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Summary 
 
Standard finite-difference modeling of the wave equation 
for models with severe topographic changes in elevation 
generates artificial diffractions in the synthetic traces. This 
can lead to unacceptable inaccuracies in the velocity 
tomogram computed by full waveform inversion (FWI). To 
alleviate this problem we propose a polynomial 
interpolation of the field values at and near the irregular 
free surface. This improved finite-difference procedure is 
denoted as the ghost extrapolation method. To validate its 
effectiveness, synthetic data are computed from a 
Marmousi model with severe topographical variations of 
the free surface. These data are inverted using both the 
standard FWI and the phase-encoded multisource FWI 
methods. Results show the ghost extrapolation method is 
effective in eliminating noticeable artifacts and producing 
accurate tomograms. 
 
Introduction 
 
Standard finite-difference modeling of the wave equation 
for models with severe topographic changes in elevation 
generates artificial diffractions in the synthetic traces. This 
can lead to unacceptable inaccuracies in the velocity 
tomogram computed by full waveform inversion (FWI). To 
alleviate this problem we propose a polynomial 
interpolation of the field values at and near the irregular 
free surface. This improved finite-difference procedure is 
denoted as the ghost extrapolation method. To validate its 
effectiveness, synthetic data are computed from a 
Marmousi model with severe topographical variations of 
the free surface. These data are inverted using both the 
standard FWI and the phase-encoded multisource FWI 
methods. Results show the ghost extrapolation method is 
effective in eliminating noticeable artifacts and producing 
accurate tomograms. 
 
The primary methods for forward modeling with 
topography mainly include the boundary element (Perrey-
Debain et al., 2004; Carrer and Mansur, 2010), finite 
element (Ke et al., 2001) and finite difference methods. 
Among them, the boundary element and finite element 
methods are most adaptable to irregular surfaces. However, 
the boundary element method is restricted to simple models 
and the finite element often requires an excessive increase 
in computation time. In addition, the finite element method 
must generate a complicated mesh grid, whose quality will 
affect the accuracy of the solution.   
 
The most common modeling method in seismic exploration 
is the finite difference method, but it cannot easily 
accommodate free surfaces with irregular topography 
unless the grid spacing is very fine. A simple approach is to 
apply the vacuum method (Graves, 1996), which sets the 
elastic parameters to zero at and above the free surface (or a 
very low velocity). However, due to the staircase 
approximation to the topography, it is easy to generate 
diffractions unless there is a very fine grid spacing. 
Levander (1988) first proposed the fourth-order accurate 

image method in the flat surface case, then Robertsson 
(1996) developed and applied the image method to the 
irregular surface. Just like the vacuum method, the image 
method also adopts the staircase approximation; therefore, 
the diffraction problem still exists. In addition, a coordinate 
transform or a curvilinear grid method (Hestholm and Ruud, 
1998; Zhang and Chen, 2006) can be adopted as well, and 
the former is a special case of the latter. That is, the 
curvilinear grid in the physical space is transformed into 
the regular grid in the computing space, which involves a 
coordinate transformation or curvilinear grid generation. In 
addition, the wave equation needs to be modified according 
to a more complex wave equation. 
 
In order to avoid the drawbacks of the above methods, we 
introduce the ghost method from fluid mechanics (Frederic 
and Ronald, 2005) and use the virtual extrapolation 
technique in the Cartesian grid. This new approach avoids 
the generation of diffractions associated with the staircase 
approximation of topography and eliminates artificial 
diffraction. Our approach will allow for an accurate 
application of FWI to seismic data collected on surfaces 
with strong elevation changes. This claim is validated by 
our tests on the data generated from the Marmousi model 
with irregular topography. 
 
Ghost  extrapolation 
 
The acoustic wave equation 
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for a model with a free surface boundary condition means 
that the pressure is zero on the surface, where P is the 
pressure and v is the velocity. The fourth-order finite-
difference scheme requires the center point to have two 

points along each of the four directions shown in Figure 1. 
When the center point is close to the surface, some of these 
points extend above the free surface, and we call these 
points the ghost points (see Figure 1). Considering the z 
direction (see Figure 2a), so the differencing scheme can be 
written as  

Surface

Ghost point

 
Figure 1: The fourth-order scheme, where the center point is 
near the surface and some points of the FD stencil extend
above the free surface; these extended points are called ghost
points. 
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(2) 
Where i, j are the node indices and the superscript G 
indicates this point is the ghost point. The key issue is how 
to get the value of ghost point in order to calculate the 
second-order derivative of the pressure at this point. 
Physically the pressure of the ghost point in the air should 
be zero. In this case, the virtual value of the ghost point can 
be estimated by using a polynomial extrapolation method. 
Towards this goal, assume that the wave field near the 
surface is a local cubic function 

