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SUMMARY

Standard Full-waveform inversion (FWI) often suffers from
poor sensitivity to deep features of the subsurface model.
To alleviate this problem, we propose a hybrid linear and
non-linear optimization method to enhance the FWI results.
In this method, iterative least-squares reverse-time migration
(LSRTM) is used to estimate the model update at each non-
linear iteration, and the number of LSRTM iterations is pro-
gressively increased after each non-linear iteration. With this
method, model updating along deep reflection wavepaths are
automatically enhanced, which in turn improves imaging be-
low the reach of diving-waves.
This hybrid linear and non-linear FWI algorithm is imple-
mented in the space-time domain to simultaneously invert the
data over a range of frequencies. A multiscale approach is used
where higher frequencies are iteratively incorporated into the
inversion.
Synthetic data are used to test the effectiveness of reconstruct-
ing both the high- and low-wavenumber features in the model
without relying on diving waves in the inversion. We apply the
method to Gulf of Mexico field data and illustrate the improve-
ments after several iterations. Results show a significantly im-
proved migration image in both the shallow and deep sections.

INTRODUCTION

For deep subsurface imaging, waveform inversion (Tarantola,
1984) should invert deeper reflections and later-arrival refrac-
tions rather than first arrivals. Unfortunately, standard FWI
has low sensitivity to waveform residuals related to relatively
weak deeper reflections compared to the stronger amplitude
diving waves. The consequence is slow and often inadequate
FWI convergence for reconstructing deep portions of the slow-
ness model. To enhance the sensitivity of FWI to deeper re-
flections, we use a linear-inversion scheme instead of reverse-
time-migration (RTM) (Baysal et al., 1983) for calculating slow-
ness updates. Using this linear inversion, sharp boundaries are
incorporated into the slowness model such that they implic-
itly enhance the model updating along the reflection wavepaths
at subsequent iterations. This linear inversion is least-squares
reverse-time migration (LSRTM) (Dai et al., 2012).

Using LSRTM, a slowness-perturbation model is computed
based on the Born approximation, where the background slow-
ness is fixed during the linear inversion. The slowness model
is then updated with the inverted slowness-perturbation model.
After that, the linear inversion is repeated with the updated
slowness model as a background slowness. Each linear-inversion
and updating of the slowness model constitute a non-linear it-
eration. This combined linear and non-linear inversion proce-
dure is cyclically repeated until acceptable convergence.

This procedure is a variation of Gauss-Newton optimization

for FWI (Akcelik, 2002; Akcelik et al., 2002; Erlangga and
Herrmann, 2009; Virieux and Operto, 2009). To avoid high
computational and memory costs, the linear inversion is com-
puted by an iterative Conjugate Gradient (CG) solver. The
number of CG iterations is increased after each non-linear it-
eration, and is essential for an accurate model reconstruction.
We implemented the algorithm in the time-space domain, and a
multiscale approach is used to invert the data for a band of fre-
quencies (Bunks et al., 1995; Boonyasiriwat et al., 2008); start-
ing from a narrow band of low frequencies, and progressively
including higher frequencies into the inversion. The term Hy-
brid FWI encapsulates the concepts of the modified Gauss-
Newton optimization with a varying number of CG-iterations,
the time-space domain implementation, and the multiscale ap-
proach.

In this paper, we review the algorithm for the Hybrid FWI, and
illustrate its effectiveness on synthetic data that do not contain
diving waves. Then, the Hybrid FWI is also applied to Gulf of
Mexico (GOM) data. The resulting tomograms show signif-
icant improvements in the deeper section compared to initial
solution.

THEORY

Newton’s method (Nocedal and Wright, 2006) for minimizing
the squared difference δd between the calculated and observed
data can be written algebraically as

sk+1 = sk−H−1
f (sk)∇ f (sk) , (1)

where sk is the slowness model, H f is the Hessian matrix
and ∇ f (sk) is the gradient of the objective function f (sk) =
1
2 ‖δd(sk)‖2

2 at the k−th iteration. By approximating the Hes-
sian as H ≈

(
JTJ
)
, where J is the Jacobian matrix, we get the

Gauss-Newton optimization formula

sk+1 = sk−αk

(
JTJ
)−1

JT δdk. (2)

A line search is used to estimate the step length αk because
the approximation of the Hessian might not be an accurate es-
timate of the curvature for the non-linear misfit function. In-
stead of inverting the Hessian matrix, we iteratively solve the
system of equations

(
JTJ
)

g =JT δdk, (3)

using the same slowness model to get the search direction g. In
other words, LSRTM is used to compute the search direction g
instead of the RTM. Once the search direct direction g and the
line-search parameter α are computed, the slowness model is
updated using

sk+1 = sk−αkg, (4)

and the Jacobian operator and the Hessian matrix are also up-
dated according to the new slowness model. In the following
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Hybrid FWI

section, we review the implementation of the Jacobian opera-
tor and its adjoint.

