next up previous contents
Next: Geometric Interpretation of the Up: Theory Previous: Theory   Contents

Prism Wave Reverse Time Migration

If the migration kernels in equations [*] and [*] can be computed directly, the prism waves can be directly migrated without crosstalk interference. In the following section, frequency domain formulas are used for mathematical simplicity, but the numerical calculation is actually computed in the time domain by a finite-difference solution to the space-time acoustic wave equation. Given a smooth migration velocity (homogeneous velocity in this example) and a migration image of the horizontal reflector, the Green's function for the reflected wave can be computed with the Born approximation (Stolt and Benson, 1986)

$\displaystyle G_1(\textbf{x}\vert\textbf{x}_s) = \int_{\textbf{x}'} \omega^2{m}...
..._o (\textbf{x}'\vert\textbf{x}_s)G_o (\textbf{x}'\vert\textbf{x}) d\textbf{x}',$ (53)

where $ {m}_1(\textbf{x}')$ is the reflectivity model representing the horizontal reflector, and the Green's function $ {G}_o$ is calculated using the migration velocity. Plugging equation [*] into equation [*], I get
$\displaystyle m_{mig}(\textbf{x}\vert\textbf{x}_s)$ $\displaystyle =$ $\displaystyle \sum_{\omega}\omega^2 {W}^* (\omega) \int_{\textbf{x}'} \omega^2{...
...x}' {G}_o^* (\textbf{x}\vert\textbf{x}_g) {d}_2 (\textbf{x}_g\vert\textbf{x}_s)$  
  $\displaystyle =$ $\displaystyle \sum_{\omega}\omega^2 \int_{\textbf{x}'} \omega^2{W}^*(\omega) {G...
...f{x}' {G}_o^* (\textbf{x}\vert\textbf{x}_g) d_2 (\textbf{x}_g\vert\textbf{x}_s)$  
  $\displaystyle =$ $\displaystyle \sum_{\omega}\omega^2 [P_1(\textbf{x}\vert\textbf{x}_s)]^* [Q_o(\textbf{x}\vert\textbf{x}_s)],$ (54)

with
$\displaystyle {P}_1(\textbf{x}\vert\textbf{x}_s)$ $\displaystyle =$ $\displaystyle \int_{\textbf{x}'} \omega^2{W}(\omega) {G}_o (\textbf{x}'\vert\textbf{x}_s) {m}_1(\textbf{x}'){G}_o (\textbf{x}'\vert\textbf{x}) d\textbf{x}';$  
$\displaystyle {Q}_o(\textbf{x}\vert\textbf{x}_s)$ $\displaystyle =$ $\displaystyle {G}_o^* (\textbf{x}\vert\textbf{x}_g) {d}_2 (\textbf{x}_g\vert\textbf{x}_s).$ (55)

Numerically, $ {P}_1(\textbf{x}\vert\textbf{x}_s)$ are computed with two finite-difference simulations in the time domain to solve the following two equations
$\displaystyle (\bigtriangledown^2+\omega^2{s}^2_o(\textbf{x})){P}_o(\textbf{x})$ $\displaystyle =$ $\displaystyle {W}(\omega)\delta(\textbf{x}-\textbf{x}_s);$ (56)
$\displaystyle (\bigtriangledown^2+\omega^2{s}^2_o(\textbf{x})){P}_1(\textbf{x})$ $\displaystyle =$ $\displaystyle \omega^2 m_1(\textbf{x}){P}_o(\textbf{x}),$ (57)

where the slowness $ s_o(\textbf{x})$ is the reciprocal of the migration velocity model. The receiver-side wavefield $ {Q}_o(\textbf{x}\vert\textbf{x}_s)$ can be computed by solving

$\displaystyle (\bigtriangledown^2+\omega^2{s}^2_o(\textbf{x})){Q}_o(\textbf{x}\...
...tbf{x}_s)= {d}_2(\textbf{x}_g\vert\textbf{x}_s)\delta(\textbf{x}-\textbf{x}_g).$ (58)

Note the wavefield propagates backward in time when solving the above equation in the time domain with the finite-difference method. When there is more than one trace in the shot gather, all the traces act as source wavelets of point sources at their respective recording locations, which implies a summation over the receiver $ g$ . In summary, prism wave migration requires three finite-difference simulations (equations [*], [*], and [*]) to calculate the image corresponding to the term in equation [*].

