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ABSTRACT

Improving the Quality of Seismic Images by Deterministic Inversion

and Machine Learning Methods

Yuqing Chen

This thesis develops five novel methods for seismic imaging and inversion to im-

prove both their computational efficiency and accuracy. Three of them improve the

accuracy of the final inverted images by novel preconditioning strategies, and the

other two are machine learning (ML) methods applied to seismic data.

1. Conventional viscoacoustic least-squares reverse time migration, also denoted

as Q-LSRTM, suffers from slow-convergence and low-resolution problems due

to the attenuative property of the adjoint Q propagators. To mitigate these

problems, I propose a viscoacoustic deblurring filter (DF) as a preconditioner

for Q-LSRTM. Moreover, to avoid the usage of the attenuative adjoint Q prop-

agator, I propose the application of a hybrid deblurring filter to acoustic reverse

time migration (RTM) images to correct for attenuation distortions. Numerical

tests demonstrate that both deblurring filter strategies can produce images with

higher resolution than Q-LSRTM and much cheaper in computation.

2. The deblurring filter is less effective when the migration image contains strong

migration artifacts. To mitigate this problem, I develop a novel support vector

machine-based (SVM) filtering method which employs the features of coherency,

amplitude, and dipping angle from selected dip-angle angle-domain common-

image gathers (ADCIGs) to automatically distinguish signals from artifacts.

Our numerical results show that SVM filtering can efficiently remove the aliasing

artifacts and improves the image quality.
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3. The accurate imaging of subsurface requires the correct estimates of the veloc-

ity model. Here, I present the strategy of multiscale reflection phase inversion

(MRPI) with a deblurring filter for inverting the low-wavenumber components

of the velocity model. This method employs amplitude replacement, trace inte-

gration and offset-selection of traces to mitigate the cycle-skipping problem. It

also uses deblurring filters as an inexpensive alternative to LSRTM to compute

the perturbation image. Numerical results show that MRPI + DF can effi-

ciently recover the low-wavenumber velocity model and is less prone to getting

stuck in local minima compared to conventional reflection inversion method.

4. Non-linear inversion gets stuck in a local minimum because the data are very

complex (i.e, wiggly in time), which means that the objective function is charac-

terized by many local minima. To avoid this problem, I present a wave-equation

inversion method that inverts for the subsurface velocity model from data skele-

tonized by a machine learning method. The skeletonized representation of the

seismic traces consists of the low-rank latent-space variables predicted by a well-

trained autoencoder. The input data to the autoencoder are the seismic traces,

while the implicit function theorem is used to determine the formula for the

Fréchet derivative used in the gradient calculation. Empirical results suggest

that the cycle-skipping problem is largely mitigated by replacing the waveform

differences with the latent-space parameters. We denote this method as New-

tonian machine learning because it unites, for the first time, the parameter

inversion of the governing equations of Newtonian physics with the dimensional

reduction properties of a neural network.
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Chapter 1

Introduction

The goal of exploration seismology is to estimate the Earth’s subsurface rock param-

eters by recording, processing and inverting seismic data Wikipedia (2019). These

rock parameters will vary depending on their fluid content and lithology. If oil and

gas are present, then they will often leave a marked signature in the seismic images.

Our task is to find these subtle signatures.

There are two types of seismic images: the migration image is a map of the Earth’s

reflectivity distribution while the tomogram is a rendering of the subsurface velocity

model. The former reveals the structural geometry of the layer interfaces while the

latter provides information about the fluid content and lithology. My dissertation

presents five novel methods I have developed that will improve the quality of these

seismic images. These methods are based on either deterministic inversion or machine

learning techniques, or a combination of the two.

I will first introduce three seismic imaging methods, which focus on the topics of

migration of attenuate data and removing migration artifacts, respectively. In the

first topic, I propose two types of deblurring filters: the first is denoted the viscoa-

coustic deblurring filter and the second is denoted as the hybrid deblurring filter.

These deblurring filters are used to improve the image resolution of conventional Q-

least square reverse time migration (Q-LSRTM), and reduce the computational costs

by approximating the inverse of the viscoacoustic and hybrid Hessian operator. The

computational costs of these matching filters are at least an order-of-magnitude less

expensive than standard Q-LSRTM. I also show that the deblurred images of these
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two deblurring filters are better in image quality than the standard Q-LSRTM. The

deblurring filters are less effective when the migration image contains strong migra-

tion artifacts. To mitigate this problem, I will introduce a support vector machine

(SVM) filtering method to distinguish between the signal and noise points for differ-

ent dip-angle angle-domain common image gathers (ADCIGs). The advantage of the

SVM filtering methods over conventional semblance filtering method is that multiple

criteria can be used to distinguish signal from noise, which achieves a much higher

classification accuracy.

Accurate imaging also relies on the accurate estimates of the subsurface velocity

model. In this thesis, I will introduce two velocity model building methods. The

first method employs the strategy of multiscale reflection phase inversion to mitigate

the cycle-skipping problem of conventional reflection waveform inversion (RFWI).

This strategy largely prevents the inversion from getting stuck in a local minimum

by trace integration and offset selection, and focus on the phase mismatch instead

of amplitude mismatch. However, the phase difference misfit function still requires

the wiggle by wiggle matches which still can lead the inverted model get stuck in a

local minimum. To mitigate this problem, a skeletonized representation of the data

such as first-arrival traveltimes (Luo and Schuster, 1991a,b) can be inverted to obtain

the low-to-intermediate wavenumber details of the background velocity model (Lu

et al., 2017). In the second velocity-model building, I propose to skeletonize the data

by an unsupervised machine learning method. The skeletonized representation of

the seismic traces consists of the low-rank latent-space variable computed by a well-

trained autoencoder neural network. Then, the implicit function theorem is used

to determine the perturbation of the skeletonized data with respect to the velocity

perturbation is used to compute the misfit gradient. This method, denoted as the

Newtonian machine learning method, unites for the first time adjoint-based inversion

methods with data skeletonized by machine learning.
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1.1 Seismic Attenuation and Attenuation Compensation Mi-

gration

Problems : Ideally, the subsurface is considered as a perfectly elastic medium, so

the total energy of the seismic waves is conserved as mechanical motion (Aki and

Richards, 1980). However, in the Earth, seismic waves traveling in the earth ex-

perience amplitude loss and velocity dispersion associated with strong subsurface

attenuation. This attenuation transforms the mechanical energy of wave propagation

into the thermal energy associated with the sloshing of a viscous fluid in porous rock.

These attenuation effects can be quantified by a dimensionless quantity known as the

quality factor Q

Q =
2πE

∆E
, (1.1)

where E represents the total energy of the seismic wave and ∆E indicates the energy

loss per cycle. Therefore, a small Q value indicates the strong attenuation and a large

Q value means the opposite. As an example, Figure 1.1 compares the acoustic and

viscoacoustic wavefields at different propagation times with the same velocity model

(v = 2800m/s) but different Q models (Q = 50 & Q = 18). The source wavelet

excited at the center of the model is a Ricker wavelet with a peak frequency of 20

Hz. The sub-figures plot the snapshots of both acoustic and viscoacoustic wavefields.

Figures 1.1a, 1.1c and 1.1e clearly show that the amplitude loss and phase shift

both increase with increasing propagation distance. Moreover, Figures 1.1b, 1.1d and

1.1f show that the viscoacoustic waves in the model with Q = 18 suffers more from

attenuation compared with the viscoacoustic waves shown in Figures 1.1a, 1.1c and

1.1e. Therefore, strong subsurface attenuation can significantly distort the amplitudes

and phases of the seismic waves (Aki and Richards, 1980).
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Figure 1.1: The comparison of wavefield time slices for acoustic and viscoacoustic
wavefields with (left) Q = 50 and (right) Q = 18.
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Conventional acoustic migration methods cannot correct for these attenuation

distortions because they do not consider the anelastic nature of wave propagation.

Figure 1.2a shows a poor quality migration image of an offshore Brunei dataset com-

puted by Kirchhoff prestack depth migration (PSDM) (Gamar et al., 2015), where no

attenuation effects are considered during migration. The white dotted circles indicate

the areas where the gas clouds exist. It clearly shows that the seismic reflectors below

these gas clouds are weak in amplitude and their resolution is low. Figure 1.2b shows

a compensated image migrated by the Q-PSDM method using ray-tracing, which

achieves more balanced amplitudes and better resolution by taking into account the

attenuation effects (Gamar et al., 2015).

(a) Kirchhoff PSDM (b) Q-PSDM

Figure 1.2: The migration image of offshore Brunei dataset computed by (a) Kirchhoff
PSDM and (d) Q-PSDM (Gamar et al., 2015).

Currently, wave-equation based attenuation compensation methods are more com-

monly used than ray-based methods as they do not require a high-frequency approx-

imation. For Q-reverse time migration (Q-RTM), Zhang et al. (2010), Suh et al.

(2012) Zhu et al. (2014) and Zhu and Harris (2015) proposed a constant Q viscoa-

coustic wave equation which employs a fractional Laplacian operator to separately

correct for phase and amplitude losses. Application of this equation to the lossy
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data can correct the attenuation distortions by reversing the sign of the attenuation

operator while preserving the sign of the dispersion operator. However, the disad-

vantages are that high-frequency noise will be amplified by backpropagation and the

numerical solution to the viscoacoustic equation is expensive. Another method for

compensating for the attenuation effects is Q least-squares reverse time migration (Q-

LSRTM) (Dutta and Schuster, 2014a; Dai et al., 2015a). This method computes the

source-side wavefield by the solution to the time-domain viscoacoustic wave equation

derived from the standard linear solid (SLS) model. However, the adjoint Q propa-

gator used for backpropagating the data residual is attenuative. Thus the inverted

images from Q-LSRTM with a small number of iterations are often observed to have

low resolution.

Solutions: To increase the resolution and accelerate the convergence of Q-LSRTM,

I propose two solutions as follows:

(1) In Chapter 2, I propose a viscoacoustic deblurring filter (DF) as a precondi-

tioner for Q-LSRTM. This viscoacoustic DF can approximate the inverse of the

viscoacoustic Hessian matrix, which is estimated by matching a simulated mi-

gration image to its reference reflectivity model. Numerical tests on synthetic

and field data demonstrate that Q-LSRTM combined with viscoacoustic DFs

can produce images with higher resolution and more balanced amplitudes than

images from Q-LSRTM when there is strong attenuation in the background

medium. In addition, this filter significantly speeds up the convergence of Q-

LSRTM at least by a factor of 2. The results of this Q-LSRTM + viscoacoustic

DF approach are presented in Chapter 2, and it is published in Geophysics

(Chen et al., 2017).

(2) In Chapter 3, I propose applying a hybrid deblurring filter to acoustic reverse

time migration (RTM) instead of directly deblurring Q-LSRTM images. The
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advantage of this approach is that it avoids the attenuative characteristics of

attenuative backpropagation and produces higher-resolution migration image

than Q-LSRTM. Moreover, it only requires one solution to the viscoacoustic

wave equation compared to more than a dozen such solutions for iterative Q-

LSRTM. This method is more than an order-of-magnitude reduction in compu-

tational costs.

I also compare the performance between the hybrid and viscoacoustic DF in

terms of both image quality and computational cost. For weak attenuation,

the performance of the viscoacoustic DF is about 5% to 10% better than the

hybrid approach. However, as the attenuation increase, the performance of the

two methods become similar. However, the hybrid DF approach is at least 30%

faster and saves at least 1/3 of the storage space compared to the viscoacoustic

DF approach. The results of this method are presented in Chapter 3, and it is

published in Geophysics in (Chen et al., 2019).

1.2 Migration Artifacts

Problems : Both migration and deblurring filters tend to behave poorly when the

migration image contains strong migration artifacts. Such migration artifacts are

generated if the source and receiver distributions are sparse. These artifacts degrade

amplitudes and reduce an interpreter’s ability to identify important geological features

of interest. As an example, Figure 1.3a shows a migration image of a marine dataset

from offshore West Africa (Dutta et al., 2017), where the image quality is severely

degraded by strong artifacts. The geology structures at the depth between 3.0 km to

5.0 km are especially hard to identify. Figure 1.3b shows the migration image after

removing the artifacts where some important geology structures are revealed.
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(a) Migration Image with Artifacts
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(b) Migration Image after Removing Artifacts
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Figure 1.3: The migration image (a) with artifacts and (b) after removing artifacts
(Dutta et al., 2017).

To alleviate this problem, least-square reverse time migration (LSRTM) with pre-

conditioning or regularization is commonly used to suppress these artifacts (Cabrales-

Vargas and Marfurt, 2013; Dutta and Schuster, 2015; Lin et al., 2016; Dutta, 2017).

However, least-squares-based methods require a large number of expensive iterations

to enhance image quality. Dafni and Symes (2016a,b) and Liu and Zhang (2018)

designed a specularity filter based on the semblance equation to preserve the signal

and suppress the migration artifacts in the dip-angle angle-domain common image

gather (ADCIG). This assumes that the valid signal has a higher semblance score

but the artifact has a small score. However, this assumption fails for an image with

coherent artifacts.

Solution: In Chapter 4, I propose a supervised support vector machine (SVM)

filtering method to remove the coherent noise in the dip-angle ADCIGs in order to

reduce the migration artifacts. The input data vector for the SVM contains the

skeletal features of selected dip-angle ADCIGs such as coherency, amplitude, and

dip-angle to distinguish the migration signal from coherent noise. The results show

that this SVM approach achieves a much higher classification accuracy than the
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conventional semblance approach. This supervised machine learning method only

uses 1% to 10% of the points in the selected dip-angle ADCIGs and requires just

minutes of training time. The results of applying this method to marine data are

shown in Figure 1.4. Here, the strong artifacts in Figure 1.4a are mostly removed by

the SVM filtering method. This work is now submitted to Geophysics for review.

(a) Migration Image with Artifacts
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Figure 1.4: Migration image of North Sea data (a) with artifacts and (b) after SVM
filtering.

1.3 Estimates of the Background Velocity Model

Problems: Accurate migration of seismic reflections relies on the accuracy of the es-

timated velocity model. To invert for a reliable velocity model below the penetration

depth of diving waves, reflection waveform inversion is the method of choice. In this

method, reflection full waveform inversion (RFWI) separates the subsurface velocity v

into a background model (low-wavenumber component) v0 and a perturbation model
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(high-wavenumber component) δv (Xu et al., 2012). The background model and the

perturbation model largely determine the kinematic and dynamic characteristics of

the reflections, respectively. These two components are alternately updated at each

iteration. For example, RFWI first computes the perturbation model, also denoted as

the migration image, using the current background model. The calculated migration

image is then used for Born modeling of the reflection data. The differences between

the Born modeled data and the observed data are computed, which are then back-

propagated to generate the source- and receiver reflection wavepaths for updating the

background velocity model (Xu et al., 2012; Wang et al., 2013; Brossier et al., 2015).

Conventional RFWI requires a least-squares reverse time migration (LSRTM) im-

age with balanced amplitudes and high-resolution interfaces. However, LSRTM is

computationally expensive because it requires a large number of iterations to get the

desired uplift in image quality. Moreover, conventional RFWI uses the waveform-

difference misfit function which is more likely to fall into a local minimum. The

reason is that the waveform-difference misfit function is highly nonlinear and is very

sensitive to the amplitude mismatches between the synthetic and the observed data.

Solution: In Chapter 5, I develop a multiscale reflection phase inversion with deblur-

ring filters (DFs) method to mitigate the problems of getting stuck in a local minimum

and the high-computational cost of conventional RFWI. This method partly relieves

the heavy computation costs of RFWI by using the DFs as an inexpensive alter-

native to LSRTM. To mitigate the cycle-skipping problem, MRPI uses a multiscale

approach which combines the trace integration, amplitude replacement, and offset

selection techniques to remove the cycle-skipped traces and focus the inversion on

inverting phases instead of amplitudes. I denote this method as MRPI + DF. Fig-

ure 1.5 compares the migration images of marine data using the inverted tomograms

from conventional RFWI and MRPI + DF, respectively. It is clear that the image

computed using the MRPI + DF tomogram reveals many more details compared to
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conventional RFWI migration. To confirm this observation, Figure 1.6 shows the

common image gather in the suboffset domain. The most accurate velocity model

should be the one which focuses the reflections on the zero-suboffset region. It is

obvious that the MRPI + DF method achieves this goal much more than the con-

ventional RFWI method. This work was submitted to Geophysics and the paper was

accepted subject to minor revision in April of 2019.
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(a) Migration Image with RFWI Tomogram
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(b) Migration Image with MRPI + DF Tomogram
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Figure 1.5: Comparisons of the migration images computed from the (a) RFWI to-
mogram and (b) MRPI + DF tomogram.
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(a) Suboffset Gather from RFWI Tomogram

(b) Suboffset Gather from MRPI + DF Tomogram

0.6

1.2

1.8

2.4

3.0

3.6

1.2

D
e
p

th
 (

k
m

)

0.6

1.2

1.8

2.4

3.0

3.6

1.2

D
e
p

th
 (

k
m

)

2.5 3.2 3.9 4.6 5.3 6.0 6.7 7.4 8.1 8.8 9.5

2.5 3.2 3.9 4.6 5.3 6.0 6.7 7.4 8.1 8.8 9.5
X (km)

Figure 1.6: Comparisons of the suboffset common image gather images computed
from the (a) RFWI tomogram and (b) MRPI + DF tomogram.

1.4 Why Skeletonized Inversion?

Problems: The waveform-difference misfit function is both a blessing and a curse

for seismic inversion. On one hand, by minimizing the wiggle to wiggle difference

between the observed and predicted data, full waveform inversion (FWI) method

can, theoretically, recover a high-resolution estimate of the subsurface velocity model.

On the other hand, the waveform-difference misfit function is highly nonlinear and

is characterized by multiple minima. Therefore, the success of FWI heavily relies

on a good initial model that is close to the true model, otherwise, the cycle-skipping

problem will lead FWI into a local minimum (Bunks et al., 1995a). Moreover, coherent

noise in the traces, and insufficient consideration of physics in the wave equation will

lead to waveform mismatches between the observed and synthetic data.

To avoid these problems, Luo and Schuster (1991a,b) proposed a skeletonized in-

version method which combines the skeletonized representation of seismic data with

the implicit function theorem to accelerate convergence to the vicinity of the global
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minimum Lu et al. (2017). Figures 1.7a shows the local minima associated with the

waveform misfit function. In contrast, the much simpler traveltime misfit function

has just one minimum that facilitates fast convergence by an iterative gradient de-

scent method. Therefore, simplification of the data by skeletonization reduces the

complexity of the misfit function and reduces the number of local minima (Luo and

Schuster, 1991a; Feng and Schuster, 2016; Dutta and Schuster, 2016; Li et al., 2016,

2017; Liu et al., 2018). Inversion of the skeletonized data can be fast and robust, and

lead to a velocity model with intermediate resolution. This velocity model can then

be used as a starting model for RFWI or FWI. However, one of the key problems with

skeletonized inversion is that the skeletonized data must be picked from the original

data, which can be labor intensive for large data sets. For higher model resolution,

several skeletonized parameters per trace must be tediously identified and inverted,

as long as they are sensitive to changes in the velocity model.
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Figure 1.7: The (a) waveform and (b) traveltime misfit functions.

Solution: In Chapter 6, I propose obtaining the skeletonized data from an autoen-

coder to avoid the manual picking of traveltimes, and then use solutions to the wave

equation to invert such data for the model of interest. The strategy I propose is il-

lustrated in Figure 1.8 where the seismic data are inserted into an autoencoder. The
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latent variable in the center layer for the observed and predicted seismic data are

then used to form a misfit function. The implicit function theorem is then used to

derive the formula for the Fréchet derivate, which can then be used to compute the

misfit gradient for velocity inversion. The gradient employs solutions to the acoustic

wave equation so there is no high-frequency approximation. I denote this method as

Newtonian machine learning because it unites, for the first time, the deterministic

PDEs of Newtonian physics with the dimensional reduction properties of a neural

network. This methodology can be used to account for the physics of any classical

physics phenomena such as gravity, electromagnetic wave propagation, magnetism,

seismic wavefields, and thermal fields.

Machine Learning + Wave Equation Inversion of Skeletonized Data 

Input Data 
d

Autoencoder

Skeletal
 Features

[LTL]-1LT Target Model
m

Figure 1.8: The strategy for inverting the skeletonized latent variables.

As an example, Figures 1.9a and 1.9b show a true velocity model which has three

high-velocity horizontal layers and initial model. The inverted velocity tomogram is

shown in Figure 1.9c, where the three layers are mostly well recovered. This work is

now published in the online journal arXiv.
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(a) True Velocity Model
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(c) Inverted Vekicity Model
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Figure 1.9: The (a) true velocity model, (b) linear increasing initial model, (c) inverted
velocity and the comparison of their vertical profiles at (d) x=0.4 km and (e) x=0.6
km.

1.5 Technical Contributions

The main technical contributions of this dissertation are summarized below.
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• Chapter 2: A Q-LSRTM + viscoacoustic deblurring filter (DF) method is devel-

oped to improve the image resolution and accelerate the convergence of Q-LSRTM by

approximating the inverse of the viscoacoustic Hessian matrix. The viscoacoustic DF

successfully mitigates the low-resolution and slow-convergence problem of Q-LSRTM

and speeds up 2D Q-LSRTM imaging by a factor of 2.

• Chapter 3: An acoustic RTM + hybrid DF method is developed to avoid com-

puting the attenuative adjoint Q propagator for the field data. The lossy data are

migrated by acoustic RTM and the attenuation distortions are then corrected by the

hybrid DFs. This hybrid approach produces a high-resolution image and significantly

reduces computation cost and storage requirements compared to Q-LSRTM. This

procedure requires less than 1/3 of the storage space and is O(N − 1) times faster

compared to Q-LSRTM.

• Chapter 4: A supervised support vector machine (SVM) filtering method is de-

veloped to remove the coherent noise in the dip-angle ADCIGs. The SVM filtering

method employs multi-skeletal features to distinguish the valid signal from coher-

ent noise in the dip-angle ADCIG. Numerical tests show that SVM filtering has a

much higher classification accuracy when compared with the conventional semblance

approach.

• Chapter 5: A multiscale reflection phase inversion (MRPI) with DF strategy

is developed to estimate the subsurface background velocity model. This method

relieves the heavy computation costs of RFWI by using the DFs as an inexpensive

alternative to LSRTM. To mitigate the cycle-skipping problem, MRPI uses a mul-

tiscale approach which combines the trace integration, amplitude replacement, and

offset selection techniques together to remove the cycle-skipped traces.

• Chapter 6: A wave-equation inversion method is developed that inverts skele-

tonized data for subsurface velocity model. The skeletonized representation of the

seismic data is the low-rank latent-space variables predicted by a well-trained au-
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toencoder neural network. The inputs to the autoencoder are the recorded seismic

traces, and the implicit function theorem is used to determine the perturbation of the

skeletonized data with respect to the velocity perturbation. This provides a general

framework for using solutions to any governing PDE to invert skeletal data generated

by any type of neural network.

• Chapter 7: I summarize my results and discuss both the advantages and limi-

tations of my proposed methods. I also suggest future research topics based on the

results of this dissertation.
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Chapter 2

Q-least-squares Reverse Time Migration with Viscoacoustic

Deblurring Filters

Viscoacoustic least-squares reverse time migration, also denoted as Q-LSRTM, lin-

early inverts for the subsurface reflectivity model from lossy data. It can compensate

for the amplitude loss in the migrated images due to strong subsurface attenuation

and can produce reflectors that are accurately positioned in depth. However, the

adjoint Q propagators used for backward propagating the data residual is attenuative

which causes the low-resolution problem of Q-LSRTM. To increase the resolution and

accelerate the convergence of Q-LSRTM, we use the viscoacoustic deblurring filters

(DFs) as a preconditioner for Q-LSRTM. These filters can be estimated by matching

a simulated migration image to its reference reflectivity model. Numerical tests on

synthetic and field data demonstrate that Q-LSRTM combined with viscoacoustic

DFs can produce images with higher resolution and more balanced amplitudes than

images from acoustic RTM, acoustic LSRTM, and Q-LSRTM when there is strong at-

tenuation in the background medium. The viscoacoustic deblurring filter also greatly

improves the convergence rates of Q-LSRTM.

2.1 Introduction

Migration deconvolution (MD) is used to deblur migration images corrupted by acqui-

sition footprint, strong velocity contrasts, and uneven subsurface illumination (Hu and

Schuster, 1998; Hu et al., 2001). The migration Green’s function (Schuster and Hu,
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2000), sometimes denoted as a point spread function (PSF) (Jansson and Richardson,

1997), can be efficiently computed by invoking a layered-medium assumption (un-

der this assumption, the migration response can be horizontally invariant) localized

around the trial image point. Therefore, the migration image can be approximated

as a lateral convolution between the reflectivity model and the migration Green’s

function. Thus, the MD operation can be used as an approximation to the inverse of

the Hessian to deblur the migration image.

