dimensional optimization problem.

2.2.1 1-D Newton’s Method

Let f(x) be a differentiable 1-D functional dependent on the scalar
variable x. The goal is to use Newton’s method to find the optimal
x∗ = xo + ∆x∗ that minimizes f(x). Expanding f(x) about xo we get

f(xo + ∆x) = f(xo) +
∂f(xo)

∂x
∆x +

1

2

∂2f(xo)

∂x2
∆x2 + O(∆x3),

≈ f(xo) +
∂f(xo)

∂x
∆x +

1

2

∂2f(xo)

∂x2
∆x2, (2.1)

where the last equation assumes a nearly quadratic functional. Recog-
nizing that the slope of f(x) is zero at x∗ = xo + ∆x∗ we differentiate
equation 2.1 and evaluate at x∗ to give

∂f(xo + ∆x∗)
∂x

=
∂f(x)

∂x
+

∂2f(xo)

∂x2
∆x∗,

= 0 (2.2)

or rearranging and solving for ∆x∗ gives

∆x∗ = −∂f(xo)

∂x
/
∂2f(xo)

∂x2
. (2.3)

Equation 2.3 is the 1-D Newton formula and says that the ∆x∗ is given
by the negative slope −∂f/∂x to curvature ∂2f/∂x2 ratio. If the higher
order terms in equation 2.1 can not be neglected (i.e., the functional
is non-quadratic) then we must iteratively use the following update
formula

x(k+1) = x(k) − ∂f(x(k))

∂x
/
∂2f(x(k))

∂x2
, (2.4)
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where k denotes the kth iteration, and it is understood that the deriva-
tive terms are evaluated at x(k).

In general, the convergence rate of Newton’s method depends on
the topography of the functional, which is described by the curvature
and slope terms in equation 2.4 and illustrated in Figure 2.1.

• The sufficient conditions for a local minimum (Gill et al., 1981)

are that ∂f(x∗)
∂x

= 0 and that ∂2f(x∗)
∂x2 > 0 so that the slope is

always increasing just away from the minimum; such a minimum
is designated as a strong local minimum (Gill et al., 1981). If the
curvature is negative at a stationary point then x∗ represents a
maximum.

• If ∂2f(x∗)
∂x2 = 0, then the there are many neighboring values of x

that locally minimize f(x∗); such a minimum is designated as a
weak local minimum (Gill et al., 1981). For multidimensional
problems, the equivalent condition is that the curvature matrix
(i.e., Hessian) is ill-conditioned so that many models explain the
same noisy data.

• Global minimum where f(x∗) < f(x) for all x.

Typical seismic optimization problems are characterized by the patho-
logical cases shown in Figure 2.1: flat topography that leads to non-
unique solutions and local minima that trap a gradient method into the
wrong stationary point.

A MATLAB script which implements Newton’s method for the 1-
D function f(x) = x4 + x2 − 3x is given below (courtesy of Maike
Buddensiek).

% 1-D Newton Method to find zeros of a function

% plot functions

x = [-10:0.1:20];

f = abs(x.^4 + x.^2 - 3*x);

f1prime = 4*x.^3 + 2*x - 3;

f2prime = 12*x.^2 + 2;
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x

f(x)

global

local
minimum

weak 
minimum

minimum

maximum

Figure 2.1: Functional with pathological cases: local minima, weak
minima surrounded by flat topography, strong global minimum, and a
maximum.
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plot(x,f,’blue’,x,f1prime,’green’,x,f2prime,’red’);

zoom; grid on;

% Start Newton 1-D to find zeros

tolerance = 0.01;

deltax = tolerance + 0.1; % to make sure, while starts

xinit = 01; % guess

i = 0;

max = 10; % maximum number of iterations, in case it doesn’t converge

xact = xinit;

while abs(deltax) > tolerance,

i = i+1; f = xact.^4 + xact.^2 - 3*xact;

f1prime = 4*xact.^3 + 2*xact - 3;

f2prime = 12*xact.^2 + 2;

deltax = - f/f1prime; xnew = xact + deltax;

table = [deltax, xnew];

fprintf(’%6.2f %12.8f\n’, table);

xact = xnew;

if i == max break; end

end

2.2.2 2-D Newton’s Method

Let f(x, y) be a differentiable functional dependent on the scalar vari-
ables x and y. The goal is to use Newton’s method to find the optimal
x∗ = xo + ∆x∗ that minimizes f(x), where x = (x, y)T . Expanding
f( xo + ∆x) about xo we get

f( xo + ∆x) ≈ f( xo) +
∂f( xo)

