
Decoupled Deblurring Filter and its Application to Elastic Migration and

Inversion

Zongcai Feng
King Abdullah University of Science and Technology (KAUST)

ABSTRACT

Parameters of different classes, such as the P- and S-
wave velocities, can be coupled to one another in multi-
parameter seismic inversion. This coupling effect gen-
erates crosstalk artifacts in the migration and inversion
images. Conventional approximations to the Hessian
inverse for a single parameter class usually ignores this
coupling effect. We now present a deblurring filter that
approximates the multiparameter Hessian inverse. It
takes into account the coupling of parameters by using
local deblurring filters to approximate the submatrices
of the Hessian inverse for different parameter classes.
Numerical tests show that the decoupled deblurring fil-
ter not only reduces the footprint noise, balances the
amplitude and increases the resolution of the elastic
migration images, but also mitigates the crosstalk ar-
tifacts . When used as a preconditioner, it also accel-
erates the convergence rate for elastic inversion.

INTRODUCTION

Conventional migration can be considered as the first iter-
ation of iterative least-squares inversion (Claerbout, 1992),
where the migration image is obtained by applying the ad-
joint of the forward modeling operator to the data (Lailly,
1983). The migration operation does not compute the
Hessian inverse so the image suffers from amplitude dis-
tortion due to uneven illumination, strong footprint noise
due to the limited acquisition geometry and blurring ef-
fects due to the band-limited wavefields (Nemeth et al.,
1999; Aoki and Schuster, 2009). In the multiparemeter
case, the Hessian matrix (or its inverse) contains subma-
trices for different parameter classes that describe the cou-
pling effects (Wang and Pratt, 1997; Operto et al., 2013).
Therefore the multiparameter migration image also suf-
fers from crosstalk artifacts. Approaches to partly remedy

these imaging problems are based on the seismic inverse
theory (Lailly, 1983).
An indirect approach to account for the Hessian inverse

relies on iteratively solving either the linear (Lailly, 1984;
Nemeth et al., 1999; Duquet et al., 2000) or nonlinear
(Tarantola, 1984; Mora, 1987) optimization problem using
a gradient-based inverse method, without explicitly calcu-
lating the Hessian inverse (Tang, 2009). The quality of the
image is iteratively improved. However, the drawback is
that the iterative solution can be more than an-order-of-
magnitude more costly than standard migration without
proper preconditioning (Aoki and Schuster, 2009). In the
multiparameter case, the convergence rate and inversion
accuracy can be even worse because inversion suffers even
more because of the non-linearities (Operto et al., 2013).
The Hessian matrix and its inverse are usually too ex-

pensive to compute and store for large-scale 3D applica-
tions. The simplest way to reduce the cost is to approxi-
mate it by a diagonal matrix (Rickett, 2003; Nemeth et al.,
1999; Plessix and Mulder, 2004; Symes, 2008). Recently,
Wang et al. (2016) extended the diagonal approximation
to the multiparameter case by also estimating the diag-
onals of the Hessian submatrices for different parameter
classes. However, for a finite range of frequencies, the
Hessian matrix is diagonally dominant but not diagonal,
assuming a dense acquisition geometry. A diagonal ap-
proximation to the Hessian matrix can remedy the uneven
illumination problem but not the deblurring problem.
The near-diagonal elements of the Hessian matrix are

usually approximated (Tang, 2009). Hu et al. (2001) and
Yu et al. (2006) estimated the Hessian inverse in the wavenum-
ber domain by assuming a locally layered medium and a
sufficiently wide recording aperture. Guitton (2004) ap-
proximated the Hessian inverse with a bank of nonstation-
ary matching filters. The matching filter is approximated
from the initial image and a second image obtained by
migrating the data modelled from the initial image. Sim-
ilarly, Aoki and Schuster (2009) proposed a bank of local-
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ized stationary filters, called the deblurring filters, to ap-
proximate the Hessian inverse. Their filters are calculated
from a reference model constructed from isolated point
diffractors and its migration image. Dai et al. (2011) used
the deblurring filter to accelerate the convergence speed
of least-squares migration. Recently, the isolated point
diffractors are also used to construct models to approxi-
mate the multiparameter Hessian (Tang and Lee, 2015).
We now develop a decoupled deblurring filter to esti-

mate the inverse to the elastic multiparameter Hessian
matrix, using the localized filter technique similar to Aoki
and Schuster (2009). We also construct the multiparame-
ter reference models using isolated point diffractors for dif-
ferent parameter classes. The filters and reference models
are designed according to the characteristics of the Hes-
sian inverse. The decoupled deblurring filter estimates the
near-diagonal elements of the submatrices of the Hessian
inverse for both the same and different parameter classes.
Our decoupled deblurring filter is tested for its effec-

