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SUMMARY

We demonstrate an accurate method for calculating LSM im-
ages from data recorded on irregular topography. Our results
with both the Marmousi and Foothill models with steep topog-
raphy suggest the effectiveness of this method.

INTRODUCTION

Multisource least squares reverse time migration (MLSRTM)
has been proven to be cost-effective in improving the spatial
resolution of migration images for marine data (Dai et al., 2010,
2011, 2012). One of the key requirements is a sufficiently ac-
curate migration velocity model. Implicit in LSRTM is also the
need for a sufficiently accurate forward modeling algorithm,
even in the presence of a rough topographic surface (Graves,
1996; Robertsson, 1996; Levander, 1988; Hestholm and Ruud,
1998; Zhang and Chen, 2006; Zhang et al., 2012) for a land
survey or an OBS experiment with a variable sea floor ele-
vation. Modeling seismic waves with rough topography can
induce artificial diffractions at the free surface, which will in-
troduce erroneous reflectors in the migration image. To avoid
such problems, we develop a finite-difference algorithm that
accurately models acoustic waves with topographic slopes.It
is based on the ghost extrapolation method previously used
for modeling electromagnetic waves in a conductive medium
(Zhang, 2011) and modeling fluid flow fields in fluid mechan-
ics (Frederic and Ronald, 2005). We now show that this mod-
eling procedure can be successfully used with MLSRTM for
acoustic models with a variable topography Results with syn-
thetic data for a steeply dipping free surface show no notice-
able artifacts in the modeling or migration images.

This paper is organized into four sections. The first part is this
introduction, followed by the theory section for least squares
migration and the ghost extrapolation method. The third sec-
tion presents results for migrating synthetic data generated from
models with a roughly varying topography. The final part presents
conclusions.

THEORY

Least-squares Reverse Time Migration

Least squares reverse time migration (LSRTM) iteratively finds
the reflectivity model that iteratively minimizes the waveform
misfit function by gradient optimization method. The LSRTM
algorithm and its implementation are described as follows.

1.The misfit function is defined as:

f (m) =
1
2
||Lm−d||2, (1)

where,m is the reflectivity model,L is the Born modeling
operator that predicts multiples andd is the recorded data.

2. The misfit gradientg is defined as:

g = LT [L(m)−d], (2)

where,LT is the adjoint ofL. This equation denotes the re-
verse time migration of the residuals.

3. Once the gradient is known, the reflectivity distributioncan
be iteratively updated by the, for example, steepest descent
method:

mk+1 = mk −αgk, (3a)

α =
(gk)T ·gk

(Lgk)T ·Lgk
, (3b)

where,k is the iteration number andα is the step length. At
each iteration, the residual multiples are migrated by reverse
time migration to compute the gradient and the reflectivity is
updated by the steepest descent method with the step lengthα.
The iterative procedure is stopped when the data residual falls
below a specified limit.

Multi-source Phase-encoding

The misfit gradient calculation in equation 2 for least-squares
migration is similar to RTM, where the misfit gradient is

g(x,z) =
X

ω
S∗(x,z,ω)R(x,z,ω), (4)

whereS(x,z,ω) andR(x,z,ω) represent the source and resid-
ual wavefields,g(x,z) is the misfit gradient at(x,z), * repre-
sents the complex conjugate, and the summation represents
the zero-lag correlation. There is a significant computational
speedup if the summation is carried out over all (or partial)
shot gathers before applying this imaging condition (Romero
et al., 2000; Krebs et al., 2009; Zhan et al., 2010; Dai et al.,
2011). That is, instead of single shot gathers forR(x,z,ω) and
S(x,z,ω), we replace them by a sum of phase encoded shot
gathers so that the composite (or multi-source) wavefields are
defined as

S̃(x,z,ω) =
NX

j=1

a j(ω)S j(x,z,ω), (5)

and

R̃(x,z,ω) =
NX

j=1

a j(ω)R j(x,z,ω), (6)

whereN is the number of shot gathers combined together, and
a j is the phase-encoding factor. However, this approach intro-
duces crosstalk when we insert equations 5 and 6 into equation
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4:

g̃(x,z) =
X

ω
S̃∗(x,z,ω)R̃(x,z,ω)

=
NX

j=1

X
ω

|a j(ω)|2S∗j (x,z,ω)R j(x,z,ω)+

NX
j 6=k

NX
k=1

X
ω

crosstalkz }| {
a∗j (ω)ak(ω)S∗j (x,z,t)R j(x,z,t) . (7)

If the phase-encoding factors are orthogonal (i.e.,a jak = δ jk),
then the first summation in equation 7 reduces to the correct
misfit gradient (equation 4). However, the phase-encoding
terms are typically not orthogonal so the unwantedj 6= k cross-
terms (the second term in equation 7) are unphysical cross-
correlations between unrelated source and residual wavefields.
If these crosstalk terms are strong enough then they produce
an unacceptable migration result.