∂x
∆x +

∂f( xo)

∂y
∆y +

1

2

∂2f( xo)

∂x2
∆x2
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+
1

2

∂2f( xo)

∂y2
∆y2 +

∂2f( xo)

∂y∂x
∆y∆x, (2.5)

where cubic and higher order terms have been neglected. Similar to
the 1-D case, the Newton formula is found by setting the 2-D gradient
at x∗ equal to zero, (i.e., ∆f( x + ∆ x∗) = 0) and solving the resulting
2x2 set of equations for ∆ x∗ . Explicitly,

∂f( xo + ∆x∗)
∂x

=
∂f( xo)

∂x
+

∂2f( xo)

∂x2
∆x∗ +

∂2f( xo)

∂y∂x
∆y∗,

= 0. (2.6)

∂f( x + ∆x∗)
∂y

=
∂f( xo)

∂y
+

∂2f( xo)

∂y2
∆y∗ +

∂2f( xo)

∂y∂x
∆x∗,

= 0. (2.7)

Equations 2.6 and 2.7 can be rearranged and written in matrix notation

H∆x∗ = −g, (2.8)

where the Hessian matrix H and gradient vector g are given by

H =

∣∣∣∣∣∣∣∣∣∣

∂2f

∂x2

∂2f

∂x∂y

∂2f

∂x∂y

∂2f

∂y2

∣∣∣∣∣∣∣∣∣∣
, (2.9)

g =

∣∣∣∣∣∣∣∣∣∣

∂f

∂x

∂f

∂y

∣∣∣∣∣∣∣∣∣∣
. (2.10)

Solving for ∆x∗ in equation 2.8 gives

∆x∗ = −H−1g, (2.11)

for the optimal move. For higher-order quadratic functions the iterative
formula

x(k+1) = x(k) −H−1g(k), (2.12)
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is used to update the solution. Here ∇f( x(k)) = (∂f/∂x, ∂f/∂y)T =
g(k) so that the outer product ∇∇T applied to f(x) is exactly the Hes-
sian matrix given in equation 2.7. Also, equation 2.5 can be expressed
in the compact notation

f( x) = f( xo) + gT ·∆ x + 1/2∆ xT ·H ·∆ x. (2.13)

r̂T · H · r̂ = Curvature. The Hessian matrix contains information
about the curvature or type of bumps associated with f(x). In fact,
the functional’s curvature at x along the unit vector direction r̂ is given
by r̂T ·H · r̂. To show this assume that x is parameterized by the scalar
α so that

x = x0 + αr̂, (2.14)

for some fixed x0 and the unit vector r̂. Therefore, the curvature of f(x)
along the direction r̂ is given by d2f(x)/dα2, which can be obtained by
inserting equation 2.14 into equation 2.13 and differentiating twice w/r
to α to get

d2f(x)

dα2
= r̂T ·H · r̂. (2.15)

Hessian Eigenvalues Determine Geometry. The sign and magni-
tude of the eigenvalues λ1 and λ2 of H determine the shape of f( x).
This can be shown by replacing xo + ∆x∗ by x∗ + αe1 + βe2, where
ei is the ith orthonormal eigenvector of the symmetric matrix H, and
α and β are scalars. Expanding f( x) about the minimum point x∗ so
that equation 2.13 becomes

f(x∗ + αe1 + βe2) = f(x∗) + α2e1
T ·H · e1 + β2e2

T ·H · e2,

= f(x∗) + λ1α
2e1

T · e1 + λ2β
2e2

T · e2,

= f(x∗) + λ1α
2 + λ2β

2, (2.16)

where the gradient term gT ·∆ x is dropped because it is equal to zero
at the minimum point x∗. Since H is a symmetric matrix then the
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eigenvalues are real, so that for positive definite H (i.e., H has only
positive eigenvalues) any move along an eigenvector direction from x∗

will increase the value of the functional. Hence, f( x) describes a bowl-
like surface around the minimum point x∗ (see left column of plots
in Figure 2.2). Large positive eigenvalues suggest that small changes
in position lead to large changes in f( x) so that the bowl has steeply
curving sides; conversely, small positive eigenvalues suggest a bowl with
gently curving sides.