tiveness with the elastic migration and linearized inversion
methods applied to elastic data (Duan et al., 2016; Feng
and Schuster, 2016). The elastic migration and inversion
images contain the reflectivity images of P- and S-wave
velocities. The results show that our decoupled deblur-
ring filter not only balances the amplitude, increases the
resolution, but also reduces the crosstalk artifacts in the
elastic images. It can also be used as a preconditioner to
accelerate the convergence of elastic inversion.
This article is organized into four sections. After the

introduction, the second section describes the theory of
decoupled deblurring filters. Numerical results on the
synthetic data are presented in the third section. The
synthetic examples are for elastic migration and inversion
using the 2D elastic synthetic data. Finally, discussions
and conclusions are presented in the last two sections.

THEORY

Linearized forward modeling of seismic data is mathemat-
ically represented by the modeling operator L (Aoki and
Schuster, 2009; Dai et al., 2011), so that

d = Lm, (1)

where d represents the scattered seismic data, m is the
reflectivity model, and L is the forward modeling operator
associated with a specific survey geometry, source wavelet
and background velocity parameters. The least-squares
inversion of the data for the reflectivity model m can be
represented by

m = (LTL)−1LTd, (2)

where LT is the adjoint of the forward model and (LTL)−1

is the Hessian inverse. In comparison, migration is the
adjoint of the forward modeling operator applied to the
data and can be represented by (Claerbout, 1992)

mmig = LTd, (3)

wheremmig is the migration image. Equation 3 defines the
relationship between the migration image and the actual
reflectivity model by substituting equation 1 to obtain

mmig = LTLm. (4)

Equation 4 says that the standard migration image is a
blurred version of the actual reflectivity model m (Hu
et al., 2001; Yu et al., 2006), where the blurring operator
is LTL.
In addition, equation 2 can be written as

m = (LTL)−1mmig, (5)

where the Hessian inverse (LTL)−1 in equation 5 has many
properties. We can improve the quality of the migration
image by applying an accurate estimate of (LTL)−1 to it.
For nonlinear seismic inversion, it is convenient to ap-

proximate d as a truncated Taylor series d ≈ d0 +
∂d
∂m

m

expanded about the background model m0 so that

L =
∂d(m0)

∂m
. (6)

Here, L is called the sensitivity kernel (Virieux and Op-
erto, 2009). Using (LTL)−1 as the approximate Hessian
inverse is referred to as the Gauss-Newton method (Pratt
et al., 1988). In this article, the decoupled deblurring fil-
ter is mainly illustrated using linearized seismic inverse
theory.

Multiparameter Hessian Interpolation

The forward modeling operator L, reflectivity model m
and corresponding migration image mmig for p multipa-
rameter classes can be expressed as

L = (L1,L2, · · · ,Lp), m =











m1

m2

...
mp











, andmmig =











m
mig
1

m
mig
2
...

mmig
p











,

(7)
where mi is the model of ith parameter class, Li is the
linearized forward modeling operator associated with mi,
and m

mig
i is the migration image of ith parameter class.
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The multiparameter Hessian LTL has the form

LTL =


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




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1 L2 · · · LT
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...
...
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...
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
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



. (8)

Here, we divide the multiparameter Hessian into two terms.
The first term is associated with the Hessian submatrices
for the same parameter classes LT

i Li. The second term is
associated with the Hessian submatrices for different pa-
rameter classes LT

i Lj (i 6= j). According to equation 3,
the first term yields a blurred version of the actual reflec-
tivity model, while the second term explains the crosstalk
artifacts introduced by the coupling effects in multiparam-
eter migration image. Traditionally, the coupling effect
is intuitively evaluated by displaying diffraction pattern
(Tarantola, 1986; Virieux and Operto, 2009; Operto et al.,
2013).

Decoupled deblurring filter algorithm

In the context of multiparameter seismic inversion, the
crosstalk artifacts can also be reduced by an accurate es-
timate of the multiparameter Hessian inverse according
to equation 5. In this article, we propose to estimate the
multiparameter Hessian inverse based on a localized filter,
denoted as the decoupled deblurring filter. The deblur-
ring filter for a single parameter class (Aoki and Schuster,
2009) is based on the assumption that the Hessian is a
diagonally dominant matrix. Our decoupled deblurring
filter further assumes that the submatrices of the Hessian
for different parameter classes LT

i Lj (i 6= j) are also diag-
onally dominant.
According to equation 8, the multiparameter Hessian

inverse (LTL)−1 can also be written as a combination of
p× p submatrices

(LTL)−1 = F =











F1,1 F1,2 · · · F1,p

F2,1 F2,2 · · · F2,p

...
...

