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SUMMARY

The main difficulty with iterative waveform inversion using a
gradient optimization method is that it tends to get stuck in
local minima associated within the waveform misfit function.
This is because the waveform misfit function is highly non-
linear with respect to changes in the velocity model. To reduce
this nonlinearity, we present a reflection traveltime tomogra-
phy method based on the wave equation which enjoys a more
quasi-linear relationship between the model and the data. A
local crosscorrelation of the windowed downgoing direct wave
and the upgoing reflection wave at the image point yields the
lag time that maximizes the correlation. This lag time repre-
sents the reflection traveltime residual that is back-projected
into the earth model to update the velocity in the same way as
wave-equation transmission traveltime inversion. No travel-
time picking is needed and no high-frequency approximation
is assumed. The mathematical derivation and the numerical
examples are presented to partly demonstrate its efficiency and
robustness.

INTRODUCTION

Prestack depth migration of 3D seismic data is the industry
standard for computing detailed estimates of the earth’s re-
flectivity distribution. However, an accurate velocity model
is a precondition for imaging complex geological structures.
To estimate this velocity model, there are three primary inver-
sion methods: migration velocity analysis (MVA), traveltime
inversion, and full waveform inversion. For migration veloc-
ity analysis (Symes and Kern, 1994; Sava and Biondi, 2004;
Shen and Calandra, 2005), the optimal migration velocity is
the one that best flattens the reflection events in a common im-
age gather. For traveltime inversion (Dines and Lytle, 1979;
Paulsson et al., 1985; Ivansson, 1985; Bishop et al., 1985;
Lines, 1988), the traveltimes of refraction and reflection ar-
rivals are used to invert for smooth features of the velocity
model, while full waveform inversion (Tarantola, 1986, 1987;
Mora, 1987; Crase et al., 1992; Zhou et al., 1995; Pratt, 1998)
inverts the waveform information for fine details of the earth
model.
A more detailed analysis shows that traveltime inversion is
constrained by a high-frequency approximation, and so it fails
to invert for the earth’s velocity variations having nearly the
same wavelength or less than that of the source wavelet. Con-
sequently, the resolution of the velocity model constructed from
the traveltimes is much less than that of full waveform inver-
sion. The merit is that the traveltime misfit function (normed
squared error between observed and calculated traveltimes) is
quasi-linear with respect to velocity perturbations so that an
efficient velocity inversion can be achieved even if the start-
ing model is far from the actual model (Luo and Schuster,

1991a and 1991b; Zhou et al., 1995). Although very sen-
sitive to the choice of starting models or noisy amplitudes,
full waveform inversion can sometimes reconstruct a finely de-
tailed estimation of the earth model. This is because there is no
high-frequency assumption about the data, and almost all seis-
mic events are embedded in the misfit function. The problem
with full waveform inversion, however, is that its misfit func-
tion (normed squared error between the observed and synthetic
seismograms) can be highly nonlinear with respect to changes
in the velocity model. In this case, a gradient method will tend
to get stuck in a local minima if the starting model is far away
from the actual model.

To exploit the strengths and ameliorate the weaknesses of both
ray-based traveltime tomography and full waveform inversion,
wave-equation-based traveltime inversion was developed to in-
vert the velocity model (Luo and Schuster, 1991a and 1991b;
Zhou et al, 1995; Zhang and Wang, 2009; Leeuwen and Mul-
der, 2010). This kind of inversion methods inverts traveltime
using the gradient calculated from the wave equation. It is
not constrained by a high-frequency approximation and trav-
eltime picking is not necessary. Other important benefits are
a convergence rate that is somewhat insensitive to the starting
model, a high degree of model resolution, and a robustness in
the presence of data noise. However, these traveltime inversion
methods are designed to invert transmission waves in seismic
data, and are not designed to invert the reflection traveltimes.
Unlike refraction and direct waves, reflection waves can pro-
vide more velocity information about the deeper subsurface for
model inversion. However, full waveform inversion of reflec-
tion wave is difficult if the initial velocity model is far from the
true model. To overcome this limitation, this paper presents the
extension of wave-equation transmission traveltime inversion
(WTI) (Luo and Schuster, 1991a and 1991b) to wave-equation
reflection traveltime inversion (WRTI).

This paper is organized into three sections. The first section
describes the basic theory of image-domain wave-equation re-
flection traveltime inversion. The second section shows nu-
merical examples to verify the effectiveness of this method.
The last section draws some conclusions.