If the Hessian is negative definite (i.e., H has only positive eigen-
values) then equation 2.16 says that any move along an eigenvector
direction will decrease the functional, i.e., f( x) describes an inverted
bowl about the maximal point x∗. If the Hessian is indefinite (both
positive and negative eigenvalues) then a move along one eigenvector
direction will decrease the functional value while a move along the other
eigenvector direction will increase the functional value. This latter sur-
face describes the saddle shown in Figure 2.2f.

Exercises

1. Find the zeros of f(x) = x4 + x2 − 3x using the 1-D Newton
method and the MATLAB script given in the previous section.
Test the convergence rate sensitivity to different starting points.

2. Write a 2-D Newton MATLAB script that solves the minimiza-
tion of the Rosenbrock function f(x1, x2) = 100(x2 − x2

1)
2 + (1−

x1)
2. Plot out the Rosenbrock function in an x-y plot and com-

ment about why the curved contours indicate a functional with a
higher order than second-degree. Show that the convergence rate
strongly depends on the starting point.

2.2.3 Multidimensional Newton’s Method

Let f( x) be a differentiable functional dependent on the N-dimensional
vector x. The 2-D Newton’s method is easily extended to the N-
dimensional case by expanding f( x) about xo in an N-dimensional
Taylor’s series

f( xo + ∆ x) ≈ f( xo) + gT ·∆ x +
1

2
∆ xT ·H ·∆ x, (2.17)
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Figure 2.2: Plots of functionals with different curvatures. Left column
of figures are associated with positive eigenvalues while the right column
corresponds to examples with negative eigenvalues.
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where the cubic and higher order terms have been dropped. As before,
the gradient of f( xo + ∆ x) is set equal to zero at xo + ∆ x∗ so that
∆ x∗ can be iteratively solved by equation 2.12. Except now, H is an
NxN Hessian with elements Hij = ∂2f/∂xi∂xj and the Nx1 gradient
vector g has elements gi = ∂f/∂xi.

In many geophysics problems, the misfit functional is highly non-
linear so that many Newton searches are needed. Indeed, a step of
unity along the Newton direction may not reduce the misfit function
(Gill et al., 1981). Thus the step length denoted by the scalar value α
is used to give the formula:

x(k+1) = x(k) − αH−1
(k)g

(k), (2.18)

where the k subscript in the Hessian indicates updating of the Hessian
components after each iteration. Equation 2.18 describes the non-linear
Newton method with line search (Fletcher, 1987). Line search meth-
ods that determine the optimal value of α will be discussed in a later
chapter.

2.2.4 Quasi-Newton Condition

It is well known that a finite-difference approximation to the second
derivative of a function is proportional to the difference between the
first derivatives at neighboring points:

∂2f(x)/∂x2 dx ≈ ∂f(x + dx)/∂x− ∂f(x)/∂x, (2.19)

where dx is the spatial increment between the evaluation points. This
formula is a special case of the quasi-Newton condition, which relates
the Hessian (second derivatives of quadratic misfit function) to the
difference between the misfit gradient at neighboring points.

Quasi-Newton Condition

H · ( x(k+1) − x(k)) = g(k+1) − g(k). (2.20)

The QN condition can easily be proved by forming the gradient of
equation 2.17 at xo + ∆ x:

∇f( xo + ∆ x) = g( xo) + H ·∆ x. (2.21)
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Defining ∇f( xo + ∆ x) = g(k+1), g( xo) = g(k) and ∆ x = x(k+1) −
x(k) we get the QN condition in equation 2.20. Note the similarity be-

tween the 2nd-order difference equation and its multideimensional gen-
eralization to the QN formula 2.20. We will denote H · ( x(k+1)− x(k))
as the unnormalized curvature vector along the direction x(k+1)− x(k)

because the curvature of the functional along this direction is given by
( x̂(k+1)− x̂(k))T ·H · ( x̂(k+1)− x̂(k)) (see equation 2.15). In a following
chapter, we will use the QN property to derive a practical generaliza-
tion of the steepest descent method, known as the conjugate gradient
method.