Time-domain implementation of the Jacobian and its ad-
joint

We follow a similar procedure to that of Dai et al. (2012) in
deriving a time-domain implementation of applying the Jaco-
bian matrix J to the slowness perturbation4s. Each row of the
matrix operation 4p = J4s for calculating wavefield pertur-
bation 4p (indexed by receiver position xr and frequency ω)
from a slowness perturbation 4s (indexed by spatial position
x) for a given source at position xs with a source wavelet q(ω)
is written as

δ p(xr,ω) = 2
ˆ

ω2s0 (x)δ s(x) p0 (x,ω)G0 (x|xr,ω)dx,

(5)

where ω is the frequency, s0 is the background slowness, δ s is
the slowness perturbation, p0 is the background incident wave-
field from the source, and G0 is the Green’s function. This
equation is the solution to the following system of partial dif-
ferential equations

(
∇2 +ω2s2

0

)
p0 (x,ω) = −δ (x−xs)q(ω) , (6)

(
∇2 +ω2s2

0

)
δ p(x,ω) = −2ω2s0δ s(x) p0 (x,ω) , (7)

which indicate that we can evaluate the integral in equation 5
by having two wave-propagation simulations.

Similarly, for the adjoint operation 4s = J†4p each row can
be written as

δ s(x) = 2
¨

ω2s0 (x) p0 (x,ω)×

G0 (x|xr,ω)δ p∗ (xr,ω)dxrdω. (8)

To evaluate this integral, two wavefields are simulated simul-
taneously by solving the two wave equations:
(

∇2 +ω2s0 (x)2
)

p0 (x,ω) = −δ (x−xs)q(ω) , (9)
(

∇2 +ω2s0 (x)2
)

R∗ (x,ω) = −δ (x−xr)2ω2δ p∗ (xr,ω) .

(10)

The solution for equation 10 is

R∗ (x,ω) = 2
ˆ

ω2G0 (x|xr,ω)δ p∗ (xr,ω)dxr. (11)

By taking the zero-lag correlation and scaling by the back-
ground slowness, we get the integral in equation 8, i.e

δ s(x) =
ˆ

s0 (x)R∗ (x,ω) p0 (x,ω)dω =

2
¨

ω2s0 (x) p0 (x,ω)G0 (x|xr,ω)δ p∗ (xr,ω)dxrdω. (12)

Similar to forward modeling operator, the integral in equa-
tion 8 can be evaluated by conducting two wave-propagation

simulations and applying the zero-lag cross-correlation to the
two wavefields. The above equations are implemented in the
space-time domain for the applications in the following sec-
tions.

Physical interpretation of Hybrid FWI

In this section, we develop by example an intuitive reasoning
that explains why Hybrid FWI provides more accurate tomo-
grams than standard FWI. Figure 1a shows a block-velocity
model which contains one deeper reflector to constrain the
shallow velocity anomalies. Because the deep layer has a slower
velocity than the shallow layer, it will not generate refractions.
Frequencies below 5 Hz are absent from the data as shown in
Figure 1b, and the maximum source-receiver offset of 3 km is
used for the synthetic data. The initial velocity model is ho-
mogeneous with a constant velocity of 2000 m/s. The shallow
rectangular anomalies are larger in size than the minimum ef-
fective wavelength.

The block model does not generate refractions from the deep
interface so that only the reflections from the deeper inter-
face will be employed to reconstruct the square-shaped anoma-
lies. FWI relies on reflections for reconstructing the shallow
anomalies, and the velocity updates are attributed to the re-
flection wavepaths associated with the deep reflector and the
boundaries of the anomalies. The construction of reflection
wavepaths is dependent on the presence of sharp reflectors in
the velocity model. Without the sharp boundaries, standard
FWI fails to reconstruct the shallow anomalies as shown in
Figure 1c.