Finite-Difference Modeling with Ghost Extrapolation
In the multi-source LSM method, it is important to accurately
model wavefields for sources near a free-surface with an irreg-
ular topography. To implement the boundary condition on ir-
regular topography, we propose the ghost extrapolation method.
The acoustic wave equation

∂ 2P

∂x2 +
∂ 2P

∂ z2 =
1
v2

∂ 2P

∂ t2 , (8)

for a model with a free-surface boundary condition means that
the pressure is zero on the surface, whereP is the pressure and
v is the velocity. The fourth-order finite-difference schemere-
quires the center point to have two points along each of the four
directions shown in Figure 1. When the center point is close
to the surface, some of these points extend above the free sur-
face, and we call these points the ghost points (see Figure 1).
Considering thez direction (see Figure 2a), so the differencing
scheme can be written as

∂ 2P

∂ z2 = − 1
12

Pi−2, j +
4
3

Pi−1, j − 5
2

Pi, j +

+
4
3

Pi+1, j − 1
12

PG
i+2, j, (9)

wherei, j are the nodal indices and the superscriptG indicates
this point is the ghost point above the free surface. The key
issue is how to compute the value of the ghost points in order
to calculate the second-order derivative of the pressure atthis
point. Physically, the pressure of the ghost point in the air
should be zero. In this case, the virtual value of the ghost point
can be estimated by using a polynomial extrapolation method.
That is, assume that the wavefield near the surface is a local
cubic function

P̃(z) = az3 +bz2 +cz+d, (10)

wherea,b,c andd are the coefficients, and then select the four
points to calculate these coefficients. It is extremely impor-
tant that the selected four points contain a point on the free
boundary to satisfy the boundary condition. The second step
is to extrapolate the pressure to the ghost point utilizing acu-
bic interpolation polynomial. With the ghost point values,the

second-order derivative in thez direction of the points near the
surface can be calculated. This procedure is repeated for the
ghost points in thex (Figure 2b) andz directions. This extrap-
olation method can be improved by using polynomials that are
functions of all three coordinate variables x, y, and z, but we
will restrict our tests to one-dimensional interpolation.

Surface

Ghost point

Figure 1: The fourth-order scheme, where the center point is
near the surface and the FD stencil extend above the free sur-
face; these extended points are called ghost points.

The ghost extrapolation does not require an approximation to
the surface topography, so it will not generate diffractions for
those when the standard finite-difference method is used. As
an example, Figure 3 shows a simple dipping surface model
and Figure 4a shows the common shot gather computed by a
finite-difference (FD) scheme with the ghost point extrapola-
tion method. In comparison, Figure 4b depicts the common
shot gather computed by a FD method with the commonly
used image boundary condition, and obvious diffractions can
be seen. Finally, Figure 4c shows the common shot gather
computed by a FD method with a vacuum free-surface condi-
tion, and obvious diffractions also can be seen.

NUMERICAL EXAMPLES

In this section, we test multi-source LSRTM with rough topog-
raphy imposed on the Marmousi and the Foothill models. The
observed data are generated by a FD Born modeling method.

Marmousi Model

The traditional Marmousi model has been modified by adding
an irregular surface with peaks and valleys. The model size
is 201×400 gridpoints with a grid spacing of 5 m. There are
200 shots and 400 receivers with the 25 Hz Ricker wavelet.
Figure 5a shows the true velocity model, Figure 5b shows the
smooth velocity model for migration and Figure 6a presents
the reflectivity model. 200 shot gathers are encoded and summed
into one super gather, which significantly reduces the cost of
calculation. However, there is strong crosstalk noise as shown
in Figure 6b after 10 iterations. To suppress crosstalk, 80 itera-
tions are used to get the final LSRTM image without crosstalk
noise in Figure 6c.

Foothill Model
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Surface

Ghost point

Solution

(a)

Surface

Ghost point
Solution

(b)

Figure 2: Diagram for gridpoint of the ghost extrapolation
method. a) Ghost extrapolation in thez direction. We as-
sume the solution near the surface is a local cubic function,
then choose four blue points to calculate the coefficients of
the cubic function; then extrapolate the pressure to the yellow
point. b) The ghost extrapolation in thex direction is the same
as that for thez direction.
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Figure 3: Two layer dipping surface model.

We test multi-source LSRTM with topography on the Foothill
model that includes significant topography and velocity vari-
ations. The model size is 333× 833 gridpoints with a grid
spacing of 10 m. There are 208 shots and 833 receivers with
the 15-Hz Ricker wavelet. Figure 7a shows the true velocity
model, Figure 7b depicts the smooth velocity model for mi-
gration, and Figure 8a shows the reflectivity model. 208 shot

a) CSG with Ghost Extrapolation

X (km)

T
 (

s)

0 0.5 1 1.5

0

0.5

1

1.5

2

b) CSG with Image BC
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0 0.5 1 1.5

c) CSG with Vacuum BC

X (km)
0 0.5 1 1.5

Figure 4: Common shot gathers computed by different FD
modeling methods. a) Using the ghost extrapolation method,
where there are no diffractions. The CSGs computed by FD
methods that use b). image boundary conditions and c). vac-
uum boundary conditions (BC) show obvious diffractions.

gathers are encoded into one super gather, which can reduce
the cost of calculation. However, there is significant crosstalk
noise in the LSRTM image after 10 iterations (see Figure 8b).
To suppress this crosstalk noise, we use 80 iterations to getthe
final LSRTM image without crosstalk in Figure 8c.

CONCLUSIONS

We demonstrate a method for calculating LSM images from
data recorded on irregular topography. Our results with both
the Marmousi and Foothill models with steep topography sug-
gest its effectiveness in avoiding artificial reflections generated
by forward modeling of wavefields on free surfaces with rough
topography.
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Figure 5: a) The true and b) smooth Marmousi velocity models
with topography.
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Figure 6: a) The Marmousi reflectivity model. The LSRTM
images obtained from one super gather after b) 10 iterations
and c) 80 iterations.
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Figure 7: a) The true and b) smooth Foothill velocity model
with topography.
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Figure 8: a) The Foothill reflectivity model. The LSRTM im-
ages of one super gather after b) 10 iterations and c) 80 itera-
tions.
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