Hu and Schuster (1998) and Hu et al. (2001) designed a MD operator in the

space-wavenumber domain to suppress the migration artifacts of poststack migration.

Yu et al. (2006) extended the application of MD from poststack to prestack depth

migration. Instead of using MD in the space-wavenumber domain, Guitton (2004)

approximated the inverse of the Hessian in the space domain with a bank of matching

filters. These filters are similar to deblurring filters (DFs) and have been used as a

preconditioner for conventional least-squares migration (LSM) (Aoki and Schuster,

2009). For multisource LSM, Dai and Schuster (2009) and Dai et al. (2011) used DFs

to reduce the crosstalk noise and accelerate the convergence of multisource LSM.

The previous work on MD assumed a lossless background medium. However,

strong subsurface attenuation can significantly distort the amplitudes and phases of

seismic waves (Aki and Richards, 1980). In this case, conventional acoustic reverse

time migration (RTM) and least-squares reverse time migration (LSRTM) cannot

completely correct for the attenuation loss.

To account for attenuation, Blanch and Symes (1994) and Blanch and Symes

(1995) used the adjoint state method and proposed a linearized inversion method to

recover the short wavelength model components in a viscoacoustic medium in the τ−p

domain. Ribodetti et al. (1995) developed an analytical inversion in the frequency do-

main for viscoacoustic media using the Born approximation and asymptotic solutions

for Green functions. Dai and West (1994), Yu et al. (2002), Wang (2007) and Valen-
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ciano et al. (2011) used the one-way wave-equation migration in the frequency domain

for attenuation compensation. For reverse time migration, Zhang et al. (2010), Suh

et al. (2012), Fletcher et al. (2012), Zhu et al. (2014) and Zhu and Harris (2015) pro-

posed different viscoacoustic wave equations with separate controls over phase and

amplitude to compensate for the attenuation loss. Viscoacoustic least-squares reverse

time migration, also denoted as Q-LSRTM, has been shown to compensate for the

attenuation loss and produce images with more balanced amplitudes and accurately

positioned reflectors than standard migration techniques (Dutta and Schuster, 2014b;

Dai et al., 2015b; Sun et al., 2016). However, the inverted images from Q-LSRTM

sometimes have lower resolution when compared to the benchmark acoustic LSRTM

images. This is because the adjoint Q propagators used for backpropagating the data

residual are also attenuative. Hence, a large number of least-squares iterations are

required to get the desired uplift in the image quality, which makes the Q-LSRTM

technique computationally expensive when compared to standard RTM.

To mitigate these problems, we propose using viscoacoustic DFs as a precondi-

tioner for Q-LSRTM. A reference reflectivity model is first constructed using a uniform

distribution of point scatterers while the background velocity and Q models are kept

the same. The viscoacoustic data generated from these background models are then

migrated by viscoacoustic reverse time migration (Q-RTM) to obtain a reference mi-

gration image. The viscoacoustic DFs are then estimated for different parts of the

migration image using local matching filters to transform the simulated migration

image into its reference reflectivity model. These filters are then used as a precondi-

tioner during the Q-LSRTM iterations. The estimation of these local filters can be

done in parallel using the Message Passing Interface (MPI) language, which makes

the preconditioning process very efficient. Numerical results with these DFs show

a much faster convergence rate and a much improved image for Q-LSRTM. These

benefits only require the extra computational cost of constructing the viscoacoustic
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DFs, which is no more than one migration of the data.

This chapter is divided into four sections. After the introduction, the second

section presents the theory of Q-LSRTM with viscoacoustic DFs. Numerical tests on

synthetic and field data are then used to demonstrate the advantages of the proposed

preconditioning method. The conclusions are in the last section.

2.2 Theory

In an acoustic medium, the forward modeling of the data can be represented mathe-

matically as

d = Lm0, (2.1)

where L represents a linear modeling operator, d is the data vector, and m0 is a

vector that represents the subsurface reflectivity model. The migration image mmig

is computed by applying the migration operator LT to the observed data to give

mmig = LTd =

blurring operator︷︸︸︷
LTL m0, (2.2)

where LT denotes the adjoint of the forward modeling operator L. Since the adjoint

operator LT in equation 2.2 is not the inverse of the forward modeling operator, the

computed migration image mmig is a blurred version of the true reflectivity model

m0. Here, the blurring operator is defined as the LTL operator in equation 2.2. The

blurring operator blurs the true reflectivity model m0 to give the migration image

mmig, which often suffers from artifacts because of uneven illumination. The blurring

effects can be mostly corrected by applying the inverse of LTL to the migration image

as

m0 =

deblurring operator︷ ︸︸ ︷
(LTL)−1 mmig. (2.3)
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However, computing the direct inverse of LTL is computationally prohibitive for

practical seismic imaging problems. One possible solution is iterative least-squares

migration (Lailly, 1983; Nemeth et al., 1999), which typically requires an order-of-

magnitude more computations than standard migration. To accelerate the conver-

gence, deblurring operators can be designed to approximate the inverse of the Hessian

operator (LTL)−1, which can then be used as a preconditioning operator (Hu et al.,

2001; Guitton, 2004; Yu et al., 2006; Aoki and Schuster, 2009; Dai and Schuster,

2009).

Guitton (2004) and Aoki and Schuster (2009) proposed localized DFs which deblur

the migration image in the space domain. The DFs are estimated using a reference

model and its migration image. Following Aoki and Schuster (2009), the reference re-

flectivity model is constructed using a uniform distribution of point scatters as shown

in Figure 2.1a. The reference data dref are generated from these reference reflectivity

and background velocity models, which are then migrated to get a reference migration

image mmig−ref as

(a) Reference Model

(b) Migration ImageForw
ard m

odeling 

and m
igration

M
atching filter

wx

w
zfx

fz

Local window

L
o
c
a
l 
fi
lt

e
r

Figure 2.1: Illustration of local matching filters that transform the migration image
to its reference model.
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mmig−ref = LTLmref = LTdref . (2.4)

As shown in Figure 2.1, mref and mmig−ref are then divided into subdomains. A

subdomain or a local window is chosen such that a point scatterer is at the center of

the window and the size of the window is large enough to cover the main part of the

migration butterfly (Hu et al., 2001). Within the local window, the migration Green’s

function can be assumed to be approximately invariant with respect to the scatterer’s

location. The DF for each local window is then estimated by locally matching the

reference migration image with the true reference reflectivity model as (Aoki and

Schuster, 2009):

mref (x, y, z)i =

∫
V0

F (x− x0, y − y0, z − z0)imref−mig(x0, y0, z0)i dV0, (2.5)

which can also be written in the matrix-vector notation:

[mref ]i = [F]i ⊗ [mref−mig]i, (2.6)

where ⊗ denotes spatial convolution, and i indicates the ith local window. Here,

[F]i, [mref ]i and [mref−mig]i denote the DF, the reference reflectivity model and the

reference migration image within the ith local window, respectively. Similar to the

localized migration Green’s function, each DF is also shift invariant within its local

window. Since the convolution operation is commutative, we can write

[F]i ⊗ [mref−mig]i = [mref−mig]i ⊗ [F]i. (2.7)

To numerically estimate the DF, equation 2.6 needs to be transformed into matrix
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multiplication form

[Mref−mig]i[f ]i = [mref ]i, (2.8)

which requires transforming the ith reference migration image [mmig−ref ]i (shown as

the black dashed square in Figure 2.1) into a convolution matrix Mref mig with a size

of M×N . Also, the corresponding ith DF (shown as the red dash square in Figure 2.1)

and the reflectivity model needs to be flattened as a vector fi of size N×1 and a vector

of mi of size M×1, respectively. Here, N = fx×fz and M = wx×wz, where fx and

fz are the filter lengths in the horizontal and vertical directions, respectively, and wx

and wz are the window lengths in the horizontal and vertical directions, respectively.

This transformation is shown in 2.2, where the yellow migration ”butterfly” indicates

the migration response [m̃mig−ref ]i of a point scatterer in the ith local window. The

red square with the dimensions winx×winz represents the local window which should

effectively cover the migration butterfly. The blue square with the dimensions fx×fz

represent the DF. In principle, the size of the filter should entirely cover the migration

butterfly. However, in that case, a large DF is needed which dramatically increases

the computational cost. To reduce this cost we use a DF that is no larger than

several dominant wavelengths in the migrated data, so this DF mitigates high-and

intermediate-wavenumber artifacts, but not the low-wavenumber one. The DF can be

estimated by solving equation 3.8 by the least-squares method: (Aoki and Schuster,

2009; Dai and Schuster, 2009)

[Mref−mig]
T
i [Mref−mig]i[f ]i = [Mref−mig]

T
i [m]i, (2.9)

and the estimated filters can then be applied to the real migration image mmig to

remove the blurring effects:

[mdeblur]i ≈ [F]i ⊗ [mmig]i. (2.10)
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2.2.1 Deblurring filters in a viscoacoustic medium

Previous DF research concentrated on lossless media. However, strong subsurface

attenuation can significantly distort the amplitudes and phases of seismic waves (Aki

and Richards, 1980). To mitigate this problem, Q-LSRTM (Dutta and Schuster,

2014b) was developed to generate migration images with more balanced amplitudes

and accurately positioned reflectors than standard migration techniques. However,

the inverted images from Q-LSRTM sometimes tend to have lower resolution when

compared to the benchmark acoustic LSRTM images using lossless data because

the adjoint Q propagators used for backward propagating the data residual are also

attenuative.

This loss of resolution can be explained by analyzing the migration Green’s func-

tion for a viscoacoustic medium. For a homogeneous medium with velocity v0 and a

monochromatic point source at xs = (xs, zs) with angular frequency ω, the acoustic

Green’s function G(x,xs) is given by (Schuster, 2017)

G(x,xs) =
exp{iω |xs−x|

v0
}

|xs − x|
. (2.11)

If the medium is lossy, the viscoacoustic Green’s function can be derived by replacing

the acoustic phase velocity v0 with the complex phase velocity given by (Aki and

Richards, 1980):

v(ω) = v0[1 +
1

πQ
ln
ω

ω0

](1− i

2Q
), (2.12)

where Q is the quality factor used to quantify the attenuation in the subsurface and

ω0 is the reference frequency. After substituting equation 2.12 into equation 2.11, we

get the viscoacoustic Green’s function as
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G(x,xs) =
1

|xs − x|

phase distortion︷ ︸︸ ︷
exp{iω|xs − x|

v0ξ
}

amplitude/frequency attenuation︷ ︸︸ ︷
exp{−ω|xs − x|

2Qv0ξ
} , (2.13)

where ξ = [1+ 1
πQ

(ln( ω
ω0

))][1+ 1
4Q2 ]. The first exponential term is the phase distortion

term and the second exponential term represents the amplitude/high-frequency loss

term. Therefore, the acoustic migration Green’s function are given by

Γacou =

∫
ω

dω
∑
s

∑
r

exp{i ω
v0

( rr
ξ
− rr0)} exp{− ω

2Qv0ξ
(rr)}

|xs − x|· |xr − x|· |xs − x0|· |xr − x0|
, (2.14)

and the viscoacoustic migration Green’s function can be approximated by

ΓQ =

∫
ω

dω
∑
s

∑
r

exp{i ω
v0ξ

(rr − rr0)} exp{− ω
2Qv0ξ

(rr + rr0)}
|xs − x|· |xr − x|· |xs − x0|· |xr − x0|

, (2.15)

where rr = |xs − x|+ |xr − x| and rr0 = |xs − x0|+ |xr − x0|. Equation 2.14 shows

that if acoustic migration (acoustic adjoint operator) is used to migrate viscoacoustic

data, the reflection energy will be focused at the wrong subsurface location x instead

of x0. If viscoacoustic migration (viscoacoustic adjoint operator, i.e. Q-RTM) is

used, the reflector will be imaged at the right subsurface location x0. However, the

backward propagated receiver wavefield in Q-RTM is further attenuated because of

the exp{− ω
2Qv0ξ

(rr0)} term on the RHS of equation 2.15. Thus, the inverted images

from Q-LSRTM will have lower resolution when compared to the images computed

by acoustic LSRTM on acoustic data.

To increase the resolution of the Q-LSRTM images and accelerate the conver-

gence of the least-squares iterations, we propose the use of local viscoacoustic DFs

to approximate the inverse of the Hessian in a viscoacoustic medium. Assuming the

standard linear solid (SLS) model (Christensen, 1982; Carcione et al., 1988; Blanch

et al., 1995) and the Born approximation, the observed data dQ(xr, t; xs), excited by
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a point source at xs and recorded by a receiver at xr in a viscoacoustic medium can

be represented as

dQ(xr, t; xs) =

∫
V0

−δK(x0)
{

(τ(x0) + 1)
[
gP (xr, t; x0, 0) ∗ ∇·v(x0, t; xs)

]
(2.16)

+
τ(x0)

τσ(x0)

[
grp(xr, t; x0, 0) ∗ ∇·v(x0, t; xs)

]}
dV0,

where K represents the bulk modulus, v is the particle velocity vector, gP (xr, t; x0, 0)

and grp(xr, t; x0, 0) are the pressure and memory variable Green’s functions, respec-

tively. Here, τσ and τε represent the stress and strain relaxation times, respectively,

and τ = τε
τσ
− 1, which is also related to the quality factor Q. Using a matrix-vector

notation, equation 2.16 can also be written as

dQ = LQm0, (2.17)

where LQ is a linear viscoacoustic modeling operator, dQ represent the lossy data, and

m0 is the reflectivity of the medium. The perturbation in the image, δm, is associate

with the perturbation in the bulk modulus, δK, which in turn can be obtained by

zero-lag cross-correlation of the adjoint fields with the background wavefields

δm ≈ δK =

∫ t

0

(1 + τ)(∇·v)q +
τ

τσ
(∇·v)s dt, (2.18)

where, q and s are the adjoint-state variables of pressure P and memory variable rp,

respectively (Blanch and Symes, 1994; Dutta and Schuster, 2014b, 2016). Equation

2.18 can also be represented by the matrix-vector notation

mmig = LT
QdQ, (2.19)

where the detailed derivation of equations 2.16 to 2.19 are shown in the Appendix B.
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Similar to the acoustic case, the viscoacoustic DF is estimated by defining a uni-

form distribution of point scatterers as the reference reflectivity model. The viscoa-

coustic synthetic data are generated using this reference reflectivity model and the

background velocity and Q models. The data are then migrated by Q-RTM to obtain

a reference Q-RTM image. Viscoacoustic DFs for different subdomains of the Q-RTM

image are then estimated using matching filters as described in the previous section

(detailed derivations are shown in Appendix C). The viscoacoustic DF for the ith

local window are estimated in the space domain by solving the system of equations

given by

[FQ]i ⊗ [LT
QLQmref ]i ≈ [mref ]i, (2.20)

where [FQ]i and [mref ]i represent the viscoacoustic DF and reference reflectivity

model in the ith local window, respectively. As the reference migration image is

generated from the same source-receiver configuration as the original field experi-

ment and by using the same velocity and Q models, the application of these DFs

to the migration image is an acceptable approximation to the true inverse Hessian

operator [LT
QLQ]−1.

2.2.2 Q-LSRTM using viscoacoustic deblurring filters

The misfit function for Q-LSRTM is given by (Dutta and Schuster, 2014b)

ε =
1

2
‖LQm(k) − dobsQ ‖2, (2.21)

where dobsQ denotes the observed data that have suffered from attenuation, mk repre-

sents the migration image at the kth iteration and LQ is the linearized viscoacoustic

forward modeling operator. The Gauss-Newton gradient for this misfit function is
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given by

(LT
QLQ)∆m(k) = LT

Q[LQm(k) − dobsQ ] = g(k). (2.22)

It can be seen from this equation that the update at each iteration g(k) is a blurred

version of the desired update ∆m(k) caused by the viscoacoustic migration Green’s

function LT
QLQ. Thus, a preconditioner for the gradient in equation 2.22 can be

written as the deblurring approximation [LT
QLQ]−1 ≈ FQ, so that the preconditioned

gradient in equation 2.22 can be used in the iterative update equation

m(k+1) = m(k) − αFQ ⊗ (LT
Q(LQm(k) − dobsQ )), (2.23)

where α is the step length.

2.3 Numerical results

The effectiveness of Q-LSRTM with viscoacoustic DFs is now demonstrated with

synthetic data generated from the Marmousi II model and the 3D SEG/EAGE Over-

thrust model. Also, we apply this method to the benchmark viscoacoustic data re-

leased by Schlumberger for the BP2004Q model and field data recorded in a crosswell

experiment in Friendswood, Texas.

2.3.1 Marmousi II model

The preconditioned Q-LSRTM method is first tested on the Marmousi II model.

Figures 3.6a and 3.6b shows the true velocity and Q models, respectively, used for

generating the observed data. The migration velocity and Q models are shown in

Figures 3.6c and 3.6d, respectively, which is smoothed by a 5 × 5 window. The Q

model is chosen such that the attenuation layers overlie the deeper anticlines. A time-

domain viscoacoustic finite-difference modeling algorithm is used with one standard
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linear solid model for both data simulation and migration. A Ricker wavelet with

a peak frequency of 15 Hz is used as the source wavelet. A fixed-spread acquisition

geometry is employed where there are 150 sources evenly distributed on the surface

at an interval of 50 m. The data are recorded by 800 receivers for each shot uniformly

distributed every 10 m on the surface.
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Figure 2.3: The Marmousi model: (a) true velocity model, (b) true Q model, (c)
migration velocity model, and (d) migration Q model.

Conventional acoustic RTM and LSRTM images obtained from the viscoacoustic

data are shown in Figures 2.4a and 2.4b, respectively. Both these images fail to

recover the amplitudes of the reflectors at the deeper parts. The Q-LSRTM image,

shown in Figure 2.4d, shows improvement in the deeper layers when compared to the

acoustic migration results. However, the Q-LSRTM image has lower resolution for the

reflectors below the Q anomaly when compared to the benchmark acoustic LSRTM

image, shown in Figure 2.4f, that has been obtained from acoustic data generated

using the same velocity model in Figure 3.6a. As discussed in the previous section,
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this low resolution problem with Q-LSRTM is due to the attenuation properties of the

adjoint operator LT
Q. However, the preconditioned Q-LSRTM image in Figure 2.4e

computed with the viscoacoustic DFs has better resolution when compared to the

Q-LSRTM image in Figure 2.4d. The amplitudes in the preconditioned Q-LSRTM

image are also better balanced when compared to the acoustic RTM and LSRTM

images in Figures 2.4a and 2.4b, respectively.
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Figure 2.4: Comparison between images computed from viscoacoustic data by (a)
acoustic RTM, (b) acoustic LSRTM, (c) Q-RTM, (d) Q-LSRTM and (e) Q-LSRTM
using viscoacoustic DFs as a preconditioner, and (f) Acoustic LSRTM for lossless
acoustic data, which is used as the benchmark image. 20 least-squares iterations are
carried out in all the cases.

The magnified views of these images are compared in Figures 2.5 and 2.6, where

the black arrows point to the areas in which noticeable improvements in resolution can

be seen. Figure 2.5e shows the wavenumber spectrum of a vertical slice at x = 3.11

km. The wavenumber spectrum clearly shows the improvement in resolution with
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preconditioned Q-LSRTM, which is also confirmed in Figure 2.6e which shows the

wavenumber spectrum of a vertical slice at x = 5.13 km. It is evident from these

plots that the high-wavenumber details in the image are successfully recovered in the

preconditioned Q-LSRTM image and these images have a similar resolution as the

benchmark image obtained from applying acoustic LSRTM to lossless acoustic data.
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Figure 2.5: Magnified views of the black boxes in Figures 2.4. The black arrows
point to the areas in which improvements can be seen, and Figure 2.5e shows the kz
wavenumber spectrum of a vertical slice at x = 3.11 km in the above four pictures.
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(a) Benchmark Acoustic LSRTM
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Figure 2.6: Magnified views of the red boxes in Figures 2.4. The black arrows point to
the areas in which improvements can be seen. Figure 2.6e shows the kz wavenumber
spectrum of a vertical slice at x = 5.13 km in the above four pictures.

The data residual as a function of iteration number for LSRTM, Q-LSRTM and

preconditioned Q-LSRTM is plotted in Figure 2.7. This plot shows that the conver-

gence rate for preconditioned Q-LSRTM is much faster than Q-LSRTM especially at
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the early iterations. The residuals in the 3rd and 9th iterations of preconditioned

Q-LSRTM are almost equal to the residuals at the 6th and 20th iterations of Q-

LSRTM, respectively. Thus, a speedup of around 50% can be seen with the proposed

preconditioning method. The convergence rate for preconditioned Q-LSRTM is bet-

ter than that of standard Q-LSRTM because the viscoacoustic DFs are an effective

approximation of the inverse Hessian operator.
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Figure 2.7: Data residual vs number of iterations for acoustic LSRTM, Q-LSRTM and
preconditioned Q-LSRTM applied to data associated with the Marmousi II model.

2.3.2 Sensitivity of deblurred images with respect to errors

in the Q model

To check the sensitivity of the preconditioned Q-LSRTM method to errors in the

migration Q model, numerical tests are carried out for different background Q models.

Errors are introduced in the background Q model by varying the Q value at the

anomalies. In Figure 2.8, as the errors in the background Q model increase, the

amplitudes of the reflectors below the Q anomalies become weaker with increasing

errors in the Q model. On the contrary, the PSFs, which are the migration response

of the point scatterers, in the same areas become stronger as the Q value increases
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and thus, they are not able to take into account the effect of Q during deblurring.

Therefore, a fairly accurate estimation of the background Q model is required to

see noticeable improvements in the image quality with the proposed preconditioned

Q-LSRTM method.
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Figure 2.8: Sensitivity of preconditioned Q-LSRTM to errors in the migration Q
model. The left panel shows the preconditioned Q-LSRTM images while the right
panel shows the corresponding point spread functions.
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2.3.3 BP viscoacoustic benchmark data

The preconditioned Q-LSRTM method is now tested on the B2004Q data generated

by Schlumberger (Billette and Brandsberg-Dahl, 2005; Cavalca et al., 2013), where

the velocity and Q models used for migration are shown in Figures 2.9a and 2.9b,

respectively. The observed data are generated using a Ricker wavelet with a peak

frequency of 19 Hz, where the original data consist of 1348 shot gathers and each

shot is recorded by 2401 receivers. The shot spacing is 50 m while the receivers are

uniformly distributed on both sides of a shot at a spacing of 12.5 m. The sources and

receivers are placed at a depth of 12.5 m.
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Figure 2.9: BP2004Q model: (a) true velocity and (b) true Q models.

For our numerical tests, we only use 236 shots. The true reflectivity model in

Figure 2.10f is used as the groundtruth for the acoustic and Q-LSRTM images. In

the acoustic LSRTM image in Figure 2.10b, it is difficult to delineate the reflectors

near the salt flank. The Q-LSRTM image in Figure 2.10d has better balanced am-

plitudes than the acoustic LSRTM image. However, the preconditioned Q-LSRTM

image in Figure 2.10e has reflectors with better balanced amplitudes and better res-

olution than the standard Q-LSRTM and acoustic LSRTM images. Magnified views

of these images in Figure 2.11a-2.11d, also illustrate the same. Figure 2.11e shows

the wavenumber spectrum of a vertical slice at x = 17.05 km, and the red curve
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represents the spectrum of the preconditioned Q-LSRTM image that clearly shows

an improvement in resolution when compared with Q-LSRTM indicated by the blue

line.
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Figure 2.10: Comparison between images from (a) acoustic RTM, (b) acoustic
LSRTM, (c) Q-RTM, (d) Q-LSRTM, (e) preconditioned Q-LSRTM and (f) the true
reflectivity model. The black boxes indicate the areas for magnified views.
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Figure 2.11: Magnified views of the black boxes in Figure 2.10. The black arrows
point to the reflectors below the high attenuation area where improvements from the
preconditioned Q-LSRTM method can be seen. Figures 2.11e shows the wavenumber
spectra of a vertical slice at x = 17.05 km in the above four pictures.

The zoomed views especially in the red box also reveal some artifacts parallel to the

salt boundary that become amplified in the preconditioned Q-LSRTM image. These
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artifacts can also be seen in the acoustic RTM and LSRTM images. The residual as a

function of iteration number for LSRTM, Q-LSRTM and preconditioned Q-LSRTM

is plotted in Figure 2.12. The convergence rate for preconditioned Q-LSRTM is much

faster than Q-LSRTM and acoustic LSRTM, especially for the first few iterations.
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Figure 2.12: Data residuals vs number of iterations for LSRTM, Q-LSRTM and pre-
conditioned Q-LSRTM applied to the BP2004Q benchmark data.

