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SUMMARY

Attenuation leads to distortion of amplitude and phase of seis-
mic waves propagating inside the earth. Conventional acous-
tic and least-squares reverse time migration do not account
for this distortion which leads to defocusing of migration im-
ages in highly attenuative geological environments. To ac-
count for this distortion, we propose to use the visco-acoustic
wave equation for least-squares reverse time migration. Nu-
merical tests on synthetic data show that least-squares reverse
time migration with the visco-acoustic wave equation corrects
for this distortion and produces images with better balanced
amplitudes compared to the conventional approach.

INTRODUCTION

Fluids trapped in overburden structures cause strong attenua-
tion of P-waves which hamper the resolution of migrated im-
ages. This can be attributed to the fact that the real earth is
anelastic and this causes distortion of the amplitude and phase
of the propagating seismic waves (Aki and Richards (1980)).
If the attenuation is too strong, ignoring it during migration
can lead to incorrect positioning of reflectors below these lay-
ers. Attenuation of P-waves can be quantified by an attenua-
tion parameter or a quality factor,QP, which accounts for the
amplitude attenuation and the phase shift as a function of the
the frequency content of the propagating waves and the dis-
tance travelled. Lower values ofQP imply more energy loss
of the wave per cycle or very high attenuation. The values of
QP for rocks like gas-sandstone and shale are very low (QP
≈ 15− 30) and this necessitates the need to account forQP

during migration for more accurate and better resolved images.

Reverse time migration (RTM) has become the standard mi-
gration algorithm for imaging in complex geological settings
like the Gulf of Mexico. Conventional acoustic RTM uses the
two-way wave equation for computing the Green’s functions
(Baysal et al. (1983), McMechan (1983)) and is more accurate
than the integral based Kirchhoff methods. Dai et al. (2012)
extended the idea of least-squares migration (Nemeth et al.
(1999)) to least-squares reverse time migration (LSRTM) and
showed that LSRTM can mitigate the artifacts of RTM and
can produce images of better resolution compared to standard
RTM. However, RTM and LSRTM do not take into account the
attenuation due toQP if the standard acoustic wave equation
is used for wavefield extrapolation. In this work, we propose
to use the visco-acoustic wave equation instead of the standard
acoustic wave equation for LSRTM and show with numeri-
cal tests that LSRTM using the visco-acoustic wave equation
produces images with better balanced amplitudes and accurate
positioning of reflectors compared to acoustic LSRTM when
the subsurface attenuation is very strong.

LEAST-SQUARES REVERSE TIME MIGRATION WITH
THE VISCO-ACOUSTIC WAVE EQUATION

The stress-strain relation for a visco-acoustic medium is given
by (Christensen (1982), Carcione et al. (1988)),
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wherep denotes the pressure field,e denotes the trace of the
strain tensor matrix,dk/dtk represents thek-th order time deriva-
tive andck anddk are coefficients related to the material prop-
erties of the medium. The pressure field can be expressed ex-
plicitly from equation (1) using Laplace transform methodsas,
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whereτσ l andτε l denote material relaxation times for thel-
th mechanism,L is the number of relaxation mechanisms and
MR is the relaxed modulus of the medium. The equation of mo-
mentum conservation can be written as (Carcione et al. (1988)),
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whereρ and fi represent the density and body forces, respec-
tively. Equations (2) and (3) together describe the deformation
in a visco-acoustic medium. For numerical modeling, the con-
volution term in equation (2) is simplified by introducing a
memory variable term,rp, (Robertsson et al. (1994)) and only
one relaxation mechanism (L = 1) is sufficient for practical
purposes (Blanch et al. (1995)). Thus, for a 2D visco-acoustic
medium, the linearized equations of motion and deformation
become (Thorbecke and Draganov (2011)),
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Here,Vx andVz represent the particle velocities in thex andz
directions, respectively, andκ represents the bulk modulus of
the medium. The relaxation parameters,τσ andτε , are related
to the quality factor,QP, and the central frequency,fw, of the
source wavelet as (Robertsson et al. (1994)),
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,

τε =
1

f 2
wτσ

. (5)
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Attenuation LSRTM

Equation 4 can be used for wavefield extrapolation in a visco-
acoustic medium during RTM and LSRTM. Figure 1 shows
the effect of attenuation on amplitude and phase for a homo-
geneous medium with a background velocity of 3000m/s and
for different values ofQP. The source is excited at the center
of the model and the snapshots are taken att = 0.8 ms. It is
evident that lower values ofQP distort the amplitude and phase
of the propagating waves.