. . .
...

Fp,1 Fp,2 · · · Fp,p











, (9)

where (LTL)−1 is denoted as F and its submatrices Fl,k (k, l =
1, 2, . . . , p) have the same dimension. According to equa-

tion 5 and the notation in equation 7, we have

p
∑

k=1

Fl,km
mig
k = ml, ∀l, (10)

where ∀l means equation 10 is a systerm of p equations
(l = 1, 2, . . . , p). For the decoupled deblurring filter, we
seek p2 stationary local filters fk,l to approximate the p2

submatrices Fl,k in a window

p
∑

k=1

fl,k ∗ [m
mig
k ] ≈ [ml], ∀l (11)

where [ ] denotes the model or migration image in a win-
dow.
The filter fl,k can be computed by constraining them to

a set of equations

∑

k

fl,k ∗ [(m
mig

−

ref

i )k] = [(mref
i )l], ∀i, l. (12)

Here i = 1, 2, ..., p is the index of the designed reference
multiparameter model. Each mref

i is a model of p param-

eter classes and m
mig

−

ref

i is the corresponding migration
image with the form illustrated in equation 7:

mref
i =











(mref
i )1

(mref
i )2
...

(mref
i )p











and m
mig

−

ref

i =











(mmig ref
i )1

(mmig ref
i )2
...

(mmig ref
i )p











.

(13)

There are p reference multiparameter models and their
corresponding migration images are used to solve equa-
tion 12. This means that equation 12 is a set of p2 equa-
tions and the solution is p2 filters.
For simplicity, we design the (mref

i )i to represents a
model with an even distribution of isolated point diffrac-
tors, and (mref

i )l = 0 (i 6= l) with no diffractors. An
example of reference models with two parameter classes
(p = 2) is shown in Figure 1. The reference models are
then divided into several subsections centered at the loca-
tion of each point diffractor. For example, a subsection is
displayed as the area of the black dashed squares in Fig-
ure 2. In each subsection, fl,k is assumed to be stationary
and is calculated according to equation 12. The size of

[(m
mig

−

ref

i )k] has to be big enough to cover the main part
of the migration butterflies (Schuster and Hu, 2000) of
each parameter class. Since all fl,k are local filters, they
approximate the near-diagonal terms of Fl,k.
The size of the local filter fl,k is small so equation 12 can

be solved by the least-squares method. After calculating
fl,k, we apply them to each subsection of the migration
image [mmig

k ] to approximate the model in that subsec-
tion [ml] according to equation 11. We can also rewrite
equation 11 into matrix notation

m ≈ Fam
mig. (14)
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Figure 1: An example of reference reflectivity models of
two parameter classes containing isolated point diffrac-
tors and their corresponding migration images. The point
diffractors are indicated by the white dots in (mref

1 )1 and
(mref

2 )2.

Reference multiparameter model

Reference migration image

Local windowLocal window

Forward modeling

and migration
Matching filter

a)

b)

Figure 2: Illustration of local matching filters that trans-

form the migration image (m
mig

−

ref

1 ) to its reference
model (mref

1 ) for two parameter classes (p = 2). The
four black squares belong to the same subsection. The
two red dashed squares represent four local filters in this
subsection. Note that the local filters is constant within
the subsection.

This means that the computed Fa can be used as the
approximate Hessian inverse:

Fa ≈ F,where F = (LTL)−1. (15)

We can improve the accuracy of the multiparameter mi-
gration image by applying Fa to it, or we can use Fa as
a preconditioner in an iterative multiparameter inversion
to speed up the convergence (Dai et al., 2011).
Note that there is a flexibility for designing p refer-

ence models mref
i as input for equation 12. For exam-

ple, we can also place a point diffractor at the center of
[(mref

i )l] (i 6= l), as long as [mref
1 ], [mref

2 ], · · · , [mref
p ] are

linearly independent in every subsection.