2.3.4 3D SEG/EAGE Overthrust Model

To further illustrate the effectiveness of viscoacoustic DFs, we apply the method

to data generated from the 3D SEG/EAGE Overthrust model. Similar to the 2D

examples, we use 3D viscoacoustic DFs as a preconditioner for the 3D Q-LSRTM. The

number of grid points in the original model is 187 × 801 × 801. For our numerical

tests, we only use part of the model with a size of 110 × 240 × 240 grid points.

Figures 2.13a and 2.13b shows the true velocity and Q models, respectively, used

for generating the observed data. A Ricker wavelet with a peak frequency of 15 Hz

is used as the source wavelet. A fixed spread acquisition geometry is used where

there are 4225 sources evenly distributed on the surface at an interval of 40 m in the
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inline and crossline directions. The data are recorded by 130 receiver lines uniformly

distributed at an interval of 20 m on the surface. Each receiver line has 130 receivers

with a spacing of 20 m between each receiver.

km/s

1/Q

(a) Velocity Model

(b) Q Model

Figure 2.13: SEG/EAGE Overthrust model: (a) true velocity and (b) true Q models.

Figure 2.14 compares the images from 3D Q-LSRTM and 3D preconditioned Q-

LSRTM. The 3D Q-LSRTM and preconditioned Q-LSRTM images are obtained after

6 and 2 iterations, respectively. The preconditioned Q-LSRTM image in Figure 2.14b

has reflectors with more balanced amplitudes and better resolution than the standard

Q-LSRTM in Figure 2.14a. The residual as a function of iteration number for the

3D Q-LSRTM and preconditioned Q-LSRTM images is plotted in Figure 2.15. The
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convergence rate for preconditioned Q-LSRTM is much faster than Q-LSRTM. The

residuals in the second iterations of preconditioned Q-LSRTM are even smaller than

the residuals for the 6th iteration of Q-LSRTM. This fast convergence further proves

that the estimated visco DF is a good approximation of the true Hessian inverse.

(a) Q-LSRTM

(b) Preconditioned Q-LSRTM

Figure 2.14: Comparison between images computed from viscoacoustic data by (a)
3D Q-LSRTM and (b) 3D preconditioned Q-LSRTM.
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Figure 2.15: Data residual vs number of iterations for 3D Q-LSRTM and 3D precon-
ditioned Q-LSRTM applied to data associated with the 3D SEG/EAGE Overthrust
model.

2.3.5 Friendswood crosswell field data

As a final example, we test the preconditioned Q-LSRTM method on the Friendswood

crosswell field data set. Two 305-m-deep cased wells separated by 183 m were used

as the source and receiver wells. Downhole explosive charges were fired at intervals

of 3 m from 305 m to 9 m in the source well, and the receiver well had 96 receivers

placed at depths ranging from 293 m to 3 m. The data were recorded with a sampling

interval of 0.25 ms for a total recording time of 0.375 s (Chen et al., 1990). During

processing. the data are Wiener-filtered to transform the original wavelet to a Ricker

wavelet with a 200-Hz peak frequency. For these data, the migration velocity and Q

models are shown in Figures 3.10a and 3.10b, respectively. The migration velocity

model is estimated by early-arrival waveform inversion and the migration Q model is

estimated by wave-equation Q tomography (Dutta, 2016; Dutta and Schuster, 2016).

The comparison between the acoustic LSRTM and Q-LSRTM images after 20 it-

erations are shown in Figures 2.17a and 2.17b, respectively. Similar to the synthetic

examples, the amplitudes are more balanced in the Q-LSRTM image in Figure 2.17b
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than in the acoustic LSRTM images in Figures 2.17a, while the resolution becomes

lower. The preconditioned Q-LSRTM image is shown in Figure 2.17c. When com-

pared to the standard Q-LSRTM image, the preconditioned LSRTM image has better

resolution at depths of 10-80 m. Magnified views of these areas are shown in Figure

2.18 that further validate the improvement in resolution with preconditioning. The

black arrows in these figures depict the areas that have become more pronounced in

the preconditioned Q-LSRTM image.

As a sanity check, reflectivity slices from the preconditioned Q-LSRTM image

are compared to the well log data taken at a distance of 12 m from the source well.

The comparison between the synthetic seismogram computed from the well-log profile

and the standard and the preconditioned Q-LSRTM reflectivity profiles is shown in

Figures 2.19a and 2.19b, respectively. It is evident that the well log agrees better

with the preconditioned Q-LSRTM image than with the Q-LSRTM image. The black

arrows in this figure highlight some of these agreements.
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Figure 2.16: (a) The estimated migration velocity and (b) Q models for the
Friendswood crosswell data.
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Figure 2.17: Comparison between images from (a) acoustic RTM, (b) acoustic
LSRTM, (c) Q-RTM, (d) Q-LSRTM and (e) preconditioned Q-LSRTM. Twenty iter-
ations are carried out in b), d) and e).
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Figure 2.18: Magnified views of the black boxes in Figure 2.17. The black arrows
point to the reflectors where the improvement in resolution can be seen from the
preconditioned Q-LSRTM method.
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Figure 2.19: Comparison between the true reflectivity obtained from a well log (rep-
resented by the blue line) and the inverted reflectivity (represented by the red line)
from (a) Q-LSRTM and (b) preconditioned Q-LSRTM. The well log is at a distance
of 12 m from the source well
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2.4 Conclusion

A preconditioned Q-LSRTM method is presented that uses viscoacoustic DFs to com-

pensate for the amplitude and resolution losses due to strong subsurface attenuation.

Numerical tests on synthetic and field data validate that the proposed preconditioning

method mitigates the problem of low resolution associated with standard Q-LSRTM

and can produce images with better balanced amplitudes and better resolution than

acoustic RTM and LSRTM. The viscoacoustic DFs are estimated from a reference

model with evenly distributed point-scatterers and its Q-RTM image is estimated by

local matched filters. The proposed preconditioning method is also shown to improve

the convergence rate of iterative LSM by more than 50 percent in some cases. Similar

to standard Q-LSRTM, a fairly accurate estimation of the background Q model is

required to see noticeable improvements in the image quality with the preconditioned

Q-LSRTM method. The limitation of this procedure is that the localized DF will

not reduce artifacts associated with strong migration artifacts far from the scattering

point. In this case, the DFs must be computed by using much wider windows, which

can significantly increase the computational costs.
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Chapter 3

Migration of Viscoacoustic Data Using Acoustic Reverse

Time Migration with Hybrid Deblurring Filters

Viscoacoustic least-squares reverse time migration (Q-LSRTM) can compensate for

the amplitude loss and phase distortion in migration images computed from highly

attenuated data. However, the adjoint Q propagator of Q-LSRTM is attenuative

which leads the low-resolution problem of Q-LSRTM. To mitigate this problem, we

use acoustic reverse time migration (RTM) instead of Q-LSRTM to migrate the vis-

coacoustic data, and then correct the amplitude and phase distortion by hybrid de-

blurring filters (DFs) in the image domain. Numerical tests on synthetic and field

data demonstrate that acoustic RTM combined with hybrid DFs can compensate for

the attenuation effects and produce images with high resolution and balanced ampli-

tudes. This procedure requires less than 1/3 of the storage space and is O(N − 1)

times faster compared to the viscoacoustic migration. Here, N represents the num-

ber of iterations used for the least-square migration method. This method can be

extended to 3D migration at even a greater cost saving.

3.1 Introduction

Subsurface attenuation distorts both the amplitudes and phases of propagating waves.

To correct for these distortions, several attenuation compensation methods were pro-

posed to produce images with balanced amplitudes and accurately positioned re-

flectors (Dai and West, 1994; Blanch et al., 1995; Wang, 2007; Zhang et al., 2010;
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Valenciano et al., 2011; Suh et al., 2012; Fletcher et al., 2012; Dutta and Schuster,

2014b; Dai et al., 2015b; Sun et al., 2016; Chen et al., 2017).

In chapter 2, we introduced the viscoacoustic deblurring filters (DFs) as a precon-

ditioner for Q-LSRTM to improve the image resolution and accelerate the convergence

rates of Q-LSRTM. In this chapter, we use acoustic RTM instead of Q-LSRTM to

migrate the lossy data in order to avoid the usage of the attenuative adjoint Q propa-

gator, but which results in a distorted image as acoustic RTM is unable to correct for

the attenuation effects. The hybrid DFs are then used to correct these amplitude and

phase distortions in the acoustic RTM image. These filters (Aoki and Schuster, 2009)

can be calculated by the following procedure: (1) Construct a reference reflectivity

model as a uniform distribution of point scatterers; (2) Generate the reference viscoa-

coustic data with the reference reflectivity model while the background velocity and

Q models are the same as the ones used for migration; (3) Migrate the reference data

by acoustic RTM to obtain a reference migration image; (4) Solve the hybrid DFs by

matching the reference migration image with the reflectivity model. If N iterations

are required by Q-LSRTM, the hybrid deblurring approach is O(N − 1) times faster

because no iterative model updates are required and this algorithm only computes

solutions to the acoustic wave equation after the hybrid filter is computed.

This chapter is divided into four sections. After the introduction, we present the

theory for applying the hybrid DFs to images computed by acoustic migration. Nu-

merical tests on synthetic and field data are then used to demonstrate the advantages

of the proposed method. The conclusions are presented in the last section.

3.2 Theory

Acoustic RTM is a computational friendly method because it is easy to implement

and numerically stable. Migrating viscoacoustic data using the acoustic migration
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can be formulated as

m̃mig = LTdQ = LTLQm0, (3.1)

where LT is the acoustic migration operator and m̃mig is the migration image. The

tilde symbol indicates that the migration image m̃mig is incorrect as the acoustic

migration operator is not able to compensate for the phase distortion and amplitude

loss in the migration image. Equation 3.1 can be re-written as

m̃mig(x) =
∑
x0

Γ(x|x0)m(x0), (3.2)

where, Γmig(x|x0) can be explicitly derived in a homogeneous medium with constant

velocity v0 as

Γmig(x|x0, ω) =

∫
ω

dω
∑
s

∑
r

G∗(xg|x)G∗(x|xs)GQ(xg|x0)GQ(x0|xs) (3.3)

=

∫
ω

dω
∑
s

∑
r

exp{i ω
v0

( rr
ξ
− rr0)} exp{ − ω

2Qv0ξ
(rr)}

|xs − x| · |xr − x| · |xs − x0| · |xr − x0|
,

where rr = |xs− x|+ |xr − x|, rr0 = |xs− x0|+ |xr − x0| and the symbol ∗ indicates

complex conjugation. Equation 10 suggests that if acoustic migration is used to

migrate viscoacoustic data, the reflection energy will be focused at the wrong location

where rr
ξ
− rr0 = 0. Furthermore, the image is blurred by LTLQ. To compensate for

the attenuation effects and insure that the imaged reflectors are at the right location

in the m̃mig image, the inverse of the Hessian operator (LTLQ)−1 needs be applied to

the migration image, so that

mdeblur = (LTLQ)−1m̃mig (3.4)

= (LTLQ)−1(LTLQ)m0

= m0.
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However, it is computationally prohibitive to compute the direct inverse of LTLQ for

practical seismic imaging problems. In addition, LTLQ is often ill-conditioned so that

its inverse is prone to numerical errors.

We now propose a hybrid DF to efficiently approximate the Hessian inverse oper-

ator (LTLQ)−1. To estimate the hybrid DF, we first define a uniform distribution of

point scatterers as the reference reflectivity model. The viscoacoustic synthetic data

dQ are generated using this reference reflectivity model with the background velocity

and Q models:

dref−Q = LQmref . (3.5)

The data dref−Q are then migrated by acoustic RTM to obtain a reference migration

image

m̃mig−ref = LTdref−Q. (3.6)

The hybrid DFs Fi for different subdomains of the RTM image are then estimated

by locally matching the reference migration image m̃migref with the true reference

reflectivity model mref as

[mref ]i = [F]i ⊗ [m̃mig−ref ]i, (3.7)

where ⊗ denotes spatial convolution and i indicates the ith local window. Here,

[F]i, [mref ]i, and [m̃mig−ref ]i denote the DF, the reference reflectivity model, and the

reference migration image within the ith local window, respectively. To numerically

estimate the DF, equation 3.7 needs to be transformed into matrix multiplication

form

[Mref−mig]i[f ]i = [mref ]i. (3.8)
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This requires flattening the two-dimensional DF [F]i into the vector format [f ]i and

transforming the migration image [mmig−ref ]i into a convolution matrix [Mref−mig]i

(this transformation has explained in chapter 2). The hybrid DF can be estimated

by solving equation 3.8 by the least-squares method: (Aoki and Schuster, 2009; Dai

and Schuster, 2009)

[f ]i = ([Mref−mig]
T
i [Mref−mig]i)

−1[Mref−mig]
T
i [mref ]i, (3.9)

and the estimated filters can then be applied to the real migration image m̃mig to

correct for the attenuation and blurring effects:

[mdeblur]i ≈ [F]i ⊗ m̃mig. (3.10)

3.3 Workflow

The workflow for migration of viscoacoustic data using acoustic RTM with a hybrid

DFs consists of the following steps:

1. Compute m̃mig by migrating the viscoacoustic observed data using acoustic

RTM.

2. Build a reference reflectivity model mref with point scatterers evenly distributed

in the model. The reference viscoacoustic data dref−Q are generated by the

viscoacoustic Born modeling based on this reference reflectivity model and the

background velocity and Q models.

3. Compute the reference migration image m̃mig−ref by migrating the reference

data using acoustic RTM.

4. The hybrid DFs Fi for different subsections of the RTM image are estimated by

locally matching the reference migration image [m̃mig−ref ]i with the reference
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reflectivity model [mref ]i.

5. Apply the calculated filters Fi to the migration image m̃mig to correct for the

attenuation distortions.

3.4 Numerical results

The effectiveness of migrating viscoacoustic data by the combination of acoustic RTM

and the hybrid DFs is now demonstrated with synthetic and field data examples.

3.4.1 Point-Scatterer Model

A point-scatterer model is used to test the hybrid filter’s effectiveness in correcting

for image distortion. The size of the model is 201 by 201 grid points with a single

point scatterer located in the middle of a homogeneous model with v = 2500 m/s and

Q = 25; and the seismic data are computed using viscoacoustic Born modeling with

a 15-Hz Ricker wavelet. Figure 3.1a shows the migration image using acoustic RTM

to migrate the lossy data. Compared with the actual scatterer location, which is

indicated by the red star, the migration response of the point scatterer is mis-located.

After applying the hybrid DFs, these errors have been successfully corrected in Figure

3.1b.
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Figure 3.1: Comparison between images from (a) acoustic RTM and (b) acoustic
RTM with a hybrid DF.

3.4.2 Sensitivity of Deblurred Images with Respect to Errors

in the Attenuation Model

To check the sensitivity of the hybrid DFs to errors in the estimated Q model, numeri-

cal tests are carried out based on the previous scatterer model for different background

Q values.

Figure 3.2a shows the migration image migrated by acoustic RTM and the red star

indicates the correct point-scatterer location. The attenuation distortions in Figure

3.2a are corrected in Figure 3.2b by applying the hybrid DFs to the acoustic RTM

image. In this case, these filters are estimated based on the correct background Q

model. However, the hybrid DFs become less effective as the errors of the estimated

Q model increase.
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Figure 3.2: Comparison between (a) acoustic RTM image, deblurred images with (b)
Q=25, (c) Q=100 and (d) Q=10000, respectively.

To illustrate this point, Figure 3.3 shows the performance of the DF with respect

to different errors in the estimated Q model by comparing the deblurred image to the

reference image. The reference image is obtained by applying the acoustic LSRTM to

the acoustic data. As the errors in the Q model increase, the similarity between the

deblurred image and the reference image decreases quadratically, where the similarity

is quantified as the correlation between the deblurred image and the reference image.

We can see that when the error is larger than 40 percent, the hybrid DF becomes less

effective in correcting the attenuation distortions.
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Figure 3.3: Sensitivity of deblurred image with respect to the errors in the attenuation
model.

Therefore, a reliable Q model is required for the hybrid compensation method. For

data-domain methods, Quan and Harris (1997) used the centroid-frequency shifts be-

tween the predicted and the observed traces and smeared the shifts along raypaths

to update the Q model. For full waveform inversion (FWI)-like algorithm, Bai et al.

(2014) and Cheng* et al. (2015) used the waveform difference to invert for the Q

model. Dutta and Schuster (2016) developed a skeletonized wave-equation Q in-

version method that finds the Q model that minimizes the differences of the peak

frequencies between the observed and the predicted transmission arrivals. This skele-

tonized method is less prone to the cycle skipping compared to the waveform difference

misfit function. For image-domain algorithms, Shen* et al. (2014) invert for the Q

model by minimizing the spectral ratio difference between a Q-image and a target

image, which is attenuation-free. The above Q inversion methods provide a varity

of options for estimating the Q model that is needed for the hybrid compensation

method.
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3.4.3 Effectiveness and Limitations of the Hybrid Compen-

sation

We now test the DF on migration images generated from different Q models. Figures

3.4a, 3.4c, 3.4e and 3.4g show the acoustic migration results with the observed datasets

generated from the homogeneous attenuation models with the 1/Q = 0.01, 0.04,

0.07 and 0.1, respectively. The amplitudes and phase distortions in the acoustic

migration image become increasingly severe as 1/Q increases. We then apply the

hybrid DFs to these images to correct the attenuation distortions and the results

are shown in Figures 3.4b, 3.4d, 3.4f and 3.4h. In all four cases, the amplitude and

phase distortions in these images are well recovered. The blue curve in Figure 3.5

represents the similarity between the hybrid compensated images and the reference

image. Here, the reference image is obtained by applying acoustic LSRTM to acoustic

data. We can see that as the attenuation increases from 1/Q = 0.05 to 1/Q = 0.1, the

performance of the hybrid DF decreased by 22%, which is acceptable compared to a

migration image without compensation. The reason for the performance degradation

is that as the attenuation increase, the spatial resolution and the amplitude of the

migration Green’s function decrease, so that solving for the hybrid DFs becomes more

ill-conditioned.
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(h) Deblurred Image with 1/Q = 0.1
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(f) Deblurred Image with 1/Q = 0.07
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(d) Deblurred Image with 1/Q = 0.04 
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Figure 3.4: Acoustic migration results with the observed datasets generated by the
homogeneous attenuation model with 1/Q = (a) 0.01, (c) 0.04, (e) 0.07 and (g) 0.1,
respectively. The corresponding deblurred results are shown in (b), (d), (f) and (h).
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Figure 3.5: Effectiveness of the hybrid deblurring and the attenuation factor 1/Q.

A key assumption with the DF is that the migration Green’s function is spatially

invariant in the filter window. This assumption is violated in a geophysical medium

with a strong spatial heterogeneity, so appropriate remedies must be used. One such

remedy is to overlap the adjacent filter windows and to make the windows smaller.

However, these windows cannot be too small otherwise the filters will not be able

to compensate for intermediate-wavenumber distortions. In this paper, the reference

model is a set of uniformly distributed point scatterers. There are other options.

For example, a reference model which follows the geology of the model may have the

potential benefit over the uniform one (Aoki and Schuster, 2009).

3.4.4 Marmousi II Model

Acoustic RTM with hybrid DFs is now tested on viscoacoustic data generated for the

Marmousi II model. Figure 3.6 shows the true velocity and 1/Q models. A Ricker

wavelet with a peak frequency of 15 Hz is used as the source wavelet and a fixed-

spread acquisition geometry is employed where 150 sources are evenly distributed on

the surface at a source interval of 50 m. The data are recorded by 800 receivers for

each shot, where the receivers are uniformly distributed every 10 m on the surface.
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Figure 3.6: The Marmousi model: (a) true velocity model and (b) true Q model.

Figure 3.7a shows the conventional acoustic RTM image computed from viscoa-

coustic data. This image fails to recover the correct amplitudes of the deeper reflec-

tors, and some reflectors are located at the wrong position. The Q-LSRTM image,

shown in Figure 3.7b, shows an improvement in the deeper layers when compared

to the acoustic RTM result. However, the Q-LSRTM image has a lower resolution

for those reflectors below the Q anomaly compared to the benchmark migration im-

age shown in Figure 3.7d. More iterations are needed for Q-LSRTM to get a more

balanced image with higher resolution. Here, the benchmark image is the result of

acoustic LSRTM applied to acoustic data generated from the same velocity model in

Figure 3.6a. To mitigate the amplitude-loss and phase-shift problems in the acoustic

RTM image, we apply the hybrid DFs to the image in Figure 3.7a. The result is

shown in Figure 3.7c, which has better resolution with more balanced amplitudes,

and the reflectors are at the correct locations.
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Figure 3.7: Comparison between images computed from the viscoacoustic data by (a)
acoustic RTM, (b) Q-LSRTM, (c) acoustic RTM with hybrid DFs and (d) acoustic
LSRTM for lossless acoustic data, which is used as the benchmark image. For these
least-squares images, 20 iterations are carried out in all cases.
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Magnified views of these images are compared in Figures 3.8 and 3.9, where the

red arrows point to the areas with noticeable improvements. The correct location of

the reflectors are indicated by the blue dashed lines in Figures 3.8 and 3.9, where

the reflectors in Figures 3.8a and 3.9a are at the wrong places compared to the other

images. This is due to the fact that the acoustic migration operator cannot correct

the phase-shift problem in the lossy data. In contrast, the hybrid DF successfully

corrects for phase and amplitude distortions as shown in Figures 3.8c and 3.9c.

(a) Acoustic RTM (b) Q-LSRTM

(c) Acoustic RTM with Hybrid DF (d) Benchmark LSRTM
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Figure 3.8: Magnified views of the red boxes in Figure 3.7. The red arrows point to
the areas with noticeable improvements and the blue dashed line indicates the true
locations of the reflectors.
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Figure 3.9: Magnified views of the black boxes in Figures 3.7. The red arrows point
to the areas with noticeable improvements and the blue dashed line indicates the true
locations of the reflectors.

3.4.5 Friendswood Crosswell Field Data

We now test the hybrid DF method on the Friendswood crosswell field data set. Two

305-m-deep cased wells separated by 183 m were used as the source and receiver wells.

Downhole explosive charges were fired at intervals of 3 m from 9 m to 305 m in the

source well, and the receiver well had 96 receivers placed at depths ranging from 3 m

to 293 m. For these data, the migration velocity and Q models are shown in Figures

3.10a and 3.10b, respectively. The migration velocity model is estimated by early-

arrival waveform inversion and the migration Q model is estimated by wave-equation

Q tomography (Dutta and Schuster, 2016).
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Figure 3.10: (a) The estimated migration velocity and (b) Q models for the
Friendswood crosswell data.

The comparison between the acoustic RTM and Q-LSRTM images are shown in

Figures 3.11a and 3.11b, respectively. Similar to the synthetic examples, the ampli-

tudes are more balanced in the Q-LSRTM image in Figure 3.11b than those in the

acoustic RTM image in Figure 3.11a. At the depths of 25 m and 48 m, two strong

and continuous reflectors are shown in the Q-LSRTM image, which is barely visible

in the RTM image. By applying the hybrid DF to Figure 3.11a, these reflectors are

recovered in the deblurred image. Moreover, Figure 3.11c also suggests that the am-

plitudes in the deblurred image also become more balanced and the phase problem

is largely mitigated.

On the other hand, there are also some artifacts in the deblurred image. At the

depth of 250 m, there are three continuous reflectors in the Q-LSRTM image in Figure

3.11b, and yet these reflectors can hardly be seen at the right part of the deblurred

image in Figure 3.11c. The possible reason is that the estimated Q model is not

accurate enough in this area.
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Figure 3.11: Comparison between the images from (a) acoustic RTM, (b) Q-LSRTM
and (c) acoustic RTM with hybrid DFs.

Figure 3.12 depicts the magnified views of the black box in Figure 3.11, where the

arrows point to the areas with noticeable improvements. Some missing reflectors in

the RTM image are well recovered by the hybrid DF in the deblurred image shown in

Figure 3.12c. Figure 3.12a shows a deviation of the migrated reflector from the correct

location (marked by the red line). This shift is corrected in Figure 3.12c by the hybrid

DF. The comparison of the vertical profiles in Figure 3.11 at x=68 m are shown in

Figure 3.13, where the acoustic migration result (blue line) is weakly correlated with

the Q-LSRTM image (red line) in Figure 3.13a. However, after applying the hybrid

DF to the acoustic migration image, the deblurred image (black line) correlates well

with the Q-LSRTM image (red line) in Figure 3.13b.
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Figure 3.12: Magnified views of the black boxes in Figure 3.11.
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Figure 3.13: Comparison of the vertical profiles in Figure 3.11 at x=68 m.