THEORY

The key step in WRTI is to transform the reflection data into
that recorded by a virtual transmission experiment. This trans-
mission data can then be inverted by WTI (Luo and Schus-
ter,1991a).
1). Assume an initial velocity model.
2). Migrate the recorded upgoing reflection data to get the im-
age points atx.
3). Forward propagate the source atxs to x to get the downgo-
ing direct waveps(x,t) as shown in Figure 1(a). Now we have
the virtual source waveletps(x,t) where the virtual source is

©  2011 SEG
SEG San Antonio 2011 Annual Meeting 27052705



Wave-equation Reflection Traveltime Inversion

at x, which will be used to update the velocity on the receiver
side.
4). Backpropagate the observed reflection data fromxg to the
image pointx and get the upgoing reflection wavepg(x,t) as
shown in Figure 1(b). Now we have the virtual reflection data
at x which can be used to find the the traveltime difference
between the downgoing direct waveps(x,t) and the upgoing
reflection wavepg(x,t).
5). Crosscorrelate the downgoing direct event inps(x,t) and
the upgoing reflection event inpg(x,t) to find the time shift∆τ
between them as shown in Figure 1(c).
6). Update the velocity model by smearing∆τ along the weighted
wavepath betweenxs andx and betweenx andxg as shown in
Figure 1(d). This step is actually the application of WTI to the
virtual transmission data.
7). Repeat steps (3)-(6) for all source and image points.
8). Go back to step (2) until the norm of the traveltime residual
satisfies the specified minimum.
In summary, WRTI can be decomposed into two steps. The
first step is to redatum the geophones from the free surface to
the image points. The second step is to redatum the source to
the image point. Hence, two virtual transmission experiments
are formed and used to update the velocity model. The po-
tential benefit is that reflection traveltime inversion might en-
joy robust convergence properties and not require the tedious
picking of reflection traveltimes.
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Figure 1: (a). The forward extrapolation of the source field.
(b). The backward extrapolation of the geophone field. (c).
The crosscorrelation of the downgoing direct wave and the up-
going reflection wave. (d). The misfit gradient is propertial to
the ∆τ weighted wavepath functions between the source and
the image points, and the image point and the geophones.

Connective function
The following analysis assumes that the propagation of seismic
waves honors the 2-D acoustic wave equation. Letp(xr,t|xs)obs
be the pressure at timet observed at the receiver locationxr

due to a source atxs. The source is always assumed to be ini-
tiated at zero time. For a given velocity model,p(xr,t|xs)cal
denotes the calculated seismogram that honors the 2D acous-
tic wave equation. The crosscorrelation function between the

forward wavefield and the backward wavefield can be used to
determine the image atx

f (x,τ) =

∫

dt ps(x,t + τ)pg(x,t), (1)

where ps(x,t + τ) is the forward wavefield initiated by the
source atxs

ps(x,t) = p(x,t|xs)cal = w(t)∗g(x,t|xs,0). (2)

Herew(t) is the source wavelet, andg(x,t|xs,0) is the Green’s
function. pg(x,t) is the backward wavefield by the time-reversed
propagation of the observed datap(xg,t|xs)obs

pg(x,t) =

∫

p(xg,t|xs)obs ∗g(x,−t|xg,0)dxg, (3)

andτ is the time lag of the crosscorrelation function. When
τ = 0, equation (2) is the conventional correlation imaging
condition. The nonzero time lag indicates the inaccuracy of
the velocity model. The extremum off (x,τ) should satisfy

f (x,∆τ) = max{ f (x,τ)|τ ∈ [−T,T ]} (4)

or

f (x,∆τ) = min{ f (x,τ)|τ ∈ [−T,T ]}, (5)

whereT is the estimated maximum time lag between the for-
ward modeled wave from the source and the backward prop-
agated wave from the receivers. Note∆τ = 0 indicates that
the correct velocity model has been found which generates a
downgoing direct wave and upgoing reflection wave arriving
at the same time. The derivative off (x,τ) with respect toτ
should be zero at∆τ unless its maximum or minimum is at an
end pointT or −T :

ḟ∆τ =
∂ f (x,τ)

∂τ
|τ=∆τ =

∫

dt ṗs(x,t + τ)pg(x,t) = 0, (6)

where ṗs(x,t + τ) represents the time derivative of the calcu-
lated downgoing wave.

Misfit function
The inverse problem is defined as finding a velocity model that
minimizes the following misfit function:

S =
1
2

∑

s

∑

x

(∆τ)2
. (7)

Herex is the image point, ands is the source position. The re-
flection traveltime inversion is computed by findingc(x′) that
minimizing the sum of the squared traveltime residuals. For
simplicity, a steepest descent non-linear optimization method
is used to describe the iterative minimization of equation (7),
with the understanding that a preconditioned conjugate gradi-
ent method is used in practice. To update the velocity model,
the steepest descent method gives

ck+1(x
′) = ck(x

′)+αk · γk(x
′), (8)
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where γk(x′) is the steepest descent direction for the misfit
function S, x′ represents any location in the velocity model,
αk is the step length, andk denotes thekth iteration.