Figure [*] illustrates the process of prism wave migration with equation [*]: (1) The source wavefield $ {P}_o(\textbf{x})$ propagates downward starting from the source location; (2) $ {P}_o(\textbf{x})$ is reflected at the horizontal reflector and becomes the reflected wavefield $ {P}_1(\textbf{x})$ ; (3) The receiver wavefield $ {Q}_o(\textbf{x})$ propagates downward from the receiver; (4) The product of $ {P}_1(\textbf{x})$ and $ {Q}_o(\textbf{x})$ is the migration image (the vertical curve in Figure [*] is part of the prism wave migration kernel and computed by equation [*]).

Figure 4.4: Diagrams of the ray paths illuminating the process of prism wave migration: (a) source and receiver wavefields correlate at the correct image point. Panels (b) and (c) show the ray paths to two image points that are above and below the right location. The black vertical curve plots part of the prism wave migration kernel. The circles along the curve show the locations of trial image points.
\includegraphics[width=5.0in]{./chap4.prism.img/prism_path2.eps}

Similarly, the term in equation [*] can be computed by

$\displaystyle m_{mig}(\textbf{x}\vert\textbf{x}_s)$ $\displaystyle =$ $\displaystyle \sum_{\omega} \omega^2 {W}^* (\omega) {G}^*_o(\textbf{x}\vert\tex...
...(\textbf{x}'\vert\textbf{x}) d\textbf{x}' {d}_2 (\textbf{x}_g\vert\textbf{x}_s)$  
  $\displaystyle =$ $\displaystyle \sum_{\omega}\omega^2 {W}^*(\omega) {G}^*_o(\textbf{x}\vert\textb...
...extbf{x}_g) {m}_1(\textbf{x}'){G}^*_o (\textbf{x}'\vert\textbf{x}) d\textbf{x}'$  
  $\displaystyle =$ $\displaystyle \sum_{\omega}\omega^2 [{P}_o(\textbf{x}\vert\textbf{x}_s)]^* [{Q}_1 (\textbf{x}\vert\textbf{x}_s)],$ (59)

with $ {Q}_1 (\textbf{x}\vert\textbf{x}_s)$ computed by a finite-difference solution to

$\displaystyle (\bigtriangledown^2+\omega^2{s}^2_o(\textbf{x})){Q}_1(\textbf{x}\vert\textbf{x}_s) = \omega^2 {m}_1(\textbf{x}){Q}_o(\textbf{x}\vert\textbf{x}_s),$ (60)

using the time reversed traces as source wavelets in equation [*].

Therefore, the migration image of the prism wave is the sum of the two terms from equations [*] and [*],

$\displaystyle {m}_{mig}(\textbf{x}\vert\textbf{x}_s)=\omega^2 [{P}_1(\textbf{x}...
...2 [{P}_o(\textbf{x}\vert\textbf{x}_s)]^* [{Q}_1 (\textbf{x}\vert\textbf{x}_s)],$ (61)

and it requires four finite-difference simulations in total. Compared to conventional RTM, its computational cost is doubled. The advantages of this approach are as follows: (1) It avoids modifying the migration velocity as in conventional RTM of prism waves; (2) vertical structures are imaged in a separate step and reduces the crosstalk interference between different phases.


next up previous contents
Next: Geometric Interpretation of the Up: Theory Previous: Theory   Contents
Wei Dai 2013-07-10