2.2.5 Gauss-Newton Method

The Gauss-Newton method was discussed in the first chapter in the
context of minimizing the sum of squared traveltime residuals. For the
general case of M non-linear equations defined as

ri( x) = Li x− ti

≈ 0 iε[1, 2, ...M ] (2.22)

where ri( x) is known as the data residual, the difference between the
ith predicted data given by Li x and the ith observed data ti; Li is the
modeling operator that acts on the model vector x. The goal is to find
the model vector x that minimizes the residuals in some sense. Thus,
a cost functional ε is defined as the pth power of the lp norm (Kreyszig,
1978) of the residual

ε = ||r||p,

=
N∑

i=1

|ri|p, (2.23)

and for n = 2 is called the l2 norm or least squares solution if we find
the optimal x that minimizes

ε = 1/2
∑

i=1

r2
i , (2.24)
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where the 1/2 factor was included for convenience. This misfit function
is a non-negative functional that is non-linearly related to the model
parameters x. Thus, the Newton iterative formula in equation 2.12
can be used to find the optimal solution.

Explicitly, the jth component of the gradient is given by

gj = ∂ε/∂xj

= 2
∑

i=1

ri( x)∂ri/∂xj, (2.25)

where the components ∂ri/∂xj make up the elements of what is known
as the Jacobian matrix; the Jacobian elements are composed of the 1st
derivatives of each residual. The Hessian is obtained by taking second
derivatives of the misfit function, i.e.,

Hjk = ∂2ε/∂xj∂xk

= 2
N∑

i=1

[ri( x)∂2ri/∂xk∂xj + ∂ri/∂xk ∂ri/∂xj]. (2.26)

More compactly, the above equation can be represented in matrix-
vector notation as

H =
M∑

i=1

Tiri + LT L, (2.27)

where the Jacobian is given by Lij = ∂ri/∂xj and the third-rank tensor
[Ti]jk = ∂2ri/∂xk∂xj. Substituting the above Hessian into the Newton
formula gives

x(k+1) = x(k) − [
M∑

i=1

Tiri + LT L]−1g(k), (2.28)

and is called the large residual Gauss-Newton method.

Small Residual GN

For small residuals where r is small then the third-rank tensor is ne-
glected to give the small-residual Gauss-Newton method:

x(k+1) = x(k) − [LT L]−1g(k), (2.29)
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where g = LT r.

The small residual GN method is almost universally used by all
tomographers, mainly because the second derivatives do not need to
be explicitly computed. Only the Jacobian matrix is computed, which
can be used to form the approximation to the Hessian LTL.

2.2.6 Non-Linear GN

If the Hessian depends on the model values x then the data and model
are non-linearly related. Thus one iteration of the GN method will not
minimize the misfit function. Instead, an initial model x(0) is specified
and the non-linear GN method is employed:

x(k+1) = x(k) − α[
∑

i=1

Tiri + LT L]−1 g(k), (2.30)

where the superscript k denotes the kth iteration and α denotes a scalar
step length (to be discussed in a later chapter). If the initial model is
close to the actual model then this method yields useful results after a
few iterations. However, many seismic imaging problems are plagued
by many local minima that tend to trap iterative solution methods.
Later chapters will address this still bothersome issue.