3.5 Discussion

In this section, we compare the performance between the hybrid and viscoacoustic DF

in terms of both image quality and computational cost. Numerical tests are carried
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out based on the previous scatterer model for different background Q values. Figure

3.14 show the comparison result of the image quality between the hybrid deblurring

approach and the visco deblurring method. The red curve in Figure 3.14 depicts the

similarity between the visco deblurred image and the reference image, which decreases

as the attenuation increases. The blue curve is the similarity between the hybrid

deblurred image and the reference image. For weak attenuation, the performance of

the viscoacoustic DF is about 5% to 10% better than the hybrid approach. However,

as the attenuation increase, the performance of the two methods become similar.

For the computation cost comparison, a fixed-spread acquisition geometry is em-

ployed where 99 sources are evenly distributed on the surface. Each shot has 199

receivers on the surface. The source wavelet is a Ricker wavelet with the peak fre-

quency of 15 Hz. The simulation time is 2s with a time interval of 0.001s. We use

the viscoacoustic wave-equation which is derived based on the standard linear solid

model (SLS) with one relaxation mechanism. The computation time of the hybrid

and viscoacoustic DF approach is 139 s and 200 s, respectively. Therefore, the hybrid

approach is about 30% faster than the visco approach. For a 3D case, or for a viscoa-

coustic wave-equation with more than one relaxation mechanisms, more computation

time can be saved by using the hybrid deblurring approach.

3.6 Conclusion

An acoustic hybrid RTM method is presented that uses hybrid DFs to compensate

for the amplitude losses and phase shifts due to strong attenuation in the subsurface.

Numerical tests on synthetic and field data show that the proposed method can

significantly mitigate the problem of amplitude loss and phase shift in acoustic RTM

images when migrating lossy data. This technique also increases spatial resolution in

the migration image and can reduce the computational costs and storage requirements

by a factor of O(N−1) times compared to iterative Q-LSRTM. Here, N is the number
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Figure 3.14: The relationship between the performence of the hybrid and viscoacoustic
DF.

of iterations.

The limitations of this method are that the hybrid DFs are more suitable for

correcting high- and intermediate-wavenumber distortion errors in a migration image

caused by inadequate compensation for attenuation distortion. Compensating for the

low-wavenumber errors with a larger DF will significantly increase the computational

costs. For strong distortions, such as using acoustic migration on strongly anisotropic

data, the hybrid DFs are not able to correct for these effects. The performance of the

hybrid DF relies on the accuracy of the estimated Q model, otherwise, will degrade

in performance with decreased accuracy in the Q model.
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Chapter 4

Suppressing Migration Image Artifacts Using a Support

Vector Machine Method

Reverse-time migration (RTM) produces images of the subsurface reflectivity, but mi-

gration images may deteriorate when the source and/or receiver spacings are irregular

and their distributions are sparse. The resulting migration artifacts can obscure the

identification of important geological features of interests. We develop a new filtering

method using the support vector machine (SVM) to reduce these migration artifacts.

This filtering method distinguishes noise from signal in migration images automat-

ically. The SVM filtering predicts a muting window in the dip-angle angle-domain

common image gathers (ADCIG) to suppress the artifacts. Once the SVM is suffi-

ciently trained, it can be applied to out-of-the-training set data to remove migration

artifacts in the dip-angle ADCIGs. The numerical results show that the SVM filtering

produces migration images with better signal-to-noise ratios (S/N) and fewer aliasing

artifacts compared with those obtained using the conventional RTM method.

4.1 Introduction

Reverse-time migration (RTM) produces images contaminated with migration ar-

tifacts if the source and receiver distributions are sparse. These artifacts degrade

amplitude versus offset analysis and interfere with the ability of an interpreter to

identify important geological features of interests. Such migration artifacts can also

slow down the convergence rate of iterative least-squares migration (LSM).
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To alleviate this problem, least-squares migration (LSM) with preconditioning or

regularization is often used to suppress migration artifacts. Cabrales-Vargas and Mar-

furt (2013) developed a preconditioned LSM method with an additional roughness

penalty term added to the L2 misfit function. The method preserves the amplitudes

in migration images and reduces aliasing artifacts compared with the conventional

LSM. Dutta and Schuster (2015) used a sparse least-squares reverse-time migration

(LSRTM) method with the seislet transform as a change of basis for the reflectiv-

ity. Along with a dip-constrained preconditioner, this method can produce an image

with more meaningful structural updates. Lin et al. (2016) incorporated a Lp-norm-

based compressive-sensing term in the misfit function of LSRTM to improve migration

imaging of sparse seismic data. Dutta (2017) introduced a local Radon-based pre-

conditioned LSRTM method to alleviate the problems of low S/N data and image

aliasing. However, least-squares-based methods require a large number of expensive

iterations to produce the desired enhancement in the image quality. Yu and Hornby

(2008) implemented a stereographic local beam imaging scheme to attenuate migra-

tion noise caused by limited acquisition apertures in VSP data. Zhou et al. (2010)

used a local-angle-domain correlation imaging condition to attenuate migration arti-

facts. Dafni and Symes (2016a,b) and Liu and Zhang (2018) designed a specularity

filter based on the semblance equation to preserve the signal and suppress migration

artifacts in the dip-angle angle-domain common image gather (ADCIG). The spec-

ular reflections are assumed to have higher semblance scores compared with those

of migration artifacts as the formers are more horizontally coherent, defined as the

“semblance criterion.” The normalized semblance scores should be close to one for

the signals so the specularity filter can better preserve their amplitudes. By con-

trast, the semblance scores for migration artifacts should be nearly zero in order to

identify them as noise. However, this assumption fails for an image with severe co-

herent artifacts, because such noise can appear as a signal in the dip-angle ADCIG
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incorrectly. In such a case, using the semblance criterion is not enough to accurately

distinguish between the signals and migration artifacts. The semblance scores could

also approach to 1 for the artifact points. Therefore, the specularity filter based on

the semblance equation has the potential to consider strong coherent noise as signal.

In this chapter, we develop a support vector machine (SVM) filtering method to

suppress the migration artifacts. The migration image is first transformed to the dip-

angle ADCIGs where the signals and artifacts are separable from each other. Then

the SVM algorithm is used to distinguish between the signal and artifacts. The input

data vector for the SVM method contains the skeletal features of a dip-angle ADCIG

such as coherency, amplitude, and dip-angle. More features are used indicate more

strict rules are applied to separate the signals from artifacts in the dip-angle ADCIG,

which reduce the possibilities of misclassification. The SVM filtering method predicts

a weighting coefficient for each point in the dip-angle ADCIG and the weighting

coefficient approaches the value of 1 for a migration signal point and approaches -

1 for a migration artifact point. Therefore these weighting coefficients can be used

to preserve the amplitude information of the real image components and effectively

suppress migration artifacts. Once the filter is applied to the dip-angle ADCIG, the

cleaned dip-angle ADCIG is inverse transformed back to the image domain to produce

the final migration image which is free from coherent noise. Both synthetic and field

seismic data are used to verify the effectiveness of the SVM filtering method. In

the synthetic tests, we mainly focus on reducing the migration artifacts caused by a

sparse source-receiver geometry.

This chapter is organized as follows. After the introduction, we introduce the

theory and workflow of the SVM filter. We then present numerical results in both

the synthetic- and field-data examples, discuss the limitations of the method and give

conclusions.
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4.2 Theory

In the dip-angle angle-domain common image gather (ADCIG), a seismic reflector

image is focused around a specular dip-angle as a spot-like response. This focus-

ing distinguishes signal from any artifacts events, and the spot-like response in the

dip-angle domain has a horizontal phase orientation no matter how steep a reflec-

tor is dipping (Dafni and Symes, 2016a,b). To compute the dip-angle ADCIG, the

subsurface-offset extended image is computed firstly using an extended image condi-

tion. Then the forward and inverse local Radon transforms are used to transform the

subsurface-offset extended image to and back from the dip-angle domain, respectively

(Dafni and Symes, 2016a,b).

Figure 4.1 shows an RTM image with 4 reflectors, each with different shapes.

Figure 4.2a shows the suboffset gather at x = 3.5 km indicated by the red dashed

line, where the reflector’s energies focus around zero suboffset as we migrate the

data using the correct velocity. The corresponding dip-angle ADCIG is shown in

Figure 4.2b, where these reflectors are locally coherent with respect to the specular

dip-angle. This feature enables us to remove the unwanted artifacts by keeping the

spot-like energy around the specular dip-angle.
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Figure 4.1: Migration image of a five-layer model.
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Figure 4.2: The suboffset gather (a) and corresponding dip-angle ADCIG (b) at x =
3.5 km in Figure 4.1.

4.2.1 Semblance Filtering

The semblance equation (Neidell and Taner, 1971) is commonly used to evaluate the

local coherency for each image point in the dip-angle ADCIG (Dafni and Symes,

2016a; Liu and Zhang, 2018)

S(z, θ) =
1

2Nθ + 1

iz=z+Nz∑
iz=z−Nz

( iθ=θ+Nθ∑
iθ=θ−Nθ

ADCIG(iz, iθ)
)2

iz=z+Nz∑
iz=z−Nz

iθ=θ+Nθ∑
iθ=θ−Nθ

ADCIG2(iz, iθ)

, (4.1)

where Nz and Nθ are the half-length of the windows along the depth and the dip

angle, respectively. The choice of the window size depends on the typical size of a

spot-like response in the dip-angle ADCIG. For each image point in the dip-angle

ADCIG, a local area is first selected based on the window size. Equation (4.1) is

then used to measure the coherence of each local window and the semblance scores

are further used as the weighting coefficients to filter out artifacts and preserve the

signals. This assumes that the signals in the dip-angle ADCIG have much higher
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semblance scores compared with those of artifacts.

The semblance filtering method assumes that only reflectors are locally coherent in

the dip-angle ADCIG. However, in the case of severe coherent artifacts, the artifacts

might masquerade as false structures. Such structures are also locally coherent in the

dip-angle ADCIG but often focus at the large dip-angle range (not the specular dip

angle). In this case, these artifacts also receive high semblance scores and cannot be

removed using the semblance filtering method. Moreover, the semblance scores are

not always one for signal points and zero for artifact points, which might degrade

SVM’s ability to remove coherent noise.

4.2.2 Support Vector Machine Filtering

To alleviate the coherent noise problem, we employ support vector machine (SVM)

filtering to separate signals from artifacts in the dip-angle ADCIG.

Support Vector Machine

The SVM is a supervised machine learning algorithm that sorts data into two cate-

gories (Cortes and Vapnik, 1995). Supervised learning by SVM uses a set of training

data consisting of N training samples

(x(i), y(i)), (4.2)

where i = 1, 2, ..., N , x(i) is the ith training data instance vector with dimension D×1

and y(i) = 1 or −1 is the binary label for xi. D indicates the number of features

for each data instance. For a set of two-dimensional x(i), the goal of SVM is to

determine the dashed line that has the greatest separation from the red and blue dots

in Figure 4.3. The optimal dashed line has the fattest margin width and is equidistant

from the solid lines that are parallel to one another. This dashed line, also known as

the decision line, is mathematically defined by the normal vector w and the intercept
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b, where any vector x on the decision line satisfies w1x1 + w2x2 + b = 0. The red

and blue dots intersecting with the black solid line are known as the support vectors.

These support vectors define the points with the closest perpendicular distance to

the decision line. The decision lines in Figures 4.3a and 4.3b are also able to separate

the two classes of data, but they are sub-optimal compared with that in Figure 4.3c.

The margin thicknesses of the decision lines in Figure 4.3a and 4.3b are thinner than

the one in Figure 4.3c. The thinner the margin thickness, the more likely it is to

misclassify the feature vector x(i).

(a) (b) (c)

Figure 4.3: Two classes of data with different decision lines, where the red and blue
dots represent different classes. Even though the decision boundaries in (a) and (b)
cleanly separate the two datasets, they are not optimal separators compared with the
decision boundary in (c) which has the fattest thickness margin.

Once the normal vector w and the intercept b are determined after sufficient

training, the SVM classifies new points x̃(i) that are out of the training set. Figure

4.3 depicts samples in a two-dimensional case. In a more general case where the

samples are in a D-dimensional space, SVM learns a D-1 dimension hyperplane to

separate different classes of data. The samples x on this hyperplane satisfy

w · x(i) = w1x1 + w2x2 + w3x3 + ...+ wDxD + b = 0, (4.3)

where w is determined by solving a minimization problem
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argmin
w,b

d =
1

2
‖w‖2,

subject to y(i)(w · x(i) + b) ≥ 1, (4.4)

where i = 1, 2, ..., N .

Solving the minimization problem determines the optimal line with the fattest

thickness of margin. Inequality (4.4) ensures that w cleanly separates the training

set x(i). A numerical solution to the above minimization problem obtained using, e.g.

quadratic programming (Wright and Nocedal, 1999), results in the fattest margin as

shown in Figure 4.3.

The workflow for Support Vector Machine Filtering

We use SVM to largely filter out the migration noise artifact points in the dip-angle

ADCIG. For a signal point, SVM predicts a weighting coefficient close to 1 compared

with the weighting coefficient of -1 for an artifact point. We then reset -1 to 0 to better

remove the artifacts by muting it in the dip-angle ADCIG. The detailed workflow is

described in the following:

(1) The element of the input 3x1 feature vector consists of the semblance S, the

amplitude A of the image in the dip-angle ADCIG domain and the associated

dip angle θ. The amplitude A is computed by calculating the envelope of

each trace in the dip-angle ADCIG as shown in Figure 4.4b. This assumes

that the signal points in the dip-angle ADCIG have a higher amplitude value

compared with the coherent noise.
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(b) Amplitude
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(c) Dip-angle
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Figure 4.4: The feature map of Figure 4.2b: (a) semblance, (b) amplitude and (c)
dip-angle features.

Figure 4.4c shows the image with the dip-angle features. Each column in this

feature has the same value that represents the specular dip-angle informa-

tion, which assumes that the signal responses in the dip-angle ADCIG only

distribute over a certain specular angle range. So far, each image point in

the dip-angle ADCIG has three features. All three features are used to de-

termine whether an image point in the dip-angle ADCIG is a signal or an

artifact point, which dramatically increases the accuracy and confidence in

classification.

(2) Building a training set. The training set is a subset of the data for training the

model (model weights and biases term). The model learns from this dataset by

solving the minimization problem in equation (4.4). We define the training set

as (x
(i)
train, y

(i)
train) = (A(i), θ(i), S(i), y(i)) for about 1% of the picked points in the

dip-angle ADCIG as shown in Figure 4.5a. The red and blue dots indicate the

picked signal and artifact points, respectively. Each point in this training set

is manually classified as either signal y(i) = 1 or noise y(i) = −1. I then reset
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-1 to 0 in order to remove the noise more easily. Figure 4.6 shows the training

set in the feature domain, where the effective signal and artifact points are

cleanly separable from one another. We then use the SVM to determine the

3 × 1 vector w = (w1, w2, w3) and the intercept b that cleanly separates the

labeled signals from artifacts. This vector and intercept term map a surface

in feature space as shown in Figure 4.6b, where the colored plane defines the

decision plane in the 3D feature space.
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Figure 4.5: (a) The dip-angle ADCIG with the picked training set. The red and blue
points indicate the picked signal and artifact points, respectively. (b) The decision
value of SVM.
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Figure 4.6: (a) 3D plots of the training set in the 3D feature domain, where the
red and blue crosses indicate the signal and artifact points, respectively. The signal
points and the artifact points are separable in this 3D feature domain. (b) The signal
and artifact points in the training set are well separated by a colored hyperplane
calculated using the SVM algorithm.

(3) Once the normal vector w and the intercept b are determined, we compute w ·

x+ b for all points in all dip-angle ADCIGs, and output weighting coefficients

as shown in Figure 4.5b for Figure 4.5a. It can be noticed that the weighting

coefficients for the signals and artifacts are 1 and 0, respectively. In this

case, these weighting coefficients can preserve the amplitude information of

the signals in Figure 4.5a while cleanly suppressing the artifact points.

In practice, a migration image with a simple geological structure varies gently

along the horizontal direction. In other words, the features for each dip-angle ADCIGs

are similar. In this case, the trained SVM model from one dip-angle ADCIG is often

accurate enough to predict all of the weighting coefficients for every image point

in every dip-angle ADCIGs. However, a complicated structure is characterized by

features at each dip-angle ADCIG that vary dramatically. In this case, we often

use one dip-angle ADCIG for SVM training and then use the trained SVM model

to predict the weighting coefficients only for the nearby dip-angle ADCIGs. This
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procedure is repeated for the rest of the dip-angle ADCIGs.

The computational costs of the SVM filtering method are inexpensive compared

with the least-squares-based method because the number of data points in the training

set is small. Usually, we use less than 10% of the image points (often around 100 ∼ 300

data points) of the dip-angle ADCIG for training, and the training progress takes only

a few seconds of CPU time. After training is finished, the computation of weighting

coefficients for the rest of the image points are much cheaper compared with the

training because we only need to calculate the vector multiplication wT · x + b.

Discussions of Support Vector Machine Filtering

The practical details for implementing SVM filtering are described in the following.

1. Feature scaling is a very important step before using the SVM filtering method.

Figure 4.4 shows that the dip-angle feature θ is highly varying in magnitude and

range compared with the semblance feature S and amplitude feature A. But

since SVM filtering and most of machine learning algorithms use the Euclidian

distance between two data points in their calculation, the features with high

magnitudes dominate in the distance calculation compared with the features

with low magnitude. Without the feature scaling, the SVM algorithm might be

mainly affected by the dip-angle feature θ and neglect the other two features,

which can lead to significant misclassification.

Figures 4.7a and 4.7b compare the predicted weighting coefficients computed

by SVM without and with feature scaling, respectively. It clearly shows that

without feature scaling, the dip-angle feature dominates the classification result.

In this paper, we use the mean normalization method for feature scaling:

x̃(i) =
x(i) −mean(x(i))

max(x(i))−min(x(i))
(4.5)
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where x̃(i) is the ith feature vector after feature scaling. Figure 4.8 shows the

scaled result of Figure 4.4, in which the magnitude range of every feature varies

from -1 to 1. In this paper, we apply the feature scaling for each dip-angle

ADCIG separately.
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(b) Computed Weights by SVM
with Feature Scaling

-50 0 50
Angle (degree)

0.5

1

1.5

2

2.5

3
D

ep
th

 (
km

)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.7: The computed weighting coefficients by SVM (a) without and (b) with
feature scaling.
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(b) Scaled Amplitude
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(c) Scaled Dip-angle
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Figure 4.8: The scaled (a) coherency, (b) amplitude and (c) dip-angle features, re-
spectively.

2. How to choose the features? The features for SVM or other machine learning

algorithms greatly affect the training efficiency and classification accuracy. A
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good feature should be informative, discriminating and independent. we choose

the semblance S, amplitude A and dip-angle θ as the features because their

values vary dramatically between the signals and artifacts, which can help the

SVM algorithm “understand” the difference between the signal and artifacts

very quickly.

To demonstrate this characteristics, we choose a new feature type for training

and classification. For every image point in the dip-angle ADCIG, we open a

small window around the point with a size of winz = 25 by winx = 25 as shown

in Figure 4.9. Therefore every pixel in this small patch is a feature and each

image point in the dip-angle ADCIG has winz×winx features. Figure 4.10 shows

the weighting coefficients computed by SVM using the small image patches as

the features, which is less promising compared with the result in Figure 4.5b.

3. How many features are needed to separate the signal and artifact points in the

dip-angle ADCIG? Theoretically, the more the features, the higher dimension is

the feature space, and in principle, we can more easily separate the signal points

from artifacts. The reason is that by analyzing the features, each point in a

dip-angle ADCIG can map into a high-dimensional space, where the signal and

artifact points are cleanly separable from one another. However, this conclusion

is based on the assumption that each feature is independent of, or not linearly

related to, one another in the feature space. For example, if we introduce the

semblance feature 2S as a new feature in the SVM filtering method, this new

feature is not able to increase the dimension as it is linearly related to the

semblance feature. One simple method to increase the number of features is to

apply a nonlinear operation to the existing features, such as take the second

power of the semblance feature S2. To analyze the redundancy of the features,

one can use the principal component analysis (Wold et al., 1987).
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Figure 4.9: The feature patches for (a) artifacts and (b) signal.

Computed Weights by SVM using
Image Patches as Features
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Figure 4.10: The computed weighting coefficients by SVM using the small image
patched as features.

4. How to build a proper training set? A proper training set should include most

types of signals and artifacts in the dip-angle ADCIG. In this case, the SVM

method can classify the rest of the image points in the dip-angle ADCIG with
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the reduced chances of misclassification. In the machine learning world, the

percentage of the training set is often selected from more than 70% of the entire

dataset. However, in our case, we choose less than 10% of the entire image

points in the dip-angle ADCIG for training, which is already representative of

all types of the signals and artifacts in the dip-angle ADCIG.

4.3 Numerical results

We study the effectiveness of the SVM filtering of migration artifacts for synthetic

data and a recorded marine dataset. The marine data are OBC traces recorded in a

North Sea seismic survey.

4.3.1 Marmousi Model

We test the SVM filtering using synthetic data for the Marmousi model. Figure 4.11

is the true velocity model used to generate synthetic seismic data. The true velocity

model is smoothed with a 5 × 5 window for migration imaging. The source time

function is a Ricker wavelet with a peak frequency of 20 Hz. The synthetic data are

computed for 40 sources and 40 receivers on the surface with 200 m of source and

receiver intervals, respectively, which is about 2 ∼ 3 times of that of the minimum

wavelength.
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Figure 4.11: Marmousi velocity model.

The conventional RTM image in Figure 4.12a contains severe migration artifacts

caused by the sparse data acquisition geometry. The artifacts have strong amplitudes

that severely interfere with the true reflectors. In the black box, the strong artifacts

break the continuity of the reflectors and cut them into small pieces. The artifacts

at the left part of the red box overlap the true reflectors, which make them appear

as false structures. These artifacts obscure the actual geology and interfere with the

ability of an interpreter to identify important geological features of interests. In the

horizontal range between 0 ∼ 3 km, the reflectors in this area vary gently along

the horizontal direction. So we choose only the dip-angle ADCIG at x = 1.5 km

for training. The trained model is then used to compute the weighting coefficients

for all of the dip-angle ADCIGs between 0 ∼ 3 km. Similarly, we choose the dip-

angle ADCIG at x = 6.5 km for training and use the trained model to calculate the

weighting coefficients for the dip-angle ADCIGs between 5.5 ∼ 8 km. As the geology

structure varies dramatically between 3 ∼ 5.5 km on both the horizontal and vertical

directions, we choose the dip-angle ADCIG at x = 2.97, 3.28, 3.86, 4.5 for training and

only use the trained model to compute the weighting coefficients for nearby dip-angle

ADCIGs.

Figure 4.12b shows an improved image where the aforementioned artifacts are
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largely suppressed using SVM filtering. Magnified views of these images are compared

in Figures 4.13, 4.14 and 4.15, respectively, where there is a noticeable improvement

in the image quality. Figure 4.13b shows that reflectors previously covered by strong

artifacts now appears coherently again. The reflectors in Figures 4.13b, 4.14b and

4.15b become more continuous and the S/Ns of these images are largely improved.

However, there are still some artifacts remaining above the sea layer as denoted by

the red arrows. This might be caused by insufficient data in the training set. In

this paper, we only used 5% of the image points in a dip-angle ADCIG for training.

One possible solution for removing these artifacts is to increase the amount of data

in the training set. Another possible solution to introduce a new feature, such as the

depth feature, so the SVM algorithm can detect the possible depth range of extant

reflectors. As the Marmousi model is geologically complicated, we set the weighting

coefficient of the artifact points to 0.1 instead of 0 to avoid the discontinuity on the

image caused by misclassification.
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(a) Migration Image with Artifacts
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(b) Migration Image after SVM Filtering
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Figure 4.12: Migration images (a) with artifacts and (b) after SVM filtering.
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(a) Migration Image with Artifacts
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Figure 4.13: The zoom views of the red box in Figure 4.12 (a) with artifacts and (b)
after SVM filtering.
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Figure 4.14: The zoom views of the black box in Figure 4.12 (a) with artifacts and
(b) after SVM filtering.
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(a) Migration Image with Artifacts
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Figure 4.15: The zoom views of the blue box in Figure 4.12 (a) with artifacts and (b)
after SVM filtering.