Gradient function
Taking the Frech˘et derivative ofS with respect to velocity per-
turbations yields the misfit gradient

γ(x′) = −
∂S

∂c(x′)
= −

∑

s

∑

x

∆τ
∂ (∆τ)

∂c(x′)
, (9)

whereγ(x′) represents the traveltime misfit gradient. Using
(6) and the rule for an implicit function derivative, we get

∂ (∆τ)

∂c(x′)
= −

∂ ( ḟ∆τ )
∂ (c(x′))

∂ ( ḟ∆τ )
∂ (∆τ)

, (10)

where

E =
∂ ( ḟ∆τ)

∂ (∆τ)
=

∫

p̈s(x,t +∆τ)pg(x,t)dt, (11)

and

∂ ( ḟ∆τ)

∂ (c(x′))
=

∫ [
∂ pg(x,t)

∂c(x′)
ṗs(x,t +∆τ)+

∂ ṗs(x,t +∆τ)

∂c(x′)
pg(x,t)

]

dt,

(12)

whereE is the constant. Under the Born approximation, we
can rewrite the misfit gradient (10) as

γ(x′) =
1

c(x′)3

∑

s

∑

x

∫

Backpropagationof the redatumeddata
︷ ︸︸ ︷
[

∆τ
E

pg(x,t)∗ g̈(x′,−t −∆τ|x,0)

]

Forwardpropagationof the source
︷ ︸︸ ︷
[

ṗ(x′,t +∆τ|xs)cal

]

dt +

1
c(x′)3

∑

s

∑

x

∫

Backpropagationof the observeddata
︷ ︸︸ ︷
[∫

∆τ
E

p(xg,t|xs)obs ∗ ġ(x′,−t|xg,0)dxg

]

Forwardpropagationof the redatumedsource
︷ ︸︸ ︷
[

ṗ(x,t +∆τ|xs)cal ∗ ġ(x′,t|x,0)

]

dt. (13)

Equation (13) indicates that the gradient function of WRTI in-
version consists of two gradient functions of WTI for two vir-
tual transmission experiments. One virtual seismic experiment
is where the geophones are redatumed to the image point, and
the source is on the free surface. The other one is where the
source are redatumed to the image point, and the geophones
are still on the free surface. The velocity model is updated by
smearing the time shifts at the image point along the wavepath
between the source and the image point, and the image point
and the geophones.

NUMERICAL EXAMPLES

The first example is associated with a three-layer model. The
model in Figure 2(a) is discretized into a mesh with 201x401
gridpoints, with 100 line sources and 401 receivers on the top
surface of the model, respectively. A 40-gridpoint wide ab-
sorbing sponge zone is added along each side, and the grid in-
terval is 20 meters. The source wavelet is a Ricker wavelet
with a peak frequency of 10 Hz, and the starting model is
shown in Figure 2(b) which is a constant velocity model. The
observed seismograms are generated by a fourth-order finite-
difference solution to the 2D acoustic wave equation (with
constant density). Figure 2(c) is a typical shot gather recorded
on the free surface, where the direct wave is removed. The
observed data is redatumed from the free surface to the reflec-
tors as shown in Figure 2(d). Figure 2(e) shows the forward
modeled wavefield recorded on two reflectors. A time win-
dow is used to separate out the downgoing direct wave and
the upgoing reflection wave from the calculated data and the
redatumed data indicated by the dashed lines in Figure 2(d)
and Figure 2(e). The first arrival traveltime at reflectors cal-
culated from the eikonal solver is consistent with the center
of the time window. The direct downgoing waves are cross-
correlated with the corresponding redatumed reflection waves
to find the time shift between them. The inversion result after
seven iterations are shown in Figure 2(f). It shows that wave-
equation reflection traveltime inversion is an efficient way to
construct the velocity model. Next, we test our inversion al-
gorithm on a more practical fault model. Figure 3(a) displays
the fault model which has several nearly horizontal layers and
a steep fault. The starting model shown in Figure 3(b) is ob-
tained by smoothing the true model. The inversion result after
five iterations is illustrated in Figure 3(c). It is clear that de-
tails present in the original model such as the fault and the thin
layer become visible in the inverted model.

CONCLUSION

A new seismic reflection traveltime tomography is presented
which reconstructs velocities from reflection traveltimes com-
puted from solutions to the wave equation. No high-frequency
assumption to the data is needed, and traveltime picking and
event identification are sometimes unnecessary. The mathe-
matical derivation demonstrates that WRTI is roughly equiva-
lent to that of transmission tomography for two virtual trans-
mission experiments. The synthetic data tests illustrate that it
converges robustly in the simple model inverion. The limita-
tion of this method is that some approximate reflection points
must be known before inversion. In practice, it can be over-
comed by combining this method with MVA.
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Figure2: (a). Three-layer true velocity model. (b). The initial constant velocity model. (c). The observed data. The direct wave
is removed. (d). The upgoing reflection wave which is obtained by redatuming the observed data from the free surface to the
reflectors. (e). The calculated downgoing wave on the reflectors. (f). The inversion result after seven iterations.
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Figure3: (a). The true velocity model with a fault. (b). The initial velocity model. (c). The inversion result after ten iterations.
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