2.2.7 Reweighted Least Squares

Some data residuals may be less reliable than others, and so it seems
plausible to downweight these ”noisy” data with a weighting factor wi

such that 0 < wi < 1. In this case the sum of the squared residuals
become

ε = 1/2
∑

i=1

wir
2
i , (2.31)

and the Gauss-Newton solution is known as a weighted least squares
solution. Here the gradient in equation 2.25 becomes

gj = 2
∑

i=1

wiri( x)∂ri/∂xj, (2.32)
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and the small-residual Hessian is

Hjk = 2
∑

i=1

[∂ri/∂xk wi∂ri/∂xj]. (2.33)

The reweighted least squares algorithm is obtained by setting wi =
1/(|ri| + λ) (where λ is a small positive stabilizing factor), and ri is
the residual from the previous iteration. In this way data points with
large residuals are likely to be excluded in influencing the outcome of
the optimization. It can be shown (Nolet, 1987) that the reweighted
least squares method can be obtained by minimization of the l1 norm
misfit function.

2.3 Cures for Ill-Conditioning

If H is ill-conditioned then a small move along one of the eigenvector
axes can lead to enormous and questionable changes in the model. For
example, in the 2-D case the gradient vector g can be expanded in
terms of the eigenvectors e1 and e2 of H to yield g = g1e1+g2e2, where
Hei = λiei and λi is the ith eigenvalue. Plugging g into equation 2.11
gives

∆x∗ = −(g1/λ1)e1 − (g2/λ2)e2. (2.34)

If the ith eigenvalue is almost zero then |∆xi| = |gi/λi| >> 0, resulting
in a large unstable move along the ith eigenvector axis; the move is
considered unstable because a small amount of data noise will greatly
change the solution. This is similar to the model being a discontinuous
function of the data. Equivalently, the functional’s topography along
this eigendirection will appear to be a long nearly flat valley similar
to that shown in Figure 2.2c. In this case, many different models x’s
along the valley floor can give almost the same value of the functional.

2.3.1 Regularization

To remedy this ill-conditioning problem, we resort to a regularization
method, the simplest being the Levenberg-Marquardt method. An al-
ternative remedy to increase convergence is preconditioing, which will
be discussed in the next section.
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In the Levenberg-Marquardt regularization method, the NxN H
matrix in equation 2.5 is replaced by (H + λI), so that we have the
modified Newton formula

[H + λI]∆ x = −g, (2.35)

where I is an NxN identity matrix and λ is some small positive scalar.
The eigenvectors for (H+λI) are the same as for H, but the eigenvalues
become λi + λ. Therefore the unstable move ∆xi → gi/(λi + λ) is
damped to a more reasonable value.

The Levenberg-Marquardt method approaches the Newton method
as λ → 0, i.e.,

lim
λ→0

(H + λI)−1g = −H−1g. (2.36)

On the other hand, if λ → large then the Levenberg-Marquardt method
approaches the gradient or steepest descent method, i.e.,

lim
λ→large

(H + λI)−1g = −g/λ. (2.37)

In this last case, the gradient move is along the steepest descent di-
rection or the direction perpendicular to the contour’s tangent. If the
contours are round then the steepest descent direction points to the
bullseye.

These two limiting cases are shown in Figure 2.3 where the Levenberg-
Marquardt direction is between the steepest descent and Newton direc-
tions (Lines and Treitel, 1988). In practice, the value of λ is set to
be large (about 1.0 percent of the largest diagonal value of H) for the
initial iteration, and is then gradually reduced as the iterations proceed
until the average residual is about the same as the expected data er-
ror. Large values of the damping parameter tend to suppress the high
frequency components of the inverted slowness model.

The Levenberg-Marquardt method is a special case of the regular-
ized Newton method with small residuals. In the regularized Newton
method, a regularization (i.e., stabilizing or penalty function) func-
tional p( x) is appended to the misfit functional in equation 2.17 to
give

f( x) → f( x) + λ p( x), (2.38)
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Steepest Descent

Newton

Levenberg-Marquardt

Figure 2.3: Contours associated with the f( x) functional and the vec-
tors associated with the Newton, Levenberg-Marquardt and steepest
descent vectors.

where λ > 0 is a scalar sometimes known as the damping constant.
The penalty function p( x) is designed to penalize the solution if the
iterations wander too far from where we think the model should be. For
example, deciding that the solution length should be small is enforced
by setting p( x) = 1/2|| x||2; the consequent Newton formula is equal
to the Levenberg-Marquardt equation 2.35. In later chapters we will
discuss other terms that can be used to regularize the solution, including
difference terms that penalize rough solutions, e.g.,

∑
i,j[(xij−xi+1j)

2 +
(xij−xij+1)

2], or entropy terms that penalize ”unsimple” models (Buck
and Macauly, 1994).