4.3.2 Volve OBC Data

We test the effectiveness of SVM filtering using a 2D slice of inline shot gathers

extracted from the 3D Volve OBC data (Fu et al., 2017). The 3D dataset is acquired

using 12 parallel cables with 400 m separation between the cables, and each cable

contains 240 receivers. The 2D dataset is extracted from line 6 which is in the middle

of the survey. The recorded data consist of 240 common-shot gathers with a shot

interval of around 50 m, and the number of receivers for each shot ranges from 77 to

237 with a receiver interval of 50 m. The data sampling interval is 4 ms, and the total

recording time of 7.504 s. During processing, the data are low-pass filtered to 14 Hz

and resampled to 1 ms. The traces are muted after 4.5 s as there are no reflections

after 4.5 s. Figure 4.16 shows a comparison between the raw and processed CSG.
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The migration velocity in Figure 4.17 is estimated using a multiscale reflection phase

inversion method.
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Figure 4.16: CSG gather for the (a) raw data and (b) processed data.
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Figure 4.17: The Volve velocity model.
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Figure 4.18 shows the conventional RTM image with severe artifacts, particularly

at the shallow region above z = 1.5 km. These artifacts result from the sparse ge-

ometry and the poor quality of the seismic data. This model has a layered structure

with a small dip-angle variation along the horizontal direction. Therefore we choose

only the dip-angle ADCIGs at x = 3.42, 4.59, 6.22 km for the training set to compute

the weighting coefficients for the dip-angle ADCIGs at the ranges of 0 ∼ 3.79 km,

3.79 ∼ 4.95 km and 4.95 ∼ 9.88 km, respectively. To avoid the discontinuity on the

SVM filtered image that caused by misclassification, we set the weighting coefficient

to be 0.1 for the artifact points instead of 0. The migration image after SVM filter-

ing is shown in Figure 4.18b, where a noticeable improvement in the image quality,

particularly in the shallow layers when compared with the conventional RTM image.

The reflectors disrupted by the migration artifacts now become more continuous and

the image S/N ratio is also improved after SVM filtering. Magnified views of these

images are compared in Figures 4.19, 4.20 and 4.21, where the red arrows point to

the areas with noticeable improvement. It is apparent that the SVM filtered image

contains well defined geological structures.
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(a) Migration Image with Artifacts
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Figure 4.18: Migration image (a) with artifacts and (b) after SVM filtering.
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(a) Migration Image with Artifacts

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2
X (km)

0.2

0.4

0.6

0.8
D

ep
th

 (
km

)

(b) Migration Image after SVM Filtering
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Figure 4.19: The zoom views of the red box in Figure 4.18 (a) with artifacts and (b)
after SVM filtering.
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(a) Migration Image with Artifacts
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Figure 4.20: The zoom views of the black box in Figure 4.18 (a) with artifacts and
(b) after SVM filtering.
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(a) Migration Image with Artifacts
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Figure 4.21: The zoom views of the blue box in Figure 4.18 (a) with artifacts and (b)
after SVM filtering.

4.4 Conclusions

We have developed a novel support vector machine-based filtering method for sup-

pressing migration artifacts resulting from aliased/sparse data. The SVM filtering

method employs the features of coherency, amplitude, and dipping angle from se-

lected dip-angle angle-domain common-image gathers (ADCIGs) to distinguish the

signal points from artifact points. For each migration image, only a few dip-angle

ADCIGs are needed for training and the trained model is used to compute the SVM

weighting coefficients for all dip-angle ADCIGs. The method uses only 1% ∼ 10%

of the points in the selected dip-angle ADCIGs for training. We have tested the

effectiveness of the SVM filtering using both synthetic and field seismic data. In

the numerical examples, fewer than 1% of the total dip-angle ADCIGs are used for
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training. The additional computational cost of SVM filtering is trivial compared with

some other preconditioned LSRTM methods.
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Chapter 5

Multiscale Reflection Phase Inversion with Deblurring Filter

Reflection full waveform inversion (RFWI) can recover the low-wavenumber com-

ponents of the velocity model along with the reflection wavepaths. However, this

requires an expensive least-square reverse time migration (LSRTM) to construct the

perturbation image and, even so, RFWI can still suffer from cycle-skipping problems.

As an inexpensive alternative to LSRTM, we propose the use of deblurring filter (DF)

with RFWI. To mitigate cycle-skipping problems, we introduce a multiscale reflection

phase inversion (MRPI) strategy which boosts the low-frequency data and only needs

to explain the phase information in the recorded data, not its amplitude spectrum. To

mitigate cycle-skipping problems, we use the rolling-offset strategy which gradually

extends the offset range of data with an increasing number of iterations. Numerical

results show that the MRPI + DF method can efficiently recover the low-wavenumber

components of the velocity model and is less prone to getting stuck in local minima

compared to conventional RFWI.

5.1 Introduction

Full waveform inversion (FWI) has been shown to accurately invert seismic data for

high-resolution estimates of the Earth’s velocity distribution (Lailly, 1983; Tarantola,

1984; Virieux and Operto, 2009). However, the success of FWI heavily relies on the

availability of either low-frequency or long-offset diving waves and refractions in the

seismic data (Xu et al., 2012; Wang et al., 2013). With a narrow-aperture acquisition
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geometry, FWI can only reconstruct the high-wavenumber components of the deep-

velocity model illuminated by the deep reflections. Deep reflections recorded over a

narrow aperture are unable to recover the long-wavelength components of the velocity

model (Wang et al., 2013). To remedy this problem, Xu et al. (2012) developed a

reflection full waveform inversion (RFWI) method that aims to retrieve the low-

wavenumber components of the velocity model. RFWI splits the velocity model

into a background (low-wavenumber component) and a perturbation model (high-

wavenumber component). These two components are alternately updated at each

iteration. For example, RFWI first computes the perturbed velocity model using the

current background model. The calculated migration image is then used for Born

modeling of the reflection data. The residuals between the Born-modeled traces and

the observed traces are computed, which are then backpropagated to generate the

source- and receiver-side reflection wavepaths for updating the background velocity

model (Xu et al., 2012; Wang et al., 2013; Brossier et al., 2015).

Conventional RFWI uses the waveform-difference misfit function which is more

likely to fall into local minima for poor starting models. This is because the misfit

function is highly nonlinear and is very sensitive to the amplitude mismatch between

the synthetic and the observed data. To alleviate these problems, Chi et al. (2015) de-

veloped a correlation-based misfit function which measures the kinematic differences

between the observed and synthetic reflection events. Similarly, Feng and Schuster

(2019) used the traveltime-difference misfit function to invert for both velocity and

anisotropic parameters. Guo and Alkhalifah (2017) incorporated the elastic proper-

ties of RFWI to invert for both the P- and S-wave velocities. Wang et al. (2017)

combined the elastic properties and the traveltime-based misfit function together to

update both P- and S-wave velocities. Bozdağ et al. (2011); Wu et al. (2014); Chen

et al. (2018) introduced a reflection multiscale envelope inversion method so that the

signal’s envelope carries ultra-low frequency information missing in the original sig-
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nal. Furthermore, a set of methods have been developed to exclude the cycle-skipped

events in different domains (Bunks et al., 1995b; Asnaashari et al., 2012; Bi and Lin,

2014; AlTheyab and Schuster, 2015).

In this chapter, we employ a multiscale reflection phase inversion (MRPI) strategy

to mitigate cycle-skipping problems in conventional RFWI. We temporally integrate

the seismic traces several times to both attenuate its high-frequency components

and boost its low-frequency information. These low-boosted seismograms tend to

mitigate cycle-skipping problems so that the solution is less prone to getting stuck

in a local-minimum. We then replace the amplitude spectrum of the synthetic data

with the amplitude spectrum of the observed data. This modification relieves the

inversion procedure of having to explain the magnitude spectrum in the observed

data. Therefore, the misfit function focuses more on the phase mismatch than on the

amplitude mismatch (Sun and Schuster, 1993; Fu et al., 2017). This phase mismatch

is related to the kinematic errors associated with the low-wavenumber components of

the velocity model.

The problem with multiscale phase inversion described above is that the far-

offset reflection traces can still suffer from cycle-skipping problems. To mitigate this

problem, we also apply the rolling-offset strategy of AlTheyab and Schuster (2015).

In the rolling-offset strategy, we only use the near-offset traces at the early iterations

which are not cycle-skipped, and later iterations gradually include larger offset traces

into the migration and inversion. We also gradually reduce the order of the temporal

integration to introduce higher-frequency information into the inverted model. As

will be seen with the numerical examples, these strategies increase the effectiveness

and robustness of reflection inversion.

Moreover, conventional RFWI requires a least-squares migration image with bal-

anced amplitudes and high-resolution interfaces. However, LSRTM is computation-

ally expensive because it requires a large number of iterations to get the desired uplift
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of image quality. To alleviate this expense, we use deblurring filter (DF) introduced

in chapter 2 as an inexpensive alternative of LSRTM, which can produce a migration

image with image quality comparable to LSRTM without iterations.

This chapter is organized into the following sections. After the introduction, we

show how to incorporate DF with multiscale reflection phase inversion. We then

present the numerical results for both synthetic and OBC data from the North Sea.

The field data presents a challenge for estimating the low-wavenumber parts of the

velocity model. The last section provides a summary and conclusions. The appendix

provides a detailed derivation of the imaging condition of the multiscale reflection

phase inversion using the adjoint-state method.

5.2 Theory

Reflection full waveform inversion (RFWI) splits the subsurface velocity model v

into a background model (low-wavenumber component) v0 and a perturbation model

(high-wavenumber component) δv (Xu et al., 2012)

v = v0 + δv. (5.1)

At each iteration, a migration image for δv is first calculated under the current back-

ground model v0. The estimated migration image δv is then used for Born modeling

of reflection data. RFWI computes the data residual by subtraction of the Born data

and recorded traces. The resulting residual traces are then backpropagated to gen-

erate the source- and receiver-side reflection wavepaths. These wavepaths are used

to update the low-wavenumber components of the velocity model v0, while v0 and δv

are alternatively updated as the iterations proceed.
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5.2.1 Deblurring Filter

A migration image with balanced amplitudes and sharp interfaces is essential for

generating strong reflection wavepaths. We use Born modeling to generate 100 shot

gathers based on the true reflectivity and velocity model shown in Figure 5.1a and

5.1b, respectively. Figure 5.1c shows a reverse time migration (RTM) image with

an illumination problem, in which the reflector amplitudes in the central region are

much higher than in the side region. Figure 5.1e shows the least-squares reverse time

migration (LSRTM) image at the 6th iteration, which has a more balanced amplitudes

and a sharper interface compared to the RTM image. The RFWI gradients computed

from the RTM and LSRTM images are shown in Figures 5.1d and 5.1f, respectively.

It is obvious that the RFWI gradient generated from the LSRTM image is more

suited to update the low-wavenumber parts of the velocity model, where the true

velocity model is shown in Figure 5.1b with a small Gaussian perturbation in the

middle. Despite its accuracy in reconstructing the correct velocity model, LSRTM

is computationally expensive because it requires many iterations to get the desired

uplift in image quality. However, the problem with LSRTM is that it is more than an

order-of-magnitude more expensive than standard RTM. To reduce this cost, DF can

provide image quality similar to LSRTM (see Figure 5.1g) but at the cost of about 1

RTM. As an example, Figure 5.1h shows the accurate recovery of the central velocity

anomaly using DF with RFWI. Therefore, we use the DF as the deblurring operator

to compute the migration image for RFWI.
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(a) True Reflectivity Model
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(d) RFWI Gradient with RTM Image
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Figure 5.1: The (a) true reflectivity model, (b) true velocity model, (c) reverse time
migration, (e) least-squares reverse time migration and (g) deblurred image. The
RFWI gradients based on the (d) RTM, (f) LSRTM, and (h) DF images.

5.2.2 Amplitude Replacement

Currently, acoustic waveform inversion is the most widely used inversion method in

the industry due to its low-computation costs. However, the acoustic assumption

neglects elastic, attenuation, and anisotropic effects, which can severely compromise

the inversion results. In some cases, a matching filter can be used to reduce the
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non-acoustic effects of the seismic data (Agudo et al., 2018), but the matching filters

need to be iteratively updated and can be prone to errors.

Sun and Schuster (1993) proposed amplitude replacement as a one-step method

for compensating for some of the non-acoustic effects in the data. To eliminate the

need to explain the magnitude spectrum, the amplitude spectra of the synthetic traces

are replaced by those from the corresponding recorded traces. For any point source

at xs and a receiver at xr, both the observed traces dobs(xr, t|xs) and the synthetic

traces d(xr, t|xs) are Fourier transformed into the frequency domain to obtain

Ḋobs(xr|xs) = F (dobs(xr, t|xs)) = Aobs(xr, ω; xs)exp[iθobs(xr, ω; xs)], (5.2)

Ḋ(xr|xs) = F (d(xr, t|xs)) = A(xr, ω; xs)exp[iθ(xr, ω; xs)], (5.3)

where A and θ represent the magnitude and phase spectra, respectively, and F( )

denotes the Fourier transform operator in the time domain. We replace the magnitude

spectrum of the calculated data A with that of the observed data Aobs and then apply

the inverse Fourier transform to get the modified data:

d̃(xr, t|xs) = F−1{D̃(xr|xs)} = F−1{Aobs(xr, ω; xs)exp[iθ(xr, ω; xs)]}. (5.4)

Therefore, there is only the phase mismatch between the observed and modified syn-

thetic data. This phase mismatch is mostly related to the kinematic errors controlled

by the low-wavenumber components of the velocity model.

As an example, Figures 5.2a, 5.2b, and 5.2c show the acoustic, viscoacoustic, and

elastic data, respectively. It clearly shows that the acoustic data do not contain

the amplitude and phase distortions seen in the viscoacoustic data or the converted

waves in the elastic data. Figures 5.2e and 5.2f show the acoustic traces where the
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amplitude spectra are replaced by the viscoacoustic and elastic data, respectively.

The data residuals for the acoustic and viscoacoustic data with and without the

amplitude replacement are compared in Figures 5.3a and 5.3b, respectively. They

clearly show that the subtraction errors due to the viscoacoustic effects in the seismic

data are largely reduced in Figure 5.3b. Similarly, the errors in the data residuals

for the acoustic and elastic data are also greatly reduced after amplitude replacement

when compared with Figure 5.3d with Figure 5.3c.
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Figure 5.2: The (a) acoustic, (b) viscoacoustic, (c) elastic traces, where the acous-
tic magnitude spectra are, respectively, replaced with the amplitude spectra of (d)
acoustic data, (e) viscoacoustic data, and (f) elastic data.
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Figure 5.3: The data residual between the acoustic data and visco data (a) before
and (b) after amplitude spectra replacement. The data residual between the acoustic
data and elastic data (c) before and (d) after amplitude spectra replacement.

5.2.3 Time Integration

Time integration of a signal can be viewed as applying a low-boost filter to this signal

(Tavares, 1966). Integrating a signal in the time domain is equivalent to dividing the
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spectrum by i2πf in the frequency domain, and so boosts the low-frequency com-

ponents and suppresses the high-frequency components of a signal. Figures 5.4a,

5.4b and 5.4c show the traces with zero, one and two integrations, respectively, and

Figure 5.5 shows their corresponding amplitude spectra. As the number of inte-

grations increases, the high-frequency components are gradually attenuated and the

low-frequency information becomes dominant. Therefore, the recorded traces are

integrated several times to boost their low-frequency components so that the inte-

grated residual traces are less prone to be cycle-skipped (Fu et al., 2017). This is

very similar to the multiscale inversion approach using bandpass filters (Bunks et al.,

1995b), except integration is in the time-domain method. However, the problem with

a bandpass filter is that the bandpassed signal can be polluted by artifacts generated

by the narrow bandwidth and steep boundary of the bandpass filter. In comparison,

the time integration operator does not have such effects. One disadvantage of the

time integration, however, is that it might also boost the direct current (DC) term of

the signal. But this problem can be eliminated by demeaning the data. In practice,

we only integrate the source wavelet instead of integrating the synthetic data (see

Appendix D).
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Figure 5.4: The original trace (a) without integration, (b) with one and (c) two
integration.
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Figure 5.5: The frequency spectrum of the original trace (a) without integration, with
(b) one and (c) two integrations, which are represented by the red, blue and black
curves, respectively.

5.2.4 Rolling Offset

For a poor starting model, simultaneous inversion of the full-offset range of data

can lead to two problems: (1) the far-offset data are more likely to be cycle-skipped

compared with the near-offset data because of the longer wavepaths. (2) At the

near-offset region, the amplitude and phase of the Born data do not agree with the

observed data. The reason is that the stacked traces in the migration image becomes

increasingly out-of-phase with larger offsets. This is because an incorrect migration
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velocity will adjust the reflector depth so that the near-offset synthetic traces match

those from the field data, but this will not happen with increasing source-receiver

offsets. Therefore, the inversion strategy is to first adjust the velocity model to first

explain the near-offset data and then gradually adjust the velocity model to explain

the traces with increasing offset. In this way, we can mitigate getting stuck in a local

minimum and, hopefully, converge to the global minimum.

To numerically demonstrate the importance and advantages of the rolling-offset

strategy, we test it on the two-layer model shown in Figure 5.6, where the upper- and

bottom-layer velocities are 1800 m/s and 2300 m/s respectively. The interface of this

two-layer model is at a depth of 0.5 km. Shot gathers are compared for 100 shots

spaced at 20 m intervals. Each shot is recorded using 200 receivers separated at an

interval of 10 m on the surface and the migration velocity model is homogeneous with

the velocity of 1400 m/s. Figures 5.7a to 5.7e show that the traces with different offset

ranges are migrated to different depths, and the reflector images shift to shallower

depths with increasing source-receiver offsets. Figure 5.7f shows the migration image

using the full-offset data, which is quite similar to the migration image using only

the near-offset data shown in Figure 5.7a. This similarity can be explained by the

stationary phase theory (Schuster, 2009), except there are still significant artifacts

due to incomplete cancellation (see Figure 5.7f).
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Figure 5.6: Two-layer velocity model.
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(a) Migration Image with Offset: < 0.2 km (b) Migration Image with Offset: 0.3 ~ 0.5 km

0.5 1 1.5 2
X (km)

0.2

0.4

0.6

0.8

D
ep

th
 (k

m
)

0.5 1 1.5 2
X (km)

0.2

0.4

0.6

0.8

D
ep

th
 (k

m
)

0.5 1 1.5 2
X (km)

0.2

0.4

0.6

0.8

D
ep

th
 (k

m
)

0.5 1 1.5 2
X (km)

0.2

0.4

0.6

0.8

D
ep

th
 (k

m
)

0.5 1 1.5 2

0.2

0.4

0.6

0.8
0.5 1 1.5 2

X (km)

0.2

0.4

0.6

0.8

D
ep

th
 (k

m
)

(f) Migration Image with Whole Offset
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Figure 5.7: Migration image with offset ranges of (a) 0.0 to 0.2 km, (b) 0.3 to 0.5 km,
(c) 0.6 to 0.8 km, (d) 0.9 to 1.1 km, (e) 1.2 to 1.5 km and (f) the entire offset.

Figure 5.8a shows the comparison between the observed traces (red wiggles) and

the Born data (green wiggles) which are computed from the migration velocity model

and the migration image in Figure 5.7f. Two phenomena can be noticed in Figures

5.8a: (1) The far-offset data suffers severely from cycle-skipping and (2) the seismic

events in the Born modeled data arrive earlier in time at the near-offset region com-

pared to the observed data. However, the Born modeled events gradually arrive later

in time as the offset increases. These phase mismatches can be seen more clearly in

Figure 5.8b, which are the zoomed views of the blue boxes in Figure 5.8a. Moreover,

the amplitudes of the Born reflections are much weaker compared to the observed

data as the out-of-phase summation severely weakens the amplitudes of the migra-

tion image. This phenomenon can be observed in Figure 5.8c which shows the data
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residuals of Figure 5.8a. It clearly shows that the data residual is dominated by the

energy of the observed data.

(a) Data Comparison (b) Zoomed View
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Figure 5.8: The (a) trace comparsions between the observed data and Born data at
x = 1.0 km; (b) zoomed view of the blue box and (c) the data residuals.

Figure 5.7a shows the migration image computed from the near-offset data with

source-receiver offsets smaller than 0.2 km. This image has fewer amplitude and

phase errors compared to Figure 5.7f because the shorter wavepaths suffer less from

velocity errors. The comparisons between the observed and Born data generated from

Figure 5.7a are shown in Figure 5.9a. Even though there are still severe cycle-skipping

problems at the far-offset region, their waveforms correlate very well at the near-offset

region. This behavior is even more pronounced in the zoomed view shown in Figure

5.9b. Figure 5.9c shows the data residuals in Figure 5.9a, where the residual traces

are almost negligible because the observed and recorded data mostly agree with one

another in both their phases and amplitudes. The blue box indicates the offset region

used to compute the migration image.
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Figure 5.9: The (a) trace comparsion between the observed data and Born data at x
= 1.0 km; (b) zoomed view of the blue box and (c) the data residuals.

The rolling-offset strategy is now tested on three different cases. In the first

example, we use full-offset data for both migration and inversion. Therefore the RFWI

gradient suffers from cycle skipping as well as amplitude and phase mismatches at

both the near and far offsets. The corresponding RFWI gradient is shown in Figure

5.10a, which exhibits strong aliasing artifacts along the sides of the computational

model. In the second example, we use full-offset data for migration, but we only

select the uncycle-skipped data at the near-offsets for inversion. To mitigate the

amplitude mismatches, we normalize both the computed Born and the observed data

before subtraction. Therefore, the phase mismatch problem is the dominant one in

the second case. Figure 5.10b shows the RFWI gradient for the second case, which

has balanced low-wavenumber updates in the central part of the model. However,

there is still aliasing along the side boundaries. In the third example, we use near-

offset uncycle-skipped data for both migration and inversion. The corresponding
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RFWI gradient is shown in Figure 5.10c, which generates strong and balanced low-

wavenumber updates.

(a) RFWI Gradient using Full-offset Data
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(c) RFWI Gradient using Near-offset Data

(b) RFWI Gradient using Full-offset Data for Migration &
Near-offset Data for Inversion
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Figure 5.10: Demonstration of the influence of the cycle skipping, amplitude and
phase problems associated with the RFWI gradient. (a) RFWI gradient using full-
offset range of data for both migration and inversion. (b) RFWI gradient using near-
offset data for both migration and inversion. (c) RFWI gradient using the full-offset
data for migration and near-offset data for inversion.
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5.2.5 Discussion of the Offset Selection

To remove the cycle-skipped traces, we can either calculate their traveltime or phase

differences. Cycle skipping occurs when the traveltime or phase differences between

the synthetic and observed traces are larger than T
2

or π, respectively (Shah et al.,

2012). Here, T is the period of the seismic signal. The traveltime difference ∆τ can

be found by maximizing the crosscorrelation function f(τ) as

max

{
f(τ)

}
= max

{∫
p(xr, t; xs)obsp(xr, t+ τ ; xs)syndt

}
, (5.5)

where p(xr, t; xs)obs represents the observed trace at the receiver location xr for a shot

at location xs. Similarly, p(xr, t+∆τ ; xs)syn indicates the synthetic trace at the same

source and receiver location but with a time shift τ . This equation seeks a ∆τ that

shifts the synthetic seismogram so that it ”best” matches the observed seismogram.

The phase difference ∆φ between the synthetic and observed seismic traces can

be computed by two steps. First, transform the observed and synthetic traces into

the frequency domain by FFT

p̃obs = F (p(xr, t; xs)obs) = Aobse
iφobs , (5.6)

p̃syn = F (p(xr, t; xs)syn) = Asyne
iφsyn ,

where Aobs and Asyn represent the magnitude spectra of the observed and synthetic

seismic traces, respectively. φobs and φsyn indicate their corresponding phase spec-

trums. Second, compute their phase difference by

∆φ = phase
(
p̃obsp̃

∗
syn

)
= phase

(
AobsAsyne

i(φobs−φsyn)
)
, (5.7)

= φobs − φsyn,

where ∗ is the conjugate symbol and phase indicates a phase extraction operator.
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In this chapter, we prefer the phase difference approach rather than the traveltime

difference approach. The reason is that the phase difference ∆φ varies smoothly with

increasing offset if the seismic traces are not cycle-skipped. However, a sudden 2π

phase jump will occur at the cycle-skipped trace. This phase jump is easy to detect

and can be used directly to remove the cycle-skipped traces.

Figure 5.11b shows a comparison between two shots where the nearest-offset trace

is in the middle. The reflection events in the two shot gathers disagree more with

increasing offset. Figure 5.11a shows the corresponding phase differences which clearly

shows the phase-jump points. These phase-jump points indicate the locations where

the cycle-skipping appears. We can simply remove the traces where its offset is larger

than the phase jump locations to avoid the cycle-skipping problem.

The offset range associated with uncycle-skipped traces is easy to identify for a

simple case where there is only one seismic event per trace. However, for complicated

cases, the offset selection strategy is the following:

1. Migrate the observed data with the initial velocity model. Then manually pick

the points of the reference reflector which is relatively continuous and has a

good signal-to-noise ratio.

2. Generate the Born data based on the picked reflectivity model and window out

the corresponding reflections in the observed data.

3. Measure the phase differences between the Born data and the windowed observe

data, then identify the offset with the first phase jump point as a reference to

remove the cycle-skipped seismic traces.