NUMERICAL RESULTS

We now demonstrate with synthetic elastic data that the
proposed decoupled deblurring filter can reduce artifacts
in elastic migration and inversion images.. The synthetic
data are simulated from two land models: (1) a layered
model with different P- and S-wave velocity anomalies and
2) a portion of the modified Marmousi2 model.
In the synthetic examples, the observed two-component

data are generated by a time-space staggered-grid solu-
tion of the elastic wave equation (Levander, 1988) with-
out a free-surface condition. The data are used to in-
verted for the reflectivity model of the P- and S-wave ve-
locities m = (δVp/Vp, δVs/Vs)

T using elastic reverse time
migration (RTM) and least-squares reverse time migra-
tion (LSRTM) (Feng and Schuster, 2016), where Vp and
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Vs are the background P- and S-wave velocity models and
δVp and δVs are the corresponding perturbations.
The diffraction pattern of the reflectivity model for in-

cident P-waves is shown in Figure 3. Here, the reflectiv-
ity images of the P- and S-wave velocities are denoted as
the P-image and the S-image, respectively. Elastic RTM
refers to the first iteration of elastic LSRTM. If a decou-
pled deblurring filter is not used, source-side illumination
(Plessix and Mulder, 2004) is used as the preconditioning
factor for elastic LSRTM, and the elastic RTM results are
illumination compensated.
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Figure 3: Diffraction radiation patterns of the P- and
S-reflectivity models for two scattering modes, (a) PP
and (b) PS. The scattering radiation patterns are plotted
as polar coordinates as a function of the scattering (or
aperture) angle. Note that the P-wave impedance per-
turbation generates only PP diffraction with an isotropic
diffraction pattern (Vincent et al., 2013b).

Layered velocity model

We first demonstrate that a decoupled deblurring filter
can improve the quality of the elastic migration image,
where the input data are generated for the flat-layered
elastic model embedded with anomalies in Figure 4. The
density is homogeneous with 1 g/cm3. Here 92 shots are
evenly spaced at 50 m, and 230 receivers are evenly dis-
tributed at 20 m intervals on the surface. The P-wave
point source uses a Ricker wavelet with a 7.5 Hz peak
frequency and the total recording time is 5 s.
Figure 5 compares the elastic RTM images with and

without the decoupled deblurring filter. The images with
filtering have fewer artifacts, better amplitude balancing
and higher resolutions compared to the images without
filtering. In addition, the P- and S-images without fil-
tering contain false reflectivity images of P- and S-wave
velocity anomalies. Note that the crosstalk also exists at
the flat layered interfaces in the images, but it overlaps
with the true images. The crosstalk problem is mitigated
after applying the decoupled deblurring filter.
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Figure 4: Layered model: (a) true Vp, (b) true Vs models.
The migration velocity models for Vp and Vs are shown in
c) and d), respectively.
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decoupled deblurrring filter for (a) P image and (b) S
image, elastic RTM with decoupled deblurrring filter for
(c) P image and (d) S image.
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Marmousi2 velocity model

We also demonstrate that the the decoupled deblurring
filter can be used as a preconditioner to improve the qual-
ity of images and speed up the convergence for elastic
LSRTM. We use a portion of the elastic Marmousi2 model
and replace the water layer with a solid layer. The S-wave
velocity is also modified to avoid very low Vs values. Fig-
ures 6a and 6c show the true P- and S-wave velocity mod-
els, respectively. The velocity models for migration are
shown in Figures 6b and 6d, where the density is constant
at 1 g/cm

3
. The true reflectivity models for P- and S-wave

velocities are shown in Figure 7, which only used for com-
parison with the migration images. 393 shots are evenly
spaced at 20 m, and 787 receivers are evenly distributed
at 10 m intervals on the surface. The P-wave point source
uses a Ricker wavelet with a 15-Hz peak frequency and
the total recording time is 5.5 s.
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Figure 6: A portion of the modified Marmousi2 model: (a)
true Vp, (b) migration Vp, (c) true Vs, and (d) migration
Vs.
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Figure 7: The Marmousi2 reflectivity models: true re-
flectivity model for (a) P-wave velocity and (b) S-wave
velocity.

The elastic RTM images with and without the decou-
pled deblurring filter are shown in Figure 8. The elastic
LSRTM images with and without the decoupled deblur-
ring filter as a preconditioner are shown in Figure 9. The

deblurring filter improves the quality of both the RTM
and LSRTM images . The filter also expedites the con-
vergence so that the misfit function of the filtered LSRTM
at the 6th iteration is about the same as the one without
the filter at the 15th iteration, as shown in Figure 10.

RTM P-image w/o filtering

1 3 5 7

X (km) 

1

2

3

Z
 (
k
m

)

1 3 5 7

X (km) 

1

2

3

Z
 (
k
m

)

1 3 5 7

X (km) 

1

2

3

Z
 (
k
m

)
1 3 5 7

X (km) 

1

2

3

Z
 (
k
m

)

a) b)

c) d)

RTM S-image w/o filtering

RTM P-image w filtering RTM S-image w filtering

Figure 8: Elastic RTM images of the Marmousi2 model:
without decoupled deblurrring filter for (a) P-image and
(b) S-image, with decoupled deblurrring filter for (c) P-
image and (d) S-image.