If solutions are found for decreasing values of the damping constant,
then this is sometimes known as Tikhonov regularization (Groetsch,
1994). Mathematically, we are replacing an ill-posed problem with
a well-posed problem whose solution becomes closer to that of the
original problem as λ → 0. The stabilizing functional is used to guide
the solution to be near some a priori estimate of the model.

As an example, if p( x) is set equal to 1/2∆ xT · I · ∆ x then it
can easily be shown that the resulting Newton formula is equal to the
Levenberg-Marquardt formula in equation 2.3. The regularization term
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λ∆ xT I ∆ x prefers the model ”closest” to the starting point ∆ x =
0, while the f( x) term prefers the model that satisfies the equation
H∆ x = −g. The size of the damping parameter λ decides which
one of these conflicting demands is emphasized. We will discuss more
general regularization operators in later chapters.

Exercises

1. Prove that the Newton method for the functional ε = f( x) +
0.5λ∆ xT · I ·∆ x results in the Levenberg-Marquardt formula.

2. Show that a negative value for the damping parameter can lead to
a damped Hessian with zero eigenvalues. Assume an undamped
Hessian that is SPD.

3. Find the Newton formula for the Rosenbrock function by employ-
ing a regularization term that prefers to be close to some a priori
model xapriori.

4. Show that the gradient minimization of the l1 norm misfit func-
tion ε =

∑
i | Li x − ti| leads to the reweighted least squares

method.

5. Are preconditioning and regularization commutative? That is, is
preconditioning followed by regularization in an iterative Newton
method the same as regularization followed by preconditioning?

Choosing a damping parameter

How do you choose the smallest value of the damping parameter λ?
Trial and error usually seems to work, where tests with synthetic data
having realistic noise are used to determine smallest value of λ. The
discrepancy principle of Morozov (Groetsch, 1993) assigns a value for
the damping parameter λ, inverts for the model xest from the syn-
thetic data d, and from the estimated model generate the estimated
data dest. Plot λ vs || dest − d|| and choose the damping parameter
associated with the value || dest − d|| that is equal to the estimated
residual norm in the actual data (see left plot in Figure 2.4). A more
expensive modification of this approach is to experimentally choose λ
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that minimizes the data residual (above the estimated data residual
threshold) for each iteration in a non-linear iterative method (Consta-
ble et al., 1987).

An alternative approach is to plot the length of the model vector vs
the length of residual vector, and choose the point on the curve nearest
the origin (see right plot in Figure 2.4). In this context, larger model
vectors are roughly equivalent to larger model variance. The point
nearest the origin is considered to be the optimal tradeoff between
increasing data residual and decreasing model vector length. Small
values of λ lead to small data residuals but at the expense of large
model vectors; conversely, large values of λ lead to small model vectors
(or small model variance) but large data residuals (Treitel and Lines,
1982; Jackson, 1972). This procedure is equivalent to using the λ on
the elbow of the L-shaped curve (Calvetti et al., 1999; Lawson and
Hanson, 1972; Hansen, 1992; Hansen and O’Leary, 1993). But there
are limitations as pointed out by Hanke (1996).

Two other methods deserve some mention. The first is the so-called
singular value truncation method (or sometimes called truncated spec-
tral factorization) which expands the solution in terms of the weighted
singular value eigenvectors, similar to equation 2.34, except the sum-
mation is truncated at singular values less than a small threshold value
(Menke, 1984). Instead of a sharp truncation, smoothly attenuating
these low eigenvalue contributions produces better results (Calvetti et
al., 2002). Unfortunately, solving for the singular value decomposition
is impractical for many realistic tomography problems. The other reg-
ularization method is that of the Generalized Cross Validation (GCV)
method (Golub et al., 1979), which can be effectively used for large-
scale problems (Golub and von Matt, U., 1997). However, this method
does not appear to have been tested with geophysical problems to date.