Theoretically, one can pick single or multiple reflectors as the reference to guide the

offset selection procedure. The more the reflectors are used, the higher the accuracy

can be achieved in removing cycle-skipped traces.
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5.2.6 Misfit Function

The misfit function of multiscale reflection phase inversion is defined as

εi =
∑
s,r

∫
dt
[
WiMIn(d(xr, t|xs)− dobs(xr, t|xs))

]2
, (5.8)

=
∑
s,r

∫
dt[In(d̄i − d̄i obs)]2

where Wi is a weighting operator that zeros out the cycle-skipped events in the data

at the ith stage. Here, M indicates the amplitude replacement procedure in equation

5.8, In is the integration operator I ≡
∫
dt and n indicates that the integration

is performed n times. The observed data dobs only contain the reflection energy,

d represents the synthetic data generated from the Born modeling, and d̄ and d̄obs

represent the modified traces. The gradient of the misfit function ε with respect to

velocity v is given by

∂εi
∂v

=
∑
s,r

∫
dt
(
In
∂d̄i
∂v

)T
(In∆d̄i), (5.9)

= −
∑
s,r

∫ T

0

2ρv(In∇ · v)(Inδq) + 2ρv(In∇ · δv)(Inq)dt,

where v and δv represent the background and perturbed particle-velocity fields, re-

spectively, and q and δq indicate the adjoint-state variables of the background and

perturbed pressure wavefield p and δp, respectively. The density is represented as

ρ. As an alternative, the integration operator can be applied to the source wavelet

directly. Therefore, equation A-6 can be simplified as

∂εi
∂v

= −
∑
s,r

∫ T

0

2ρv(∇ · ṽ)δq̃ + 2ρv(∇ · δṽ)q̃dt, (5.10)
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where the tilde indicates that the wavefields are generated by an integrated source.

The detailed derivation of the gradient is shown in Appendix E using the adjoint-state

method.

The gradient in equation 5.10 has two terms. This first term
∫ T

0
2ρv(∇ · ṽ)δq̃dt

corresponds to the source-side reflection wavepath, which is the dot product between

the downward-propagated source-side wavefield ∇ · ṽ and the upward-propagated

receiver-side Born wavefield δq̃. Similarly, the second term
∫ T

0
2ρv(∇ · δṽ)q̃dt can

be interpreted as the receiver-side reflection wavepath, which is the temporal dot

product between the downward-propagated receiver-side wavefield q̃ and the upward-

propagated source-side Born wavefield ∇ · δṽ. The background velocity is updated

by smearing the energy of the data misfit along the wavepaths associated with the

sources and receivers.

For a single source-receiver pair, Figure 5.12b shows the reflection wavepath of

MRPI with the integration time n = 3, which is smoother, wider and more balanced

in the spatial distribution of amplitudes compared to the reflection wavepath of con-

ventional RFWI shown in Figure 5.12a. Given the gradient, the steepest-descent

method can be used to iteratively update the background-velocity model until the

data misfit is sufficiently small.

(a) Reflection Wavepath of RFWI
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(b) Reflection Wavepath of MRPI
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Figure 5.12: Comparison of reflection wavepaths between (a) conventional RFWI and
(b) MRPI.
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5.2.7 WorkFlow of MRPI

The workflows for conventional RFWI and MRPI + DF method are compared in

Figure 5.13. For the conventional RFWI workflow shown in Figure 5.13a, the observed

data are directly fed into the migration and inversion algorithms. In this case, the

convergence of conventional RFWI can be hardly guaranteed. Figure 5.13b provides

the workflow of the multiscale reflection phase inversion:

1. The observed traces are temporally integrated n times to attenuate the high-

frequency information and boost the low-frequency information.

2. Select the near-offset uncycle-skipped data to compute the migration image

using DF.

3. Compare the Born modeled data with the observed data, select the uncycle-

skipped traces again to compute the reflection wavepaths and update the back-

ground velocity model.

4. Compute the new migration image based on the updated velocity model.

5. Repeat steps 3 - 4 until the residual falls below a specified tolerance. Reduce

the integration number from n to n− 1 and repeat steps 2 - 4 again. For all of

the iterations, the synthetic magnitude spectra are replaced with the observed

spectra.

This workflow mitigates the problem of getting stuck in a local minimum and is

computationally less expensive than standard RFWI which uses many iterations for

the LSM inner loop.
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Figure 5.13: Comparison of the workflows between conventional RFWI and the MRPI
+ DF method.

5.2.8 Quantitative Analysis of MRPI + DF Method

The MRPI + DF method is similar to the iterative block Gauss-Seidel method for

solving systems of equations. The goal of iterative block Gauss-Seidel (IBGS) is to

iteratively find the solution to a large system of equations. The large matrix is broken

up into smaller blocks, where there is no or very little overlap between blocks and

an initial starting model is specified. The solution associated with the top block of

equations is found first. This solution is then used as the starting solution for the next
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block of equations. This procedure is repeated until the solution to the last block of

equations is found. However, the equations for the MRPI procedure are non-linear

with respect to the model parameters, so that we use a non-linear IBGS procedure

where the coefficients in the matrix blocks are updated after a sufficient number of

sweeps through the entire matrix.

The equations for MRPI + DF can be arranged from top to bottom in blocks of

traces with different offset ranges (for simplicity, we use the linearized equations for

demonstration and also ignore the integration times)




Lnear

Lmid

Lfar




mnear

mmid

mfar

=




dnear

dmid

dfar

,

Near-offset block

Medium-offset block

Far-offset block

(5.11)

where Lnear, Lmid and Lfar represent the block of modeling operators, each with a

different offset-range. Each modeling operator can be mathematically represented

as WG(r|x)G(x|s). Here, W , G(x|s) and G(r|x) indicate the source wavelet, the

Green’s function from the source location s to the pertubation point x and from the

pertubation point x to the receiver at r, respectively. Here, m and d represent the

corresponding model parameters and seismic traces with different offset ranges.

In equation 5.11, the solution of each block is found by the procedure listed in the

MRPI + DF workflow. Once the model mnear is founded that explains the near-offset

traces dnear, then the model mnear is used as the starting model for the next block of

traces. This procedure is repeated until the last block of equations is solved. In the

practical case, to ensure that the inverted model from the later blocks is still able to

explain the seismic traces in the previous block, we solve the system of equations in

the following way:

1. Solve the first block in equation 5.11 to invert for mnear.
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2. Use mnear as the starting model to solve the first block in equation 5.12

 Lnear mid

Lfar

 mnear mid

mfar
=

 dnear mid

dfar
, (5.12)

Near to medium-offset block

Far-offset block

where the near- to medium-offset block indicated by the blue color is the com-

bination of the near- and medium- block in equation 5.11. The inverted model

mnear mid is mostly inverted from the medium offset data dmid, while still satis-

fying the system of equations in the first block of equation 5.11.

3. Use mnear mid as the starting model to solve equation

[ ]
Lnear mid far

[ ]
mnear mid far

=

[ ]
dnear mid far , (5.13)

Similar to the IGBS method, this block-by-block method is repeated until conver-

gence.

Full-offset block

5.3 Numerical Results

We now use synthetic data and recorded marine data to test the effectiveness and

advantages of MRPI + DF compared to conventional FWI and RFWI. The marine

data are field OBC traces recorded in a North sea seismic survey. In all of the

examples, the first arrivals are muted from the traces to ensure that the velocity

updates are only contributed by the reflection wavepaths.

5.3.1 Two-Layer Model

We first use a two-layer model to illustrate the merits of MRPI + DF compared

to conventional FWI and RFWI. Figure 5.15a depicts the velocity model used to
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generate the data. There are 100 shots evenly spaced at a distance of 20 m and

each shot is recorded using 200 receivers placed on the surface with an interval of

10 m. The source function is a Ricker wavelet with a peak frequency of 25 Hz.

A time-domain first-order acoustic finite-difference modeling algorithm is used for

both data simulations and inversion. The initial velocity model is homogeneous with

v = 1400 m/s, which is about 23% smaller than the true velocity.

Figures 5.14a and 5.15c show, respectively, the virtual source and the correspond-

ing gradient at the 1st iteration of conventional FWI. This gradient is dominated by

high-wavenumber energy where the low-wavenumber information is slightly updated.

Figure 5.14b displays the virtual source from conventional RFWI which suffers from

severe cycle-skipping problems. Therefore the gradient of conventional RFWI in Fig-

ure 5.15e contains strong aliasing artifacts which promote incorrect updates of the

velocity model. The virtual source from the MRPI + DF method is shown in Figure

5.14c where the cycle-skipped data are muted out. Figure 5.15g shows the MRPI

+ DF gradient which is characterized by balanced amplitudes at low-wavenumbers.

The final tomograms computed from these methods are shown in Figures 5.15d, 5.15f,

and 5.15h, where both FWI and RFWI fail to update the velocity model. The area

indicated by the black box gets less updated because of the imbalanced illumination

caused by the acquisition geometry.
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(a) Data Residual of FWI
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(b) Data Residual of RFWI
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(c) Data Residual of MRPI + DF
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Figure 5.14: Comparison of the virtual source at the 1st iteration of (a) conventional
FWI, (b) conventional RFWI and the MRPI + DF method.
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(a) True Velocity Model
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(b) Initial Velocity Model
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(c) FWI Gradient at the 1st Iteration
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(e) RFWI Gradient at the 1st Iteration
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(g) MRPI + DF Gradient at the 1st Iteration
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(d) FWI Tomogram
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(f) RFWI Tomogram
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(h) MRPI + DF Tomogram
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Figure 5.15: The (a) true velocity model, (b) initial velocity model, (c) FWI gradient
at the 1st iteration for the, (d) FWI tomogram, (e) RFWI gradient at the 1st iteration
of the (f) RFWI Tomogram, (g) MRPI + DF gradient at the 1st iteration of the (h)
MRPI + DF tomogram.

5.3.2 Marmousi Model

Data computed from the Marmousi model are used to test the MRPI + DF method.

We select the upper-right region of the Marmousi model with a size of 121 x 272

grid points. We then extend the model by 50 grid points on each side. The finite-

difference method is used to compute 186 shot gathers on the surface of the Figure

5.16a model with 20 m shot intervals. Each shot is recorded with 800 receivers that

are evenly distributed on the surface at a spacing of 10 m. A Ricker wavelet with a
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peak frequency of 15 Hz is used as the source wavelet and the initial velocity model

is shown in Figure 5.16b.

Figures 5.16c to 5.16g compares the gradients at the first iteration for the FWI,

RFWI and MRPI + DF methods. The FWI gradient in Figure 5.16c is dominated

by high-wavenumber components, where the low-wavenumber information is hardly

updated. Figures 5.16e and 5.16g display the gradients for RFWI and MRPI +

DF, which are mainly controlled by the low-wavenumber components. However, the

RFWI gradient fails to update the right part of the model. The final inverted models

are compared in Figures 5.16d to 5.16h, where the FWI tomogram in Figure 5.16b

mainly updates the high-wavenumber components of the velocity model. The RFWI

tomogram shown in Figure 5.16f mostly updates the low-wavenumber components

in the shallow area and largely ignores the deeper portions of the velocity model.

The weak updates in the deeper parts of the velocity model are largely a result

of cycle-skipping between the observed and predicted traces. Figure 5.16h displays

the tomogram inverted by MRPI + DF, where the low-wavenumber components of

the velocity model are largely recovered. Figure 5.17 compares the vertical profiles

between the inverted results and the true model, which suggests that MRPI + DF is

more accurate than the conventional waveform inversion method.
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(a) True Velocity Model
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(b) Initial Velocity Model
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(d) FWI Tomogram
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(f) RFWI Tomogram
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(h) MRPI + DF Tomogram
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(c) FWI Gradient at 1st Iteration
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(e) RFWI Gradient at 1st Iteration
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(g) MRPI + DF Gradient at 1st Iteration
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Figure 5.16: The (a) true velocity model, (b) initial velocity model, (c) FWI gradient
at the 1st iteration, (d) FWI tomogram, (e) RFWI gradient at the 1st iteration, (f)
RFWI Tomogram, (g) MRPI + DF gradient at the 1st iteration, and (h) MRPI +
DF tomogram.
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(c) X = 1.8 km
0

0.2

0.4

0.6

0.8

1

1.2

1.4

De
pt

h 
(k

m
)

1500 2000
Velocity (m/s)
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Figure 5.17: The comparisons of the velocity profiles in Figures 5.16(a), (b), (d), (f)
and (h) at (a) x = 1 km, (b) x = 1.4 km, (c) x = 1.8 km, (d) x = 2.2 km, (e) x = 2.6
km and (f) x = 3.0 km.

The migration images computed from the tomograms in Figure 5.16 are shown

in Figure 5.18. Here, the FWI and RFWI migration images fail to accurately image

the deep reflectors. In comparison, the deep reflectors are accurately imaged by the

MRPI + DF tomogram with more balanced amplitudes and better resolution.
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(a) Migration Image from True Model
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(b) Migration Image from Initial Model
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(c) Migration Image from FWI Tomogram
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(d) Migration Image from RFWI Tomogram
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(e) Migration Image from MRPI + DF Tomogram
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Figure 5.18: Comparisons of the migration images computed from (a) true velocity
model, (b) initial velocity model, (c) FWI tomogram, (d) RFWI tomogram and (e)
MRPI + DF tomogram.
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5.3.3 Volve OBC Data

We test the effectiveness of MRPI + DF using a 2D slice of inline shot gathers

extracted from the 3D Volve OBC data (Fu et al., 2017). The 3D dataset consists of

12 parallel cables with 400 m separations, and each cable contains 240 receivers. The

2D dataset is extracted from line 6 which is in the middle of the survey. The recorded

data consist of 240 common-shot gathers with a shot interval of around 50 m, and the

number of receivers for each shot ranges from 77 to 237 with a receiver interval of 50 m.

The data were recorded with a sampling interval of 4 ms for the total recording time of

7.504 s. The lowest available frequency of the data is about 2 Hz. During processing,

the data are low-pass filtered to 14 Hz and resampled to 1 ms. The traces are muted

after 5 s as there are no reflections below 5 s. Figures 5.19a and 5.19b show the

comparison between a raw and processed shot gather, where the reflections arriving

before 2 s have a relatively low signal-to-noise (SNR) ratio; therefore, these low SNR

reflections are also removed. We also apply a gain in time to compensate for the

3D effects. Finally, the traces are normalized to enhance the contribution of the far-

offset traces and the source time history is a Ricker wavelet with the peak frequency

of 7 Hz. We do not estimate the source from the data because the migrated image

automatically contains the source signature information embedded in the observed

data (Wang et al., 2013). Figures 5.19b and 5.19c show the comparison between

the original processed data before and after three integrations. Their normalized

amplitude spectra are shown in Figure 5.19d where the low-frequency components in

the data are largely boosted from the integration.

The arrivals between 2.5-3.0 s are the reflections from the chalk layer (Duan et al.,

2017). Applying FWI, RFWI and MRPI + DF to these data result in the inverted

tomograms shown in Figure 5.20. The data are separated into 4 offset groups for

migration and inversion, which are 1250/1875 m, 1875/2650 m, 2650/3250 m and

3250/5000 m. The first and second number in each group indicates the offset range
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of data for migration and inversion, respectively. Here the data are separated into

the four different offset groups by following the workflow described in the previous

“Discussion of the Offset Selection” section. The chalk layer located at the depth

around 2.5 km is selected as the reference reflector and equation 5.8 is used to decide

the optimal data offset under the current velocity model. Once the offset is selected,

we update the velocity model with the traces in this offset range. The velocity is

updated until the residual decrease fall below a specified threshold. We repeat this

procedure until the end of the offset range is reached. The migration images computed

from the different velocity models in Figure 5.20 are shown in Figure 5.21. Figure

5.21d is the migration image calculated from the MRPI + DF tomogram, which has a

wider imaging area and the reflectors are more focused and continuous when compared

to the others. The red arrows point to the areas in which noticeable improvements

in image quality can be seen.

To further test for the accuracy of the tomograms, the sub-offset gathers shown

in Figures 5.22a and 5.22b are computed from the initial velocity model and MRPI

tomograms. The energy in the sub-offset gather in Figure 5.22a is spread out over

a large range of sub-offset values, which indicates that the initial model is far away

from the true model. But the energy of the sub-offset gather in Figure 5.22b is

mostly focused at zero sub-offset, which indicates that the MRPI + DF tomogram

is a good representation of the true velocity model. Figures 5.23a and 5.23b show

the angle-domain common image gathers (ADCIGs) calculated from the initial model

and MRPI + DF tomogram, respectively. It is obvious that the ADCIGs associated

with the MRPI + DF tomogram is more flattened than those from the initial model.

The observed and Born data from the MRPI + DF tomogram are compared in Figure

5.24. The red and green wiggles represent the observed and Born data, respectively,

where their phases are in good agreement.
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Figure 5.19: The comparisons between the (a) raw shot gather, (b) processed shot
gather, and (c) processed shot gather with three integrations. (d) is the comparison
of the normalized amplitude spectrum for (b) and (c).
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(d) MRPI + DF Tomogram
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Figure 5.20: Comparsions of the velocity models for the (a) initial model, (b) FWI
tomogram, (c) RFWI tomogram and (d) MRPI + DF tomogram.
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(a) Migration Image with Initial Model
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(c) Migration Image with RFWI Tomogram
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Figure 5.21: Comparsions of the migration images computed from the (a) initial
model, (b) FWI tomogram, (c) RFWI tomogram and (d) MRPI + DF tomogram.
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(b) Suboffset Gather from MRPI + DF Tomogram
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(a) Suboffset Gather from Initial Model

Figure 5.22: Comparsion of the sub-offset gathers computed from the (a) initial model
and (b) MRPI + DF tomogram.
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Figure 5.23: Comparsion of the angle gathers computed from the (a) initial model
and (b) MRPI + DF tomogram.
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Figure 5.24: Comparison between the observed data and Born data, where the rad
and green wiggles represent the observed and Born data, respectively.
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Chapter 6

Seismic Inversion by Newtonian Machine Learning

We present a seismic inversion method by newtonian machine learning that inverts

skeletonized data for the subsurface velocity model. The skeletonized representation

of the seismic traces consists of the low-rank latent-space variables predicted by a

well-trained autoencoder neural network. The input to the autoencoder consist of the

recorded common shot gathers, and the implicit function theorem is used to determine

the perturbation of the skeletonized data with respect to the velocity perturbation.

The gradient is computed by migrating the observed traces weighted by the residuals

of the skeletonized data, and the final velocity model is the one that best predicts

the observed latent-space parameters. We denote this hybrid inversion method as

inversion by Newtonian machine learning because it inverts for the model parame-

ters by combining the deterministic laws of Newtonian physics with the statistical

capabilities of machine learning. Empirical results suggest that the cycle-skipping

problem is largely mitigated compared to the conventional full waveform inversion

(FWI) method by replacing the waveform differences by the those of the latent-space

parameters. Numerical tests on both the synthetic and real data demonstrate the

success of this skeletonized inversion method in recovering a low-wavenumber ap-

proximation to the subsurface velocity model. The advantage of this method over

other skeletonized data methods is that no manual picking of important features is

required because the skeletal data are automatically selected by the autoencoder.

The disadvantage is that the inverted velocity model has less resolution compared to

the FWI result, but which can be a good initial model for FWI. We suggest that the
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lowered resolution problem can be mitigated by using a multiscale method where the

dimension of the latent space is gradually increased and more complexity is included

into the input data.

The most significant contribution of this paper is that it provides a general frame-

work for using solutions to the governing PDE to invert skeletal data generated by

any type of a neural network. The governing equation can be that for gravity, seis-

mic waves, electromagnetic fields, and magnetic fields. The input data can be the

records from different types of data and their skeletal features, as long as the model

parameters are sensitive to their perturbations. The skeletal data can be the latent

space variables of an autoencoder, a variational autoencoder, or a feature map from

a convolutional neural network (CNN), or principal component analysis (PCA) fea-

tures. In other words, we have combined the best features of Newtonian physics

and the pattern matching capabilities of machine learning to invert seismic data by

Newtonian machine learning.

6.1 Introduction

Full waveform inversion (FWI) has been shown to accurately invert seismic data for

high-resolution velocity models (Lailly, 1983; Tarantola, 1984; Virieux and Operto,

2009). However, the success of FWI heavily relies on a good initial model that is

close to the true model, otherwise, cycle-skipping problems will trap the FWI in a

local minimum(Bunks et al., 1995b). To mitigate the FWI cycle-skipping problem,

Bunks et al. (1995b) proposed a multiscale inversion approach which initially inverts

low-pass seismic data and then gradually admits higher frequencies as the iterations

proceed. AlTheyab and Schuster (2015) removed the mid- and far-offset cycle-skipped

seismic traces before inversion and gradually incorporates them into the iteration

solution as the velocity model become closer to the true model. Wu et al. (2014) use

the envelope of the seismic traces to invert for the subsurface model as they claim
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that the envelope carries the ultra-low frequency information of the seismic data.

Ha and Shin (2012) invert the data in the Laplace-domain which is less sensitive

to the lack of low frequencies than conventional FWI. Sun and Schuster (1993) and

Fu et al. (2017) use an amplitude replacement method to focus the inversion on

reducing the phase mismatch instead of the waveform mismatch. In addition, they

employ a multiscale approach by temporally integrating the traces to boost the low-

frequencies and mitigate cycle-skipping problems, and then gradually introduce the

higher frequencies as the iterations proceed.

The main reason non-linear inversion gets stuck in a local minimum is that the

data are very complex (i.e, wiggly in time), which means that the objective func-

tion is very complex and characterized by many multiple minimums. To avoid this

problem, Luo and Schuster (1991a) suggested a skeletonized inversion method which

combines the skeletonized representation of seismic data with the implicit function

theorem to accelerate convergence to the vicinity of the global minimum (Lu et al.,

2017). Simplification of the data by skeletonization reduces the complexity of the

misfit function and reduces the number of local minima. Examples of wave-equation

inversion of skeletonized data include the following:

• Lu et al. (2017) uses the solutions to the wave equation to invert the first-arrival

traveltimes for the low-to-intermediate wavenumber details of the background

velocity model. Feng and Schuster (2019) uses the traveltime misfit function to

invert for both the subsurface velocity and anisotropic parameters in a vertical

transverse isotropic medium.

• Instead of minimizing the traveltime misfit function, Li et al. (2016) finds the

optimal S-velocity model that minimizes the difference between the observed

and predicted dispersion curves associated with surface waves. Liu et al. (2018)

extend 2D dispersion inversion of surface waves to the 3D case.
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• Instead of inverting for the velocity model, Dutta and Schuster (2016) developed

a wave-equation inversion method that inverts for the subsurface Qp distribu-

tion. Here, they find the optimal Qp model by minimizing the misfit between

the observed and the predicted peak/centroid-frequency shifts of the early ar-

rivals. Similarly, Li et al. (2017) utilize the peak frequency shift of the surface

waves to invert for the Qs model.

• A good tutorial for skeletonized inversion is by Lu et al. (2017).

One of the key problems with skeletonized inversion is that the skeletonized data

must be picked from the original data, which can be labor intensive for large data

sets. To overcome this problem, we propose obtaining the skeletonized data from

an autoencoder, and then use solutions to the wave equation to invert such data

for the model of interest (Schuster, 2018). The skeletonized data correspond to the

feature map in the latent space of the autoencoder, which has a reduced dimension

and contains the significant parts of the input data related to the model. That is,

we have combined the best features of Newtonian physics and the pattern matching

capabilities of machine learning to invert seismic data by Newtonian machine learning.

The autoencoder neural network is an unsupervised deep learning method that

is trained for dimensionality reduction (Schmidhuber, 2015). An autoencoder maps

the data into a lower-dimensional space by extracting the data’s most important

features. It encodes the original data into a much more condensed representation,

also denoted as the skeletonized representation, of the input data. The input data can

be reconstructed by a decoder from the encoded value. In this paper, we first use the

observed seismic traces as the training set to train the autoencoder neural network.

Once the autoencoder is well trained, we feed both the observed and synthetic traces

into the autoencoder to get their corresponding low-dimension representations. We

build the misfit function as the sum of the squared differences between the observed

and the predicted encoded value. To compute the gradient with respect to the model
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parameters such as the velocity in each pixel, we use the implicit function theorem to

compute the perturbation of the skeletonized information with respect to the velocity.

The high-level strategy for inverting the skeletonized latent variables is summarized

in Figure 6.1, where L corresponds to the forward modeling operator of the governing

equations, such as the wave equation.

Machine Learning + Wave Equation Inversion of Skeletonized Data 

Input Data 

d

Machine Learning

Skeletal

 Features
[LTL]-1LT Target Model

m

Figure 6.1: The strategy for inverting the skeletonized latent variables.