For visco-acoustic LSRTM, the Born modeling equation can
be written as,

P(g,s)≈
∫

x
G(x|s)m(x)G(g|x)W (ω)dx, (6)

whereG(x′|x) is the Fourier domain representation of the band-
limited Green’s function for a source excited atx and an ob-
servation point atx′ and is numerically computed using equa-
tion (4). W (ω) represents the source wavelet for an angu-
lar frequencyω, m(x) represents the reflectivity model and
P(g,s) represents the born-modeled data whereg ands are the
geophone and source coordinates, respectively. For notational
convenience,ω has been dropped from the pressure and the
Green’s functions terms. The RTM operator can be derived by
applying the adjoint operation on equation (6) as,

m(x)≈
∫

ω

∫

s

∫

g
G(x|s)∗P(g,s)G(g|x)∗dgdsdω. (7)

Using a matrix-vector notation, the forward modeling opera-
tion in equation (6) can be written as,

d = Lm, (8)

and the adjoint operation or the RTM operation can be written
as (Claerbout and Green (2008)),

m ≈ LT d. (9)

The reflectivity model,m(x), can be determined using a least-
squares method by minimizing the misfit function,ε, as (Nemeth
et al. (1999), Dai et al. (2012)),

ε =
1
2
||Lm−dobs||2. (10)

Equation (10) can be iteratively solved using any gradient based
method like steepest descent as,

m(i+1) = m(i)−αg(i),

g(i) = LT (Lm(i)−dobs),

α =
(g(i))T g(i)

(Lg(i))T (Lg(i))
. (11)

Here,m(i) represents the reflectivity model at thei-th iteration,
g(i) andα represent the gradient and the step-length, respec-
tively. The gradient is determined by reverse time migration
of the data residuals between the born-modeled data and the
observed data which has been calculated using a full finite dif-
ference simulation of the visco-acoustic wave equation given
in equation (4).
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Figure 1: (a) Wavefield Snapshots att = 0.8 ms for a homo-
geneous medium showing the effect of attenuation for differ-
ent values ofQP. (b) The amplitude and phase distortion due
to very low value ofQP can be seen by comparing the three
traces.

NUMERICAL EXAMPLES

The proposed LSRTM algorithm using the visco-acoustic wave
equation is tested on a modified Marmousi model shown in
Figure 2(a). TheQP distribution, shown in Figure 2(b), is esti-
mated from the true velocity model in Figure 2(a) by assigning
the layers with velocities ranging between 2500-3000m/s to
have very strong attenuation or very lowQP. The migration ve-
locity model, shown in Figure 2(c), is obtained by smoothing
the true velocity model. TheQP model for migration, shown
in Figure 2(d), is estimated from the migration velocity model
using a similar mapping of velocity andQP values as in the
case of the trueQP model.

A 2-8 time-space domain staggered grid finite-difference method
is used for visco-acoustic and acoustic RTM and LSRTM in all
cases. There are 115 shots fired at a source interval of 40m and
there are 230 receivers evenly distributed on the surface atan
interval of 20m. A fixed spread acquisition geometry is chosen
as all the receivers are used for each source. A Ricker wavelet
with a 20Hz peak frequency is used as the source wavelet. The
observed data having strong attenuation is generated usingthe
velocity and theQP models shown in Figures 2(a) and (b), re-
spectively. To see the effect of attenuation, the same data is
migrated first by taking attenuation into account by using the
visco-acoustic wave equation for extrapolation of the source
and receiver wavefields and then migrated again by ignoring
the effect of attenuation and using the first order acoustic wave
equations. Source side illumination is used as the precondi-
tioning factor during LSRTM in both cases.