The zoom views of the red-box area (indicated in Fig-
ure 7) for the P-images (Figure 11) and S-images (Fig-
ure 12) also show that the decoupled deblurring filter im-
proves the amplitude balance and resolution of the im-
ages. The filtered LSRTM image has the best resolution
compared to other images, as illustrated in the wavenum-
ber spectra in Figures 11b and 12b. In the yellow box of
Figure 11f, the two reflectors are only distinguishable in
the filtered LSRTM P-image. In addition, the RTM S-
image without filtering (Figure 12c) shows a strong false
structure in the reservoir area, for example, the green box
indicated in Figure 11a and 12a. These crosstalk artifacts
are much weaker in either the LSRTM S-image without
filtering (Figure 12d) or the RTM S-image with filtering
(Figure 12e). This crosstalk problem is slightly mitigated
by LSRTM with filtering, as shown in Figure 12f. All
the P-images show a consistent structure in this reservoir
area.

DISCUSSION

Approximating the matrix for the multiparameter Hessian
inverse is an ill-posed problem (Virieux and Operto, 2009;
Vincent et al., 2013a; Operto et al., 2013). Therefore, the
calculated deblurring filter might amplify the noise in the
images even though the resolution is improved and the
crosstalk artifact is reduced. This problem can be mit-
igated by using a strong regularization for solving equa-
tion 12, yet too much regularization can reduce resolu-
tion and amplify crosstalk noise. These problems can be
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Figure 9: Elastic LSRTM images of the Marmousi2 model:
without decoupled deblurrring filter as preconditioning for
(a) P-image and (b) S-image, with decoupled deblurrring
filter as preconditioning for (c) P-image and (d) S-image.
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Figure 10: Convergence curves for elastic LSRTM with
and without filtering for Marmousi2 model.
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Figure 11: Zoom views showing the P-images in the red
boxes in Figure 8 and 9. (a) True P-reflectivity image used
only for comparison, (b) average z-direction wavenumber
spectra for the P-images in the zoom view area, (c) RTM
and (d) LSRTM P-images without filter, (e) RTM and (f)
LSRTM P-images with filter.



24 Feng & Schuster

True S-reflectivity

3 4 5

X (km) 

0.�


��


��

 
m

)

�TM S-image w/o filtering

3 � �

� ��m) 

0��


��


��

 
m

)

LSRTM S-image w/o filtering

3 � �

� ��m) 

0��


��


��

 
m

)

RTM S-image w filtering

3 � �

� ��m) 

0��


��


��

 
m

)

LSRTM S-image w filtering

3 � �

� ��m) 

0��


��


��

 
m

)

0 
0 �0 30 �0

�� �m
��

) 

0

0��

0��

0��

0��




m
lit

d
e

�avenumber spectrum
��� w�o  iltering

��� w  iltering

!"��� w�o  iltering

!"��� w  iltering

a) b)

d)

)

c)

e)

Figure 12: Zoom views showing the S-images in the red
boxes in Figure 8 and 9. (a) True S-reflectivity image used
only for comparison, (b) average z-direction wavenumber
spectra for the S-images in the zoom view area, (c) RTM
and (d) LSRTM S-images without filter, (e) RTM and (f)
LSRTM S-images with filter.

relieved by increasing the number of least-squares itera-
tions.
The proposed decoupled deblurring filter can also be ap-

plied to elastic full waveform inversion (FWI) (Tarantola,
1986; Mora, 1987; Sears et al., 2010), where the deblurring
filter needs to be updated every few iterations. It can also
be applied to the inversion of other parameter classes.

CONCLUSION

We present an approximation to the mutiparameter Hes-
sian inverse using local filters to approximate the subma-
trices of the Hessian inverse. The calculation of the filters
requires matching a series of simulated multiparameter
images to their reference models. Numerical tests on the
elastic migration and inversion for the reflectivity images
of P- and S-wave velocities show that the decoupled de-
bluring filter not only reduces the footprint noise, balances
the amplitude and increases the resolution of the multipa-
rameter migration images, but also mitigates the crosstalk
artifacts. When used as a preconditioner, it also signifi-
cantly accelerates the convergence speed in the multipa-
rameter inversion. The computational cost for the calcu-
lation of these deblurring filters is about p migration.
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APPENDIX A

ADJOINT EQUATION AND GRADIENTS

FOR ELASTIC LEAST-SQUARES REVERSE

TIME MIGRATION
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