This paper is organized into four sections. After the introduction, we explain the

theory of the wave equation inversion of seismic data skeletonized by an autoencoder.

This theory includes the formulation first presented in Luo and Schuster (1991a,b)

where the implicit function theorem is used to employ numerical solutions to the wave

equation for generating the Fréchet derivative of the skeletal data. We then present

the numerical results for both synthetic data and field data recorded by a crosswell

experiment. The last section provides a discussion, a summary of our work and its

significance.

6.2 Theory

Conventional full waveform inversion (FWI) inverts for the subsurface distribution

by minimizing the l2 norm of the waveform difference between the observed and

synthetic data. However, this misfit function is highly nonlinear and the iterative

solution often gets stuck into the local minima (Bunks et al., 1995b). To mitigate the

problem, skeletonized inversion methods simplify the objective function by combining
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the skeletonized representation of data, such as the traveltimes, with the implicit

function theorem, to give a gradient optimization method that quickly converges to

the vicinity of the glocal minimum. Instead of manually picking the skeletonized data,

we allow the unsupervised autoencoder to generate it.

6.2.1 Theory of Autoencoder

An autoencoder is an unsupervised neural network in which the predicted output is

the same as the input data, as illustrated in Figure 6.2. An autoencoder is trained to

learn the extremely low-dimensional representation of the input data, also denoted

as the skeletonized representation, in an unsupervised manner. It is similar to the

principal component analysis (PCA), which is generally used to represent input data

using a smaller dimensional space than originally present (Hotelling, 1933). How-

ever, PCA is restricted to finding the optimal rotation of the original data axes that

maximizes its projections to the principal components axes. In comparison, the au-

toencoder with a sufficient number of layers can find almost any non-linear sparse

mapping between the input and output images. A typical autoencoder architecture

is shown in Figure 6.2 which generally includes three parts: the encoder, the latent

space, and the decoder.

• Encoder: Unsupervised learning by an autoencoder uses a set of training data

consisting of N training samples {x(1),x(2), ...,x(N)}, where x(i) is the ith feature

vector with dimension D × 1 and D represent the number of features for each

feature vector. The encoder neural network indicated by the pink box in Fig-

ure 6.2 encodes the high-dimension input data x(i) into a low-dimension latent

space with dimension C × 1 using a series of neural layers with a decreasing

number of neurons; here C is smaller than D. This encoding operations can be

mathematically described as z(i) = g
(
W1x

(i) +b1

)
, where W1 and b1 represent

the model parameter and the vector of bias terms for the first layer, and g()
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indicates the activation function such as a sigmoid, ReLU, Tanh and so on.

• Latent Space: The compressed data z(i) with dimension C×1 in the latent space

layer (emphasized by the green box) is the lowest dimension space in which the

input data is reduced and the key information is preserved. The latent space

usually has a few neurons which forces the autoencoder neural network to create

effective low-dimension representations of the high-dimension input data. These

low-dimension attributes can be used by the decoder to reconstruct the original

input.

• Decoder: The decoder portion of the neural network represented by the purple

box reconstructs the input data from the latent space representation z(i) by

a series of neural network layers with an increasing number of neurons. The

reconstructed data x̃(i) are calculated by x̃(i) = W2z
(i) + b2, where W2 and b2

represent the model parameter and the bias term of the decoder neural network,

respectively.

The parameters of the autoencoder neural network are determined by finding the

values of wi and bi for i = 1, 2 that minimize the following objective function:

J(W1,b1,W2,b2) =
N∑
i=1

(x̃(i) − x(i))2, (6.1)

=
N∑
i=1

(
W2

(
g(W1x

(i) + b1)
)

+ b2 − x(i)

)2

.

In practice a preconditioned steepest descent method is used for mini-batch inputs.
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Figure 6.2: An example of an autoencoder architecture with two layers for encoder
and two layer for decoder. The dimension of the latent space is two.

6.2.2 Skeletonized Representation of Seismic Data by Au-

toencoder

To get the low-dimension skeletonized representation of seismic data by the autoen-

coder, the input data consist of seismic traces, each with the dimension of nt × 1.

In this case, each seismic trace is defined as one training example in the training set

generated by a crosswell seismic experiment. For the crosswell experiment, there are

Ns sources in the source well and Nr receivers in the receiver well. We mainly focus

on the inversion of the transmitted arrivals by windowing the input data around the

early arrivals.

Figure 6.3a shows a homogeneous velocity model with a Gaussian anomaly in the

center. Figure 6.3b is the corresponding initial velocity model which has the same

background velocity as the true velocity model. A crosswell acquisition system with

two 1570-m-deep cased wells separated by 1350 m is used as the source and receiver

wells. The finite-difference method is used to compute 77 acoustic shot gathers for

both the observed and synthetic data with 20 m shot intervals. Each shot is recorded

with 156 receivers that are evenly distributed along the depth at a spacing of 10 m.

To train the autoencoder network, we use the following workflow.
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Figure 6.3: A homogeneous velocity model with a Gausian velocity anormaly in the
center.

1. Build the training set. For every five observed shots, we randomly select one

shot gather as part of the training set that consist of a total of 2496 training

examples, or seismic traces. We didn’t use all the shot gathers for training

because of the increase in the computation cost.

2. Data processing. Each seismic trace is Hilbert transformed to get its envelope

then subtracted by their mean and divided by their variance. Figure 6.4a and

6.4b show a seismic trace before and after processing, respectively. We use the

signal envelope instead of the original seismic trace because it is less complicated

than the original signal. And according to our tests, the signal envelope leads

to faster convergence compared to the original seismic signal.

3. Training the autoencoder. We feed the processed training set into an autoen-

coder network where the dimension of its latent space is equal to 1. In other

words, each training example with a dimension of nt × 1 will be encoded as a

smaller number of latent variables by the encoder. The autoencoder parameters

are updated by iteratively minimizing equation 1. The Adam and mini-batch

gradient descent methods are used to train this network. Figure 6.5a and 6.5b
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show an input training example and its corresponding reconstructed signal by

the autoencoder, respectively, and their difference is shown in Figure 6.5c.
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Figure 6.4: The (a) orginal seismic trace and the (b) processed seismic trace.
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Figure 6.5: The (a) input training example, (b) reconstructed signal by autoencoder
and their difference.
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After training is finished, we input all the observed and predicted seismic traces

into the well-trained autoencoder network to get their skeletonized low-dimensional

representation. Of course, each input seismic trace requires the same data process-

ing procedure as we did for the training set. Figure 6.6a, 6.6b and 6.6c shows three

observed shot gathers which are not included in the training set, and their encoded

values are shown in Figure 6.6d, 6.6e and 6.6f which are the skeletonized represen-

tations of the input seismic traces. The encoded values do not have any units and

can be considered as a skeletonized attribute of the data. However, the autoencoder

believes that these encoded values are the best low-dimension representation of the

original input in the least-square sense.

We compare the traveltime differences and the encoded low-dimension represen-

tation differences for the observed and synthetic data in Figure 6.7. The black and

red curves represent the observed and synthetic data, respectively. Figure 6.7b shows

a larger traveltime difference than Figure 6.7a and 6.7c as its propagating waves are

affected more by the Gaussian anomaly than the other two shots. However, the misfit

function for the low-dimensional representation of the seismic data exhibits a pattern

similar to that of the traveltime misfit function. Both reveal a large misfit at the

traces affected by the velocity anomaly. Similar to the traveltime misfit values, the

encoded values are also sensitive to the velocity changes. In this case, we can con-

clude that the (1) autoencoder network is able to estimate the effective low-dimension

representation of the input data and (2) the encoded low-dimensional representation

can be used as a skeletonized feature sensitive to changes in the velocity model.
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Figure 6.6: Three shot gathers with their corresponding encoded data.
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Figure 6.7: The comparison of the traveltime misfit functions and skeletal data misfit
functions for different shot gathers. The black and red curves represent the observed
and synthetic data, respectively.
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6.2.3 Theory of the Skeletonized Inversion with Autoencoder

In order to invert for the velocity model from the skeletonized data, we use the implicit

function theorem to compute the perturbation of the skeletonized data with respect

to the velocity.

Connective Function

A cross-correlation function is defined as the connective function that connects the

skeletonized data with the pressure field. This connective function measures the

similarity between the observed and synthetic traces as

fz1(xr, t; xs) =

∫
dtpz−z1(xr, t; xs)obspz(xr, t; xs)syn, (6.2)

where pz(xr, t; xs)syn represents a synthetic trace for a given background velocity

model recorded at the receiver location xr due to a source excited at location xs. The

subscript z is the skeletonized feature (low-dimension representaion of the seismic

trace) that is encoded by a well-trained autoencoder network. Similarly, pz−z1(xr, t; xs)obs

denotes the observed trace with a encoded skeletonized feature equal to z − z1 that

has the same source and receiver location as pz(xr, t; xs)syn, and z1 is the distance

between the synthetic and observed skeletal data in the latent space.

For an accurate velocity model, the observed and synthetic traces will have the

same encoded values in the latent space. Therefore, we seek to minimize the distance

in the latent space between an observed and synthetic traces. This can be done

by finding the shift value z1 = ∆z that maximizes the crosscorrelation function in

equation 6.2. If ∆z = 0, it indicates that the correct velocity model has been found

and the synthetic and observed traces have the same encoded values in the latent

space. The ∆z that maximizes the crosscorrelation function in equation 6.2 should

satisfy the condition that the derivative of fz1(xr, t; xs) with respect to z1 is equal to
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zero. Thus,

ḟ∆z =

[
∂fz1(xr,t;xs)

∂z1

]
z1=∆z

, (6.3)

=

∫
dtṗz−∆z(xr, t; xs)obspz(xr, t; xs)syn = 0,

where ṗz−∆z(xr, t; xs)obs = ∂pz−z1(xr, t; xs)/∂z1. Equation 3 is the connective function

that acts as an intermediate equation to connect the seismogram with the skeletonized

data, which are the encoded values of the seismograms (Luo and Schuster, 1991a,b).

Such a connective function is necessary because there is no wave equation that relates

the skeletonized data to a single type of model parameters (Dutta and Schuster, 2016).

The connective function will be later used to derive the derivative of skeletonized data

with respect to the velocity.

Misfit Function

The misfit function of the skeletonized inversion with the autoencoder method is

defined as

ε =
1

2

∑
s

∑
r

∆z(xr,xs)
2, (6.4)

where ∆z is the difference of the encoded value in the latent space between the

observed and synthetic data. The gradient γ(x) is given by

γ(x) = − ∂ε

∂v(x)
= −

∑
s

∑
r

∂∆z

∂v(x)
∆z(xr,xs). (6.5)

Figure 6.8 shows the encoded value misfit versus different values of velocity, which

clearly shows that the misfit monotonically decreases as the velocity value approaches

to the correct velocity value (v = 2200 m/s). Therefore, the skeletonized misfit
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function in equation 6.5 is able to quickly converge to the global minimum when

using the gradient optimization method. Using equation 3 and the implicit function

theorem we can get
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Figure 6.8: Plot of the encoded value misfit function versus hypothetical velocity
values for the velocity model. The observed data is generated with v = 2200 m/s.

∂∆z

∂v(x)
=

[
∂ḟ∆z

∂v(x)

][
∂ḟ∆z

∂∆z

] , (6.6)

=
1

E

∫
dtṗz−∆z(xr, t; xs)obs

∂pz(xr, t; xs)syn
∂v(x)

,

where

E =

∫
dtp̈z−∆z(xr, t; xs)obspz(xr, t; xs)syn. (6.7)

The Fréchet derivative ∂pz(xr, t; xs)/∂v(x) is derived in the next section.

Fréchet Derivative

The first-order acoustic wave-equation can be written as
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∂p

∂t
+ ρv2∇ · v = S(xs, t), (6.8)

1

ρ
∇p+

∂v

∂t
= 0,

where p represents the pressure, v represents the particle velocity, and ρ and v indicate

the density and velocity, respectively. S(xs, t) denotes a source excited at location

xs and at the excitation time 0 and the listening time is t. To derive the formula

for the Fréchet derivative of the pressure field with respect to the perturbation in

velocity v(x), we linearize the wave equation in equation 8. A perturbation of v(x)→

v(x)+δv(x) will produce a perturbation in pressure p(x)→ p(x)+δp(x) and particle

velocity v(x)→ v(x) + δv(x), which satisfy the linearized acoustic equation given by

∂δp

∂t
+ ρv2∇ · δv = −2ρvδv∇ · v, (6.9)

1

ρ
∇δp+

∂δv

∂t
= 0.

Using the Green’s function gp(xr, t; x, 0), the solution of equation 9 can be written as

δp(xr, t; xs) = −
(
2ρvgp(xr, t; x, 0) ∗ ∇ · v(x, t; xs))δc(x

)
, (6.10)

where ∗ indicates convolution operator in time. Dividing by δv(x) on both sides, we

get

δp(xr, t; xs)

δv(x
) = −2ρvgp(xr, t; x, 0) ∗ ∇ · v(x, t; xs). (6.11)

Substituting equation 6.11 into equation 6 we get
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∂∆z

∂v(x)
= − 1

E

∫
dt(2ρvgp(xr, t; x, 0) ∗ ∇ · v(x, t; xs))× ṗz−∆z(xr, t; xs)obs. (6.12)

Substituting equation 6.12 into equation 6.5, the gradient of γ(x) can be expressed

as

γ(x) = −
∑
s

∑
r

∂∆z

∂v(x)
∆z(xr,xs), (6.13)

=
∑
s

∑
r

1

E

∫
dt(2ρvgp(xr, t; x, 0) ∗ ∇ · v(x, t; xs))× ṗz−∆z(xr, t; xs)obs∆z(xr,xs),

=
∑
s

∑
r

1

E

∫
dt(2ρvgp(xr, t; x, 0) ∗ ∇ · v(x, t; xs))×∆pz(xr, t; xs),

where ∆pz(xr, t; xs) = ṗz−∆z(xr, t; xs)obs∆z(xr,xs) denotes the data residual which is

obtained by weighting the derivative of the observed trace with respect to the latent

variable z. Then the difference of observed and predicted encoded values ∆z are

scaled by a factor of E. Using the identity

∫
dt[f(t) ∗ g(t)]h(t) =

∫
dtg(t)[f(−t) ∗ h(t)], (6.14)

equation 13 can be rewritten as

γ(x) = −2ρv
∑
s

∑
r

∫
dt∇ · v(x, t; xs)

(
gp(xr,−t; x, 0) ∗∆pz(xr, t; xs)

)
, (6.15)

= −2ρv
∑
s

∫
dt∇ · v(x, t; xs)

∑
r

(
gp(xr,−t; x, 0) ∗∆pz(xr, t; xs)

)
,

= −2ρv
∑
s

∫
dt∇ · v(x, t; xs)q(x, t; xs),

where q is the adjoint-state variables of p (Plessix, 2006). Equation 15 is the gradient

of the skeletonized data which can be numerically calculated by a zero-lag crosscor-
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relation of a forward-wavefield ∇·v(x, t; xs) with the backward-propagated wavefield

q(x, t; xs). The velocity model is updated by the steepest gradient descent method

v(x)k+1 = v(x)k + αkγ(x)k, (6.16)

where k indicates the iteration number and αk represents the step length.

6.3 NUMERICAL TEST

The effectiveness of wave equation inversion of data skeletonized by the autoencoder

method is now demonstrated with two synthetic data and with crosswell data collected

by Exxon in Texas (Chen et al., 1990). The synthetic data are generated for a crosswell

acquisition system using a 2-8 finite-difference solutions to the acoustic wave equation.

6.3.1 Crosswell Layer Model

Skeletonized inversion with the autoencoder is now tested on a layered model and

a crosswell acquisition geometry. Figure 6.9a shows the true velocity model which

has three high-velocity horizontal layers and a linear increasing background velocity.

A Ricker wavelet with a peak frequency of 15 Hz is used as the source wavelet. A

fixed-spread crosswell acquisition geometry is deployed where 99 shots at a source

interval of 20 m are evenly distributed along a vertical well located at x = 10. The

data are recorded by 200 receivers for each shot, where the receivers are uniformly

distributed every 10 m in depth along with a receiver well located 1000 m away from

the source well. The simulation time of the seismic data is 2 s with a time interval of

1 ms.

The training set includes 4000 observed seismic traces because every five shots

we take one shot gather as part of the training data. After data processing, we feed

the training data into the autoencoder network shown in Figure 6.10. The number
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below each layer indicates the dimension of that layer. The boxes with pink, green

and blue colors represent the encoder network, latent space and decoder network,

respectively. The autoencoder network is trained with mini-batches of 50 traces.

We use Tanh activation function instead of ReLU because the input data have both

positive and negative parts. The whole training progress only takes several minutes

on a workstation with 56 cores and 1 GPU.

After the autoencoder neural network is well trained, we can simply input the

synthetic traces generated at each iteration of the inversion to get their encoded

values. Therefore the skeletonized misfit and gradient functions can be calculated

in order to update the velocity model. Figure 6.9b shows a linear increasing initial

model and the inverted result is in Figure 6.11a, which successfully recovers the

three high-velocity layers. To further check the correctness of the inverted result, we

compared the vertical velocity profiles between the initial, true and inverted velocity

model at x = 0.4 km and x = 0.6 km. The blue, red and black lines in Figures 6.11b

and 6.12c represent the velocity profiles from the initial, true and inverted velocity

models, respectively. Figure 6.12 shows the normalized data residual plotted against

the iteration number, which clearly shows a fast convergence to the global minimum.
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(a) True Velocity Model
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Figure 6.9: The (a) true velocity and (b) linear increasing initial models.
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Figure 6.10: The architecture of the autoencoder neural network.
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(a) Inverted Velocity Model
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Figure 6.11: The (a) inverted velocity model and the comparison of the vertical veloc-
ity profiles at (b) x = 0.4 km and x = 0.6 km. The blue, red and black curve indicate
the velocity profiles of the initial, true and inverted velocity model, respectively.
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Figure 6.12: The normalized data residual versus iteration numbers.

6.3.2 Crosswell Marmousi Model

Data computed from a part of the Marmousi model are used to test the skeletonized

inversion method with the autoencoder method. We select the upper-right region

of the Marmousi model shown in Figure 6.13a with 157 x 135 grid points. The



178

finite-difference method is used to compute 77 acoustic shot gathers with 20 m source

intervals along the depth of the well located at 10 m. Each shot contains 156 receivers

that are evenly distributed at a spacing of 10 m along the vertical receiver well, which

is located 1340 m away from the vertical source well. The data simulation time is

2 s with a time interval of 1 ms. The source wavelet is a 15 Hz Ricker wavelet

and the initial model is shown in Figure 6.13b. Here we use the same autoencoder

architecture and training strategy as was used in the previous numerical example. The

inverted velocity model is shown in Figure 6.14a and the comparison of their vertical

profiles at x = 0.5 and x = 0.8 are shown in Figure 6.14b and 6.14c, respectively.

The blue, red and black curves represent the velocity profile of the initial, true and

inverted velocity model, respectively. It shows that the inverted model is only able

to reconstruct the low-wavenumber information in the true velocity model. To get a

high-resolution inversion result, a hybrid approach such as the skeletonized inversion

+ full waveform inversion approach can be used (Luo and Schuster, 1991a,b). A plan

for future research is to include a high-dimensional latent space.
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Figure 6.13: The (a) true velocity model and (b) linear increasing initial model.
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(a) Inverted Velocity Model
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Figure 6.14: The (a) inverted velocity model and the comparison of the vertical veloc-
ity profiles at (b) x = 0.5 km and x = 0.8 km. The blue, red and black curves indicate
the velocity profiles of the initial, true and inverted velocity model, respectively.

6.3.3 Friendswood Crosswell Field Data

We now test our method on the Friendswood crosswell field data set. Two 305-m-deep

cased wells separated by 183 m were used as the source and receiver wells. Downhole

explosive charges were fired at intervals of 3 m from 9 m to 305 m in the source well,

and the receiver well had 96 receivers placed at depths ranging from 3 m to 293 m.

The data are low-pass filtered to 100 Hz with a peak frequency of 58 Hz. The seismic

data were recorded with a sampling interval of 0.25 ms for total recording time of

0.375 s. However, we interpolate the data to 0.1 ms time interval for the numerical

stable. A processed shot gather is shown in 6.15. Here, we mainly focus the inversion

on the transmitted arrivals by windowing the input data around the early arrivals.

The autoencoder architecture we used here is almost the same as the previous two

cases, except the dimensions of the input and output layer are changed to 3750× 1.

Only a portion of the observed data is used for training (every fifth shot gather is

used for training). We do not stop the training until the misfit falls below a certain
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threshold. A linear increasing velocity model is used as the initial model which

is shown in Figure 6.16a. Figure 6.16b shows the inverted velocity model with 15

iterations. Two high-velocity zones at the depth ranges between 85 to 115 m and 170

to 250 m appear in the inverted result. However, there are also some artifacts at the

corners of the model that are due to statics and the geometry problems. Figure 6.17a

shows the encoded value map of the observed data, where the vertical and horizontal

axis represents the source and receivers indexes, respectively. It clearly shows that

the near-offset traces have large positive values and the encoded values decrease as

the offset increases.

Figure 6.17b and 6.17c show the encoded value map of the seismic data generated

from the initial and inverted velocity models, respectively, where the latter one is

much more similar to the encoded value map of the observed data. To measure the

distance between the true model and the initial model, we plot the values of the

encoded misfit function in Figure 6.17d. It shows that there is a relatively larger

misfit values at the near-offset traces than at the far offset traces. However, these

misfits are largely reduced in the inverted tomogram that is shown in Figure 6.17e.

This clearly demonstrates that our inverted tomogram is much closer to the true

velocity model compared to the initial model.
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Figure 6.15: A processed shot gather of Friendswoords data.

(a) Initial Velocity Model

50 100 150

X (m)

50

100

150

200

250

300

D
e

p
th

 (
m

)

1600

1700

1800

1900

2000

2100

2200

2300

2400
m/s (b) Inverted Velocity Model

50 100 150

X (km)

50

100

150

200

250

300

D
e

p
th

 (
k
m

)

1600

1700

1800

1900

2000

2100

2200

2300

2400
m/s

Figure 6.16: The (a) initial linear increasing velocity and (b) inverted velocity models.
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(a) Encoded Values of Observed Data
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(b) Encoded Values of Initial Data
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(c) Encoded Values of Inverted Data
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(d) Encoded Misfit Between Obs and Ini Data
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Figure 6.17: The encoded value map of the (a) observed data, the synthetic data
generated from the (b) initial model and (c) inverted model. The encoded misfit
between the (d) observed data and initial data, (e) observed data and inverted data,
respectively.
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6.4 DISCUSSION

Tests on both synthetic and observed data demonstrate that the wave equation in-

version of seismic data skeletonized by an autoencoder can invert for the low-to-

intermediate wavenumber details of the subsurface velocity model. To make this

method practical we need to address the method’s sensitivity to noisy data.

6.4.1 Noise Sensitivity Tests

In the previous synthetic tests we assumed that the seismic data is noise free. We now

repeat the synthetic tests associated with Figure 6.7, except we add random noise to

the input data. Different levels of noise are added to both the observed and synthetic

data. Figure 6.18a, 6.18d, 6.18g and 6.18j show four shot gathers and their 80th traces

are displayed in Figure 6.18c, 6.18f, 6.18i and 6.18l. Their encoded results are shown

in Figure 6.18b, 6.18e, 6.18h and 6.18k, where the black and red curves represent the

encoded values for the observed and synthetic data, respectively. It appears that the

range of encoded values decreases as the noise level increases. Moreover, the encoded

residual also decreases, which indicates that the encoded values becomes less sensitive

to the velocity changes as the data noise level increase.

Figure 6.19 shows the zoomed views of the encoded values in Figure 6.18, where

some oscillations appear in the noisy data. These oscillations could further affect

the accuracy of the inverted result, especially if the small velocity perturbation are

omitted. Therefore, good data quality with less noise is preferred for the autoencoder

method in order to recover an accurate subsurface velocity model.
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Figure 6.18: The encoded value graphs of the (a) observed data, the synthetic data
generated from the (b) initial and (c) inverted models. The encoded misfit between
the (d) observed data and initial data, and (e) observed data and inverted data,
respectively.
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Figure 6.19: The encoded value map of the (a) observed data, the synthetic data
generated from the (b) initial model and (c) inverted model. The encoded misfit
between the (d) observed data and initial data, (e) observed data and inverted data,
respectively.