DOI  http://dx.doi.org/10.1190/segam2013-1131.1© 2013 SEG
SEG Houston 2013 Annual Meeting Page 3722

D
ow

nl
oa

de
d 

09
/1

2/
13

 to
 1

09
.1

71
.1

37
.2

10
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Attenuation LSRTM
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Figure 2: The (a) true velocity model, and (b) the trueQP
model used for generating the observed data. (c) Velocity
model, and (d)QP model used for RTM and LSRTM.

Figures 4(a) and 4(c) compare the RTM images when the data
having strong attenuation is migrated using the acoustic and
the visco-acoustic wave equations, respectively. The LSRTM
images after 20 iterations are compared in Figures 4(b) and
4(d) for both the cases. Zoomed sections of the images in Fig-
ures 4(b) and 4(d) are shown in Figure 5. It is evident that
LSRTM using the acoustic and visco-acoustic wave equations
provide similar results in shallow layers where there is very lit-
tle or no attenuation. However, in deeper layers, where the at-
tenuation effect is very strong, the LSRTM image obtained by
using the visco-acoustic wave equation shows better resolution
and focusing compared to the LSRTM image obtained using
the acoustic wave equation. Also, the migrated amplitudes in
the deeper layers are better balanced in the visco-acousticcase.
Careful analysis of the images in Figures 5(b) and 5(e) also re-
veals that the reflectors in the deeper layers are slightly mispo-
sitioned when compared to the true reflectivity model. How-
ever, for the visco-acoustic LSRTM images in Figures 5(c) and
5(f), all the reflectors are imaged at the right locations. This
can be attributed to the fact that strong attenuation not only af-
fects the amplitudes but also the phase of the events and this
effect becomes more prominent for the waves that travel large
distances and through the high attenuative layers. Migration
without taking attenuation because ofQP into consideration
cannot correct for this distortion. The convergence curvesfor
acoustic and visco-acoustic LSRTM are also compared in Fig-
ure 3. The convergence in this case is better for visco-acoustic
LSRTM since the correct physics is accounted for during the
modeling and the adjoint operations.

CONCLUSIONS

We presented a least-squares reverse time migration method
using the visco-acoustic wave equation to compensate for the
distortion in amplitude and phase of seismic waves propagat-

ing in highly attenuative layers. Numerical results using the
Marmousi model show that conventional LSRTM using the
acoustic wave equation cannot correct for the attenuation loss.
However, when the visco-acoustic wave equation is used dur-
ing LSRTM, the attenuation effect is correctly accounted for.
LSRTM using the visco-acoustic wave equation produces im-
ages with better balanced amplitudes and accurately positioned
reflectors below highly attenuative layers compared to the acous-
tic LSRTM images. Similar to acoustic LSRTM, visco-acoustic
LSRTM is also sensitive to errors in the migration velocity
model. Estimation ofQP from real data is also difficult. The
QP tomography methods suggested by Liao and McMechan
(1996) and Liao and McMechan (1997) is one possible so-
lution to get a startingQP model for visco-acoustic LSRTM.
More accurate estimation ofQP should be emphasized on, es-
pecially during processing, for accurate imaging in gas-sandsto-
nes and shales.
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Figure 3: Convergence curves for acoustic and visco-acoustic
LSRTM.
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Attenuation LSRTM
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Figure 4: Comparison between images of (a) acoustic RTM, (b)acoustic LSRTM, (c) visco-acoustic RTM, and (d) visco-acoustic
LSRTM. All the figures have been plotted in the same scale.

(d) True Reflectivity

3 3.5 4

1.8

2.2

(e) Acoustic LSRTM

3 3.5 4

1.8

2.2

(a) True Reflectivity

Z
 (

km
)

1.2 1.6 2

1.8

2.2

(b) Acoustic LSRTM

Z
 (

km
)

1.2 1.6 2

1.8

2.2

(c) Visco−acoustic LSRTM

X (km)

Z
 (

km
)

1.2 1.6 2

1.8

2.2

(f) Visco−acoustic LSRTM

X (km)
3 3.5 4

1.8

2.2

Figure 5: Zoomed view of the black (left) and blue (right) boxes in Figure 4. (a), (d) True reflectivity models used only for
comparing the LSRTM images, (b), (e) acoustic LSRTM images,and (c), (f) visco-acoustic LSRTM images. All the figures have
been plotted in the same scale.
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