2.3.2 Preconditioning

Preconditioning is a preprocessing step which massages the Hessian
so that the original elliptical-like contours in Figure 2.3 become more
rounded. In this case, even a steepest descent method will converge in
a few steps. The trick is to find an easily computable matrix B such
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Figure 2.4: Schematic plots illustrating how to choose the optimal
damping parameter λ∗ using the (left) discrepancy and (right) Jack-
son principles. The discrepancy principle chooses the λ associated with
the length of the actual data residual, while the Jackson principle might
choose the point on the curve nearest the origin in a plot of squared
lengths of model vector vs residual vector. Honoring the discrepancy
principle insures that the model is not severely fitted to the noise.
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that B ≈ H−1. Applying B to equation 2.8 yields

BH∆x∗ = −Bg, (2.39)

so that, e.g., the steepest descent formula in equation ?? becomes

x(k+1) = x(k) − αBg, (2.40)

which is known as a preconditioned steepest descent method. Obvi-
ously, BH has eigenvalues that are nearly the same value so that the
matrix is now well conditioned.

A simple example might be an NxN diagonal matrix where Bii =
1/Hii. A more accurate inverse approximation is by employing a incom-
plete Cholesky factorization of H into a product of upper and lower
triangular matrices, and solve for the approximate inverse of H by
back substitution (Nocedal and Wright, 1999). See Gill et al. (1981)
for further details, and Claerbout (2001) for an inexpensive approxima-
tion to inverses by the helical transformation. Fomel (2000) discusses
novel methods for both data and model regularization.

How is preconditioning related to regularization (see equation 2.38),
which also attempts to stabilize an ill-conditioned set of equations?
The main difference is that regularization guides the iterated solution
to where our biased notion of where the solution ought to be. If the
global minima is characterized by a long valley, regularization will take
us to that part of the valley that, e.g., is nearest to the smallest so-
lution norm or the smoothest solution. Preconditioning is not so ex-
plicitly prejudiced and takes us into the center of the valley no matter
how gentle the slope. This might not be a good idea if the data are
noisy so that the center of the valley is not near the actual solution.
For this reason, I believe regularization is more powerful than precon-
ditioning, particularly if our biases are based on ground truth such as
well logs. When possible, my preference is to use both preconditioning
and regularization to solve seismic imaging problems.

2.4 Summary

The theory of unconstrained Newton optimization is given for solv-
ing non-linear and linear equations. The first step is to form a misfit
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function and expand it in a 2nd-order Taylor series about xo:

f( xo + ∆ x) = f( xo) + ∆f( xo) ·∆ x + 1/2 ∆xT ·H ·∆x.

(2.41)

The 1st-order coefficient in the perturbation parameter ∆x is the gra-
dient g of the misfit function, while the second-order term contains the
symmetric Hessian H. For nice convergence properties we assume that
the Hessian is positive definite, otherwise there will be non-uniqueness
problems (nearly zero-eigenvalues) or poor convergence problems (neg-
ative eigenvalues).

The product ∆x̂T · H · ∆x̂ is the curvature of the misfit function
along the ∆x̂ direction and governs the convergence rate of the gradient
optimization methods. Newton’s method provides a search direction
that points to the bullseye of a quadratic functional. If the problem is
highly non-linear then Newton’s method is iteratively used to seek out
the local bullseyes defined by the quadratic functional at each iterate.

Major problems in seismic gradient optimization include the follow-
ing.

• Misfit functions are characterized by many local minima in prac-
tical tomography problems. A partial remedy is a multigrid regu-
larization where coarse models are first determined to explain the
data, and then the models are iteratively refined with smaller grid
spacing (Nemeth et al., 1997). Apparently, coarse grid spacing
leads to smoother misfit functions so that the initial iterations
avoid the many local minima present in a misfit function parame-
terized on a finer grid. Sometimes, a different misfit function can
be used to avoid the local minima problems.

• Incomplete data due to limited source-receiver coverage, leading
to long narrow misfit valleys and non-uniqueness in the solution.
Equivalently, many models nearly explain the same data. A par-
tial remedy is to incorporate more data and other types of data
into the misfit function, e.g., include both transmission and reflec-
tion traveltimes in traveltime tomography (Nemeth et al., 1997).