6.4.2 Overfitting Problem

In our examples, the number of seismic traces in the training set is usually smaller

than the number of unknowns in an autoencoder, which might result in an overfitting

problem. If the data are overfitted, the network learns the intricacies of the training

data set at the expense of its ability to represent unseen examples (e.g., in the test

test) (Valentine and Trampert, 2012). In other words, at some point during training,

the reconstruction error of the training set keeps decreasing while the reconstruction

error of the testing set is either stable or becomes worse. Figures 6.20a and 6.20b

show the reconstruction errors of the training set and testing set versus the iteration
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number, respectively. It clearly shows that the reconstruction errors of both datasets

decrease rapidly within the first 10 iterations, and then gradually become stable. A

similar pattern with our training and testing sets demonstrates that we do not suffer

from the overfitting problem during training.
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Figure 6.20: The reconstruction error of the (a) training set and (b) testing set versus
the iteration number.

6.4.3 The Connection Between the Encoded Value and De-

coded Waveform

An ideal autoencoder neural network seeks to identify the common characteristic of all

training examples in the training set and encapsulates these within the encoder and

decoder functions. The information contained in the latent space only that necessary

to distinguish between individual examples in the dataset (Valentine and Trampert,

2012). To illustrate this point, we perturb the encoded values in the latent space

and see how the decoded waveform changes. Figure 6.21 shows the encoded value

changes versus the decoded waveform changes. It clearly shows that the changes in

the encoded value result in the waveform shift in time, but the shape of the waveform

barely changes. Therefore, in this case, the latent space information is related to the

traveltimes which are necessary to distinguish different examples in the dataset.
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Figure 6.21: The decoded waveform changes with the increasing of encoded values.

6.4.4 Data Selection by Autoencoder

A well-trained autoencoder neural network can be used to separate waveforms that

share the common characteristic from those that do not (Valentine and Trampert,

2012). We randomly select some examples from the testing set and add noise to

them. We then input the testing set into a well-trained autoencoder. Figures 6.22a,
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6.22b and 6.22c compare the noise-free input data examples and their corresponding

decoded waveforms, which are indicated by the blue and red curves, respectively. It

clearly shows that the reconstructed waveforms closely match with the input wave-

form. This can be further demonstrated by their reconstruction error which is very

small.

Figures 6.22d, 6.22e and 6.22f show the comparison results between the noisy input

data and the decoded waveform, which has a large reconstruction error. Therefore we

can use the autoencoder to automatically select and remove the ”bad” data examples

by setting a threshold value for the reconstruction error. Figure 6.23 shows the

relationship between the percentage of removed ”bad” and ”good” data examples

with respect to the reconstruction error threshold, which represented by the black and

red curves, respectively. It shows that almost 100% of the ”bad” data examples are

removed successfully and no ”good” data examples are removed when the thresholding

value is smaller than 2. However, with an increasing threshold value, fewer ”bad”

data examples are removed.
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Figure 6.22: Comparisons between the input and decoded waveforms, which are in-
dicated by the blue and red curves, respectively.
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Figure 6.23: The encoded value changes versus the decoded waveform changes.

6.5 CONCLUSIONS

We introduce a wave equation method that finds the velocity model that minimizes

the misfit function associated with the skeletonized data in the autoencoder’s latent

space. The autoencoder can compress a high-dimension seismic trace to a smaller

dimension which best represents the original data in the latent space. In this case,

measuring the encoded misift between the observed and synthetic data largely reduces

the nonlinearity when compared with measuring their waveform differences. Therefore

the inverted result will be less prone to getting stuck in a local minimum. The implicit

function theorem is used to connect the perturbation of the encoded value with the

velocity perturbation in order to calculate the gradient. Numerical results with both

synthetic and field data demonstrate that skeletonized inversion with the autoencoder

network can accurately estimate the background velocity model. The inverted result

can be used as a good initial model for full waveform inversion.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, I develop novel seismic imaging and inversion method to improve image

quality and estimate the low-wavenumber components of the subsurface velocity. The

main results and conclusions of my thesis are summarized below:

7.1.1 Q-LSRTM with Viscoacoustic Deblurring Filter

In chapter 2, I introduce a preconditioned Q-LSRTM that uses viscoacoustic deblur-

ring filters (DF) to compensate for the amplitude and resolution losses due to strong

subsurface attenuation. The viscoacoustic DF can improve the image quality and

accelerate the convergence rates of Q-LSRTM by approximating the true Hessian in-

verse in the viscoacoustic medium. Numerical tests on the synthetic and field data

empirically validate that the proposed preconditioning method mitigates the problem

of low-resolution associated with standard Q-LSRTM due to the attenuative property

of adjoint Q propagator. The limitation of this method is that the localized deblur-

ring filter will not reduce artifacts associated with strong migration artifacts far away

from the scattering point. Moreover, a fairly accurate estimation of the background

velocity and Q model is required to see noticeable improvements in the image quality

with the preconditioned Q-LSRTM method.
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7.1.2 Acoustic RTM with Hybrid Deblurring Filtering

In chapter 3, I migrate the viscoacoustic data using acoustic RTM instead of Q-

LSRTM and compensate for the amplitude losses and phase shifts using a hybrid

deblurring filter (DF). This method successfully avoids the usage of the attenuative

adjoint Q propagator and replaces it with the adjoint acoustic propagator, and then

corrects the attenuation effects by the hybrid DFs. Numerical tests on synthetic

and field data show that the proposed method increases the spatial resolution in the

migration image and can reduce the computational costs and storage requirements by

a factor of O(N − 1) times compared to iterative Q-LSRTM. Here, N is the number

of iterations in the least squares migration scheme.

The limitations of this method are that the hybrid DFs are more suitable for

correcting high-to-intermediate wavenumber distortion errors in a migration image

caused by inadequate compensation for attenuation distortion, but for the low-wavenumber

case, it doesn’t work well. Similar to viscoacoustic DFs, a fairly accurate background

velocity and Q model is required to achieve a desired image quality uplift.

7.1.3 Reduce Migration Artifacts by SVM Filtering

In chapter 4, I develop a support vector machine-based method for suppressing migra-

tion artifacts resulting from aliased/sparse data. The SVM filtering method employs

three skeletal features from selected dip-angle angle domain common image gather

(ADCIG) to distinguish the signal points from artifact points. For each migration

image, only a few dip-angle ADCIGs are needed for training and the trained model

is used to predict the SVM weights for all dip-angle ADCIGs. Only 1% to 10% of the

points in the selected dip-angle ADCIGs are used for training, which is cheap in com-

putation. The numerical results on both synthetic and field data show that the SVM

filtering method can effectively remove both random and coherent noises. The ad-

ditional computational cost of SVM filtering is trivial compared with preconditioned
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LSRTM.

7.1.4 Multiscale Reflection Phase Inversion with Deblurring

Filter

In chapter 5, I use multiscale reflection phase inversion (MRPI) with a deblurring filter

(DF) to invert for the low-wavenumber components of the subsurface velocity model.

The benefit is that MRPI is less prone to getting stuck in a local minimum compared

to conventional RFWI. To reduce the computation costs, DF is used as an inexpensive

alternative to LSRTM, which can produce a migration image with image quality

comparable to LSRTM without iterations. To alleviate cycle-skipping, temporally

integration is firstly used to boost the low-frequency information of seismic traces.

The amplitude replacement procedure is then applied to eliminate the need to explain

the magnitude spectra in the recorded traces. Finally, the rolling offset strategy is

used to eliminate cycle-skipping in the traces before migration and inversion. The

combination of these strategies largely reduces the tendency of MRPI getting stuck

in a local minimum.

The disadvantage of this method is that the amplitude replacement method is

not able to mitigate the phase mismatch caused by not accounting for attenuation

or anisotropy, which might lead to overestimation of the velocity model. To mitigate

this problem, more realistic physics should be introduced to achieve a multi-parameter

reflection phase inversion.

7.1.5 Seismic Inversion by Newtonian Machine Learning

In chapter 6, I develop a novel skeletonized inversion method that estimates the ve-

locity model that minimizes the misfit function associated with the skeletonized data

in the autoencoder’s latent space. The autoencoder can compress a high-dimensional

seismic trace into a low-dimensional space which best represents the original data. In
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this case, measuring the differences between the encoded observed and synthetic data

largely reduces the non-linearity with respect to the velocity model when compared

with measuring their waveform differences. Therefore, the inverted tomogram is less

prone to getting stuck in a local minimum. The most significant contribution of this

method is that it provides a general framework for using solutions to the governing

PDE to invert skeletal data generated by any type of neural network. The governing

equation can be that for gravity, seismic waves, thermal fields, electromagnetic fields,

and magnetic fields.

7.2 Future Work

I now list some future research directions from my thesis.

7.2.1 Wave-equation Multiscale Skeletonized Inversion by an

Autoencoder

In chapter 6, I compress the high-dimensional seismic trace into one-dimension and

invert these encoded values for the subsurface velocity model. However, the inverted

result has less resolution compared to the FWI result. To mitigate this problem,

I propose a multiscale skeletonized inversion approach where the dimension of the

latent space is gradually increased and more complexity is included in the input data.

In this case, the resolution of the inverted tomogram will be gradually increased as

the dimension of the latent space increases. However, every time the dimension of the

latent space increases, the autoencoder needs to be trained again which will increase

the computation costs.
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7.2.2 Wave-equation Skeletonized Reflection Inversion by an

Autoencoder

In chapter 6, I applied the skeletonized inversion method to cross-well data. However,

for the surface acquisition system, the early arrivals are limited in their penetration

depths. I propose to use a well-trained autoencoder neural network to estimate the

distance between the observed and synthetic reflection events in the latent space,

and then smear the residuals of the encoded value along the reflection wavepaths to

update the deep velocity model. In this case, a convolution neural network (CNN)

might identify the reflection events before inputting the data into the autoencoder.
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Agudo, Ò. C., N. V. da Silva, M. Warner, and J. Morgan, 2018, Acoustic full-waveform

inversion in an elastic world: Geophysics, 83, R257–R271.

Aki, K. and P. G. Richards, 1980, Quantitative Seismology: W. H. Freeman and Sons.

AlTheyab, A. and G. Schuster, 2015, Reflection full-waveform inversion for inaccurate

starting models: Depth Model Building: Full-waveform inversion, SEG, Expanded

Abstracts, 18–22.

Aoki, N. and G. T. Schuster, 2009, Fast least-squares migration with a deblurring

filter: Geophysics, 74, WCA83–WCA93.

Asnaashari, A., R. Brossier, C. Castellanos, B. Dupuy, V. Etienne, Y. Gholami, G.

Hu, L. Métivier, S. Operto, and D. Pageot, 2012, Hierarchical approach of seismic

full waveform inversion: Numerical Analysis and Applications, 5, 99–108.

Bai, J., D. Yingst, R. Bloor, and J. Leveille, 2014, Viscoacoustic waveform inversion

of velocity structures in the time domainviscoacoustic waveform inversion: Geo-

physics, 79(3), R103–R119.

Bi, H. and T. Lin, 2014, Impact of adaptive data selection on full waveform inversion:

1094–1098.

Billette, F. and S. Brandsberg-Dahl, 2005, The 2004 bp velocity benchmark: 67th

EAGE Conference & Exhibition.

Blanch, J. O., J. O. Robertsson, and W. W. Symes, 1995, Modeling of a constant Q:

Methodology and algorithm for an efficient and optimally inexpensive viscoelastic

technique: Geophysics, 60, 176–184.

Blanch, J. O. and W. W. Symes, 1994, Linear inversion in layered viscoacoustic media

using a time-domain method: 64th Annual International Meeting, SEG, Expanded

Abstracts, 1053–1056.

——–, 1995, Efficient iterative viscoacoustic linearized inversion: 65th Annual Inter-

national Meeting, SEG, Expanded Abstracts, 627–630.
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APPENDICES

A Acoustic Modeling and Blurring Operator

Under the Born approximation, the observed data d(xr|xs, ω), excited by a point

source at xs and recorded by a receiver at xr, can be represented as

d(xr|xs, ω) =

∫
V0

w(ω)G(xr|x0, ω)G(x0|xs, ω)m(x0), (A.1)

where ω denotes the angular frequency, w(ω) denotes the spectrum of the second-

order time derivative of the source wavelet, m(x0) is the reflectivity distribution at

the subsurface location x0 and V0 is the 3D integration volume. G(x
′|x, ω) denotes

the background Green’s function for a source at x and a receiver at x
′
. Using a

matrix-vector notation, equation A.1 can also be written as

d = Lm0, (A.2)

where L represents a linear modeling operator, d is the data vector, and m0 is a

vector that represents the subsurface reflectivity model. The migration image mmig

is computed by applying the migration operator LT to the observed data to give

mmig = LTd =

blurring operator︷︸︸︷
LTL m0, (A.3)

where LT denotes the adjoint of the forward modeling operator L. Using Green’s

function notation and equation A.1, equation 3 can also be expressed as
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mmig(x) =

∫
V0

∫ ∞
−∞

dω
∑
s

∑
r

|w(ω)|2G∗(xr|x, ω)G∗(x|xs, ω)G(xr|x0, ω)G(x0|xs, ω)m(x0)dV0,

=

∫
V0

Γ(x|x0)m(x0)dV0, (A.4)

where the migration Green’s function (Schuster and Hu, 2000) is defined as

Γ(x|x0) =

∫ ∞
−∞

dω
∑
s

∑
r

w(ω)w(ω)∗G∗(xr|x, ω)G∗(x|xs, ω)G(xr|x0, ω)G(x0|xs, ω).

(A.5)

Here, ∗ indicates the complex conjugate and Γ(x|x0) denotes the migration Green’s

function response at x = (x, y, z) for a point scatterer at x0 = (x0, y0, z0).
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B Adjoint Equations and Gradient for Q-LSRTM

Based on the SLS model, the equations of motion for a 2D viscoacoustic medium can

be written as (Carcione et al., 1988; Blanch and Symes, 1994).

∂P

∂t
+K(τ + 1)(∇·v) + rp = S(xs, t), (B.1)

∂v

∂t
+

1

ρ
∇P = 0,

∂rp
∂t

+
1

τσ
(rp + τK(∇·v)) = 0,

where ρ represents the density, P represents the pressure wavefield, K represent the

bulk modulus, r represent the memory variables and v represents the particle velocity

vector. Here, τ is related to the quality factor Q, and the reference angular frequency

ω, which can be expressed as

τ =
τε
τσ
− 1 =

2

Q
(

1

Q
+

√
1 +

1

Q2
), (B.2)

where τσ and τε represents the stress and strain relaxation times, respectively. If we

perturb K by an amount δK, the perturbed wavefields can be written as

∂δP

∂t
+K(τ + 1)(∇· δv) + δrp = −δK(τ + 1)(∇·v), (B.3)

∂δv

∂t
+

1

ρ
∇δP = 0,

∂δrp
∂t

+
1

τσ
(δrp + τK(∇· δv)) = − τ

τσ
δK(∇·v).
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Using the Green’s function gP (xr, t; x0, 0) and grp(xr, t; x0, 0), equation B.3 can also

be expressed as

δP (xr, t; xs) =

∫
V0

−δK(x0)
(

(τ(x0) + 1)
(
gP (xr, t; x0, 0) ∗ ∇·v(x0, t; xs)

)
(B.4)

+
τ(x0)

τσ(x0)

(
grp(xr, t; x0, 0) ∗ ∇·v(x0, t; xs)

))
dV0,

where K represent the bulk modulus, v represents the particle velocity vector, τσ rep-

resents the stress relaxation time, τ is related to the quality factor Q, gP (xr, t; x0, 0)

and grp(xr, t; x0, 0) are the pressure and memory variable Green’s functions, respec-

tively. In the context of Q-LSRTM, the solution to equations B.4 is equivalent to the

matrix-vector operation

dQ = LQm0, (B.5)

where dQ denotes the Born-modeled data with attenuation, LQ is a linear viscoa-

coustic modeling operator and m0 is related to the reflectivity of the medium. The

adjoint equations for equation B.3 can be derived using the adjoint-state method

(Lailly, 1983; Blanch and Symes, 1994; Blanch et al., 1995) and is given by

∂q

∂t
+∇·

(1

ρ
u
)

= −∆d(xg, t; xs), (B.6)

∂u

∂t
+
[
∇(K(1 + τ)q) +∇

( 1

τσ
Kτs

)]
= 0,

∂s

∂t
− s

τσ
− q = 0.

Here (q,u, s) are the adjoint-state variables of the state variables (P,v, rp) and ∆d

represents the data residual for the predicted and the observed pressure data at every
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iteration.

The perturbation in the image, δm, is related to the perturbation in the bulk

modulus, δK, which in turn can be obtained by zero-lag cross-correlation of the

adjoint fields with the background wavefields from equation B.3 as

δm ≈ δK =

∫ T

0

(1 + τ)(∇·v)q +
τ

τσ
(∇·v)s dt, (B.7)

Using Green’s function notation, equation B.7 can also be expressed as

δm ≈ δK =
∑
r

∑
s

∫ T

0

dt
((
τ(x) + 1

)
∇·v(x, t; xs)

(
gP (xr,−t; x, 0) ∗ (∆P (xr, t; xs)

)
+
τ(x)

τσ(x)
∇·v(x, t; xs)

(
grp(xr,−t; x, 0) ∗∆P (xr, t; xs)

))
,

=
∑
s

∫
dt
((
τ(x) + 1

)(
∇·v(x, t; xs)q(x, t; xs)

)
+
( τ(x)

τσ(x)
∇·v(x, t; xs)s(x, t; xs)

))
.

(B.8)

Here, q and s are the adjoint-state variables of the state variable P and rp, respectively.

Equation B.8 is the complete migration Green’s function in a viscoacoustic medium,

and can also be represented by the matrix-vector notation

mmig = LT
QdQ. (B.9)
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C Derivation of the Viscoacoustic Deblurring Filter

Similar to the estimation of the acoustic deblurring filter, viscoacoustic deblurring

filters can be estimated using a reference model and its Q migration image. The

reference model is constructed using a uniform distribution of point scatterers. The

reference data dQref are generated from the reference reflectivity, background velocity

model, and Q models, which are then migrated to get a reference Q migration image

mQ
mig ref as

mQ
mig ref = LT

QLQmref = LT
QdQref . (C.1)

Viscoacoustic deblurring filters for different subdomains of the Q migration image

are then estimated by locally matching the reference Q migration image with the

reference reflectivity model as

mref (x, y, z)i =

∫
v0

FQ(x− x0, y − y0, z − z0)im
Q
ref mig × (x0, y0, z0)idV0, (C.2)

which can be written in the matrix-vector notation:

[mref ]i = [FQ]i ⊗ [mQ
ref mig]i. (C.3)

Here, [FQ]i,[mref ]i, and [mQ
refmig

]i denote the viscoacoustic deblurring filter, the ref-

erence reflectivity model, and the reference Q migration image within the ith local

window, respectively.
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D Trace Integration

Assume a time-domain signal g(t) is equal to G(f) in the frequency domain. Accord-

ing to the derivative property of the Fourier transform, we have

F (
dg(t)

dt
) = i2πfG(f), (D.1)

where F represents the Fourier transform operator. We can re-write equation D.1 as

F (
dg(t)

dt
) = i2πfF (g(t)), (D.2)

and substitute p(t) = dg(t)
dt

into equation D.2 to get

F (p(t)) = i2πfF (

∫ t

−∞
p(τ)dτ). (D.3)

Dividing i2πf on both side of the equation gives

F (

∫ t

−∞
p(τ)dτ) =

F (p(t))

i2πf
. (D.4)

We conclude that integrating a signal in the time domain is equal to divide by i2πf

in the frequency domain. In this case, high-frequency information will be attenuated

and the low-frequency information will become dominant. However, if there is a DC

component b in the signal g(t) as g(t) + b, then the equation p(t) = d(g(t)+b)
dt

is also

true. The value of the DC term increases quickly with an increase in the number of

integrations. This DC term can be simply removed by demeaning the signal prior to

inversion.
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E Derivation of MRPI Gradient

The first-order acoustic wave equation is

 ∂
∂t

ρv2∇
1
ρ
∇ ∂

∂t


P

v

 =

F
0

 , (E.1)

where P and v represent the background pressure wavefield and particle-velocity

field, respectively. ρ is the density and c indicates the velocity and the source term

is represented by F . This equation can be rewritten more compactly as

S(ms)w(ms) = F, (E.2)

where

S =

 ∂
∂t

ρv2∇
1
ρ
∇ ∂

∂t

 ,w =

P
v

 , and F =

F
0

 . (E.3)

Here, w represent the background wavefield and S indicates as the forward modeling

operator. The model parameter is defind as m =

ms

mr

, where ms is the smooth

background model and mr is the reflectivity model. Similarly, the Born modeling

equation can be written as

S(ms)δw(m) = δF(w,mr), (E.4)

where δw represents the perturbed wavefield and δF is the virtual source calculated

from the background wavefield w and the reflectivity model mr.
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The least-squares misfit function ε(m) for the model parameter m can be written

as

ε(m) =
1

2

〈
δw(m)− d, δw(m)− d

〉
, (E.5)

where δw(m) and d represent the predicted and recorded data, respectively. The

gradient of ε(m) with respect to the model parameter m is given by

∂ε(m)

∂m
=
〈∂δw
∂m

,∆d
〉
. (E.6)

Computing the derivative of equation E.4 with respect to the model parameter

m, we get

∂S(ms)

∂m
δw(m) + S(ms)

∂δw(m)

∂m
=
δF(w(ms),mr)

∂m
, (E.7)

⇒∂δw(m)

∂m
= S−1

(δF(w(ms),mr)

∂m
− ∂S(ms)

∂m
δw(m)

)
,

where

δF(w(ms),mr)

∂m
=
∂δF(w(ms),mr)

∂w(ms)

∂w(ms)

∂m
+
∂δF(w(ms),mr)

∂mr

∂mr

∂m
. (E.8)

Note that m = (ms,mr), so that

∂mr

∂m
=


1, if m = mr

0, if m = ms

,
∂w(ms)

∂m
=


∂w(ms)
∂m

, if m = ms

0, if m = mr

. (E.9)

Similarly, taking the derivative of Equation E.2 with respect to the model param-

eter m, we have

∂w(ms)

∂m
= −S(ms)

−1∂S(ms)

∂m
w. (E.10)
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Inserting Equation A-7, E.8 and E.10 into Equation E.6, gives

ε(m)

∂m
=
〈∂δF(w(ms),mr)

∂w(ms)
(−S(ms)

−1)
∂S(ms)

∂m
w+ (E.11)

∂δF(w(ms),mr)

∂mr

∂mr

∂m
− ∂S(ms)

∂m
δw(m), (S(ms)

−1)∗∆d
〉

= −
〈∂δF(w(ms),mr)

∂w(ms)
S(ms)

−1∂S(ms)

∂m
w,w∗

〉
−〈∂S(ms)

∂m
δw(m),w∗

〉
+
〈∂δF(w(ms),mr)

∂mr

∂mr

∂m
,w∗

〉

where ∗ indicates the adjoint. Here, we denote w(m)∗ = (S(ms)
−1)∗∆d as the

solution of the adjoint equation with the residual resismograms acting as virtual

soures:

S∗(ms)w
∗(m) = ∆d, (E.12)

where S∗ is the adjoint operator of S. Therefore, according to Equation A-12, the

gradient with respect to the background model ms can be written as

ε(m)

∂ms

= −
〈∂δF(w(ms),mr)

∂w(ms)
S(ms)

−1∂S(ms)

∂ms

w,w∗
〉
−
〈∂S(ms)

∂ms

δw(m),w∗
〉
,

(E.13)

= −
〈∂S(ms)

∂ms

w, (S(ms)
−1)∗

(∂δF(w(ms),mr)

∂w(ms)

)∗
w∗
〉
−
〈∂S(ms)

∂ms

δw(m),w∗
〉
,

= −
〈 ∂S

∂ms

w, δw∗
〉
−
〈 ∂S

∂ms

δw,w∗
〉
,

where we denote δw∗ = (S(ms)
−1)∗

(
∂δF(w(ms),mr)

∂w(ms)

)∗
w∗ as the solution of the adjoint

Born equation

S∗(ms)δw
∗(m) = δF∗(w∗,mr), (E.14)

and w∗ is background adjoint wavefield which satisfies the adjoint equation

S∗(ms)w
∗(m) = F∗. (E.15)
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Here,

S∗ =

 − ∂
∂t

−∇ · 1
ρ

−∇ρv2 − ∂
∂t

 ,w∗ =

q
u

 , and F∗ =

∆d

0

 , (E.16)

where q is the adjoint state variable of the pressure wavefield P and u is the adjoint

of the particle velocity vector v. For ms = v, the gradient in equation A-13 can be

written as

−
〈 ∂S

∂ms

w, δw∗
〉

= −

〈0 2ρv∇·

0 0


P

v

 ,
δq
δu

〉, (E.17)

= −
∫ T

0

2ρv(∇ · v)δqdt,

−
〈 ∂S

∂ms

δw,w∗
〉

= −
〈0 2ρv∇·

0 0


δP
δv,

 ,
q

u

〉 (E.18)

= −
∫ T

0

2ρv(∇ · δv)qdt, (E.19)
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