3 2( )P z az bz cz d= + + + ,                   (3) 

 
Where a, b, c and d are the coefficients, and then select the 
four points to calculate these coefficients. It is extremely 
important that the selected four points contain a point on 
the free boundary to satisfy the boundary condition. The 
second step is to extrapolate the pressure on the ghost point 
utilizing a cubic interpolation polynomial. With the ghost 
point values, the second-order derivative in the z direction 
of the points near the surface can be calculated. Process the 
same procedure for the x (Figure 2b) and z directions, 
where the x and z directions are independent in this method, 
so that for some ghost points, both the extrapolation values 
in x and z direction should be calculated. A modified 

improvement of this method is to perform the extrapolation 
using a two- or three-dimensional polynomial, but we will 
restrict our tests to the one-dimensional interpolation. 
 
The ghost extrapolation does not require an approximation 
to the surface topography, so it will not generate 
diffractions for those when the standard finite difference 
method is used. As an example, Figure 3 shows a simple 
two-layer inclined surface model and Figure 4a shows the 
common shot gather computed by a FD scheme with the 
ghost point extrapolation method. In comparison, Figure 4b 
depicts the common shot gather computed by a FD method 
with the commonly used image boundary condition, and 
obvious diffractions can be seen. Finally, Figure 4c shows 
the common shot gather computed by a FD method with a 
vacuum free-surface condition, and obvious diffractions 
also can be seen. 
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Figure 3: Two layer dipping surface model. 
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Figure 4: Common shot gathers computed by different FD 
modeling methods. a) Using the ghost extrapolation method, 
where there are no diffractions. The CSGs computed by FD 
methods that use b). image boundary conditions and c). vacuum 
boundary conditions show obvious diffractions. 
 
 
 
 
Full waveform inversion test on Marmousi model 
 
The traditional Marmousi model has been modified by 
adding an irregular surface with peaks and valleys. The 
model size is 301×400 with a grid spacing of 5 m. There 

Surface

Ghost point

Solution

 
(a) 

Surface

Ghost point
Solution

 
(b) 

Figure 2: Ghost extrapolation. a) Ghost extrapolation in the z 
direction. We assume the solution near the surface is a local 
cubic function, then choose four blue points to calculate the 
coefficients of the cubic function; then extrapolate the pressure 
to the yellow point. b) The ghost extrapolation in the x direction 
is the same as that for the z direction. 
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are 200 shots and 400 receivers with the 20 Hz Ricker 
wavelet. Figure 5 is the true velocity model and Figure 6 
shows a single shot gather generated from the true velocity 
model. Figure 7 is the initial velocity model after the 
application of a smoothing filter. Figure 8 shows the results 
after 85 iterations of an iterative FWI method that uses a 
conjugate gradient method. Compared with the true 
velocity model, it can be found that the shallow and deep 
parts of the tomogram have relatively high resolution. 
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Figure 5: The true Marmousi velocity model with topography. 
 
 

0

0.5

1.0

1.5

T
(s

)

500 1000 1500
X(m)

 
Figure 6: Synthetic common shot gather associated with the 
Marmousi model. 
 
 
In order to reduce the CPU time of FWI, we apply phase-
encoding (Romero et al., 2000; Krebs et al., 2009; Zhan et 
al., 2010; Dai et al., 2011) of shot records to simultaneously 
migrate a number of shot gathers within a single iteration. 
Figure 9 is the result of multisource FWI after 85 iterations, 
where we combine 200 phase-encoded CSGs. Choosing 
three positions x=400 m, x=1000 m and x=1500 m, the 
comparison of the true velocity and the inverted results for 
single source and multi-source FWI velocity profiles in the 
vertical direction is shown in Figure 10. Figure 11 is the 
plot of iteration number versus waveform residual for 
single source and multi-source FWI, and shows rapid 
convergence to a small misfit value. 
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Figure 7: Initial velocity model for full waveform inversion. 
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Figure 8: Full waveform inversion result after 85 iterations. 
 
 

 
Conclusions 
 
We propose the ghost extrapolation method for estimating 
the values of the pressure field near free surfaces with 
irregular topography. Numerical modeling results show no 
artificial diffractions generated by the stair-step boundary 
compared to the artifacts generated by the standard FD 
method. Results also show that this method is effective for 
standard FWI and phase-encoded multisource FWI applied 
to Marmousi data with irregular topography. The next step 
is to test this method on elastic data. 
 

X (m)

Z
 (

m
)

 

 
v (km/s)

0 200 400 600 800 1000 1200 1400 1600 1800

0

500

1000

1500 0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Figure 9: Waveform inversion result using multi-source shot 
gathers. 
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single source and multi-source in the vertical direction at 
different locations. 
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