LSRTM is known to focus reflections and diffractions into a
sharp interfaces in the subsurface model. If such sharp inter-
faces are incorporated into the velocity model as is the case for
Hybrid FWI, these highly resolved reflectors and diffractors
generate the wavepaths needed for reconstructing the shallow
anomalies. As shown in Figure 1d, the Hybrid FWI make use
of reflections, diffractions, multiples and prism waves to con-
struct the anomalies and delineate the boundaries with high
resolution. The mispositioning of the deeper reflector due to
the shallow velocity error is reduced and the reconstructed re-
flector is nearly flat. In contrast, the reflectors in the standard
FWI tomogram in Figure 1c are more distorted because the
deeper reflections are not fully utilized for the same number
of iterations. A prohibitively large number of iterations would
be needed to accomplish the same results using a non-linear
steepest descent optimization method.

APPLICATION TO GOM STREAMER DATASET

We apply the Hybrid FWI to streamer data from the Gulf of
Mexico. There are 515 shots with a 37.5 meter shooting in-
terval, and the source-receiver offsets are from 198 meters to
6 kilometers, with a 12.5 meter receiver spacing. The trace
length is 10 seconds with a 2 ms sampling interval. Prior to
inversion, the data spectra are multiplied by

√
i/ω and gained

by
√

t in the time domain to transform 3D to 2D geometric
spreading. The source wavelet is estimated by stacking early
arrivals from the near-offset traces.
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c) Steepest Descent FWI Tomogram
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d) Hybrid FWI Tomogram

 

 

[m/s]

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1400

1600

1800

2000

2200

2400

Figure 1: a) Test velocity model, b) the source wavelet spec-
trum for forward-modeling the synthetic data and inversion,
c) steepest descent FWI and d) Hybrid FWI tomograms. The
starting velocity model is a constant velocity model with the
velocity 2000 m/s, and both of the inversion results have the
same computational cost.

We start the inversion with the data bandpassed filtered from
0-4 Hz, because there is reliable signal at 4 Hz. At later it-
erations, we widened the band of data frequencies to 10 Hz,
and Figure 3 shows the initial the final tomograms. The grid
size for the tomograms is 301 by 1600 grid points in the ver-
tical and horizontal directions respectively. The grid spacing
is 12.5 meters. The inversion is stopped every few non-linear
iterations (about 5 iterations) depending on the convergence
rate. We stop it if the residual does not decrease by more than
1 percent at every non-linear iteration. We start the inversion
again from where we stop with the bandwidth of the observed
data widened, and the velocity of the water layer is set to 1500
m/s. Figure 2 shows the convergence curve after the last reset,
where the data residual decreases by more than 60 percent.

Figure 4 shows migration images using the initial velocity model
and Hybrid-FWI tomogram. The Hybrid-FWI image is more
focused. The spliced common-image-gathers (CIG) are flat in
the final image, while the CIG’s are not flat for the initial im-
age. This highlights the significant improvement to the veloc-
ity model. Figure 5 shows two shot gathers from the observed
and calculated data and the match is generally good for early
arrivals and most of the reflections.

LIMITATIONS AND FUTURE IMPROVEMENTS

A problem with our approach is that the density is assumed
to be a constant so that the Hybrid FWI will introduce sharp
velocity boundaries with the wrong velocity values. Those
boundaries still help in updating the background velocity, which
will improve the migration image. Such sharp boundaries can
be removed before applying an FWI algorithm which inverts
for more subsurface parameters than the acoustic velocity.

We chose to start the inversion with two LSRTM iterations
and increase the number of LSRTM iterations by one for ev-
ery non-linear iteration. Our choice is heuristic based on tests
with synthetic data. More work is needed for choosing optimal
Hybrid FWI inversion parameters.

CONCLUSION

We implemented and applied the Hybrid linear and non-linear
FWI to a GOM dataset. The algorithm uses LSRTM images
as slowness updates instead of RTM images. The Hybrid FWI
uses the deep reflection data to define sharp boundaries in the
velocity model. Those sharp boundaries generate wavepaths
that are used by the inversion to build velocity updates for the
deeper section. The definition of sharp boundaries and using
them in calculating slowness updates are implicit within the
algorithm. As a result, the quality of the migration images
computed with the Hybrid FWI tomogram appears to be highly
resolved at both the shallow and deeper parts.
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Hybrid FWI

Figure 2: The convergence curves for Hybrid FWI applied to
0-10 Hz GOM data.
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b) Hybrid−FWI Tomogram (0−10 Hz)
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Figure 3: a) the initial velocity model, and b) final Hybrid-FWI
tomogram of the band 0-10 Hz.

Figure 4: Kirchhoff migration images using the initial veloc-
ity model (upper) and the final velocity model (lower). The
spliced narrow panels are common image gathers.
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Figure 5: 0-10 Hz shot gathers from different parts of the sur-
vey. The observed data are shown in the top panels and the
corresponding calculated data at the bottom.
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