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SUMMARY

We show that superresolution imaging in the far-field region
of the sources and receivers is theoretically possible if migra-
tion of resonant multiples is employed. A resonant multiple is
one that bounces back and forth between two scattering points
or two neighboring reflectors. For a source with frequency f ,
N roundtrips in propagating between two scatterers increases
the effective frequency to 2N × f and decreases the effective
wavelength λ to λ/2N. Thus, interbed multiples can, in prin-
ciple, be used as high-frequency probes to estimate detailed
properties of layers. This is not only applicable to crustal re-
flections, but also to mantle and core reverberations of interest
to earthquake seismologists.

INTRODUCTION

The resolution limit is important for defining the minimum dis-
tance ∆x between two neighboring objects in which they are
distinguishable in the migration image. Superresolution imag-
ing that beats the Abbe limit ∆x ≃ λ/2 is possible if the wave
energy scattered from sub-wavelength objects in the near-field
of the source are refocused by TRMs to the source location
(Lerosey et al., 2007; Fink, 2008). This is similar to optical
imaging devices that include a super lens in the near field of the
source (i.e., within a half-wavelength distance) that converts
the evanescent energy to propagating waves (de Fornel, 2001).
Analogous to the scanning tunneling microscope, Schuster et
al. (2012) proposed a seismic scanning tunneling macroscope
that harnesses the sub-wavelength imaging potential in near-
field seismic energy. In this case, the evanescent energy in
the near-field region is characterized by the strongly varying
inverse distance term 1/r in the Green’s functions. Such vari-
ations in the TRM profile can indicate the presence and the
sub-wavelength size of nearby scatterers.

The question naturally arises: can one achieve superresolution
where ∆x ≪ λ/2 in the far field of both sources and receivers?
As we show in this extended abstract, the answer is yes if res-
onant scattered arrivals are properly migrated. As a simple
example, Figure 1 depicts single- and triple-bounce scattering
between two scatterers for a single source-receiver pair on the
surface. Migration of the scattered event requires that the en-
ergy arriving between τA and τB in the trace should be smeared
between the inner and outer portions of the Cartesian oval1.
The triple-bounce oval is three times skinnier than the single-
bounce one because the rays must traverse the b) oval band
three times (see zoom view of three rays in far right of Fig-
ure 1b) to account for the time difference τB − τA; this com-

1A Cartesian oval is the figure consisting of all those points for which the sum of the
distance to one focus (xg in Figure 1) plus twice (or Nth) the distance to a second focus
(i.e., x1 in Figure 1) is a constant. In terms of traveltimes, the Cartesian oval for a two-point
scatterer in Figure 1b is the locus of points xo that satisfy τsx1 +3τx1xo + τxog = constant.
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Figure 1: Migration responses of a single trace for a) single-
and b) triple-bounce scattering between the scatterers at x0 and
x1. The innermost part of the oval is the locus of points where
xo can be located and still provide the total traveltime equal to
τA; and the outermost one is associated with the traveltime τB.
The triple-bounce oval in b) is skinniest because there are three
ray segments between the innermost and outermost ovals com-
pared to just one in a). The total traveltime τb − τa along the
three segments must be equal to that along the single segment
in a).

pares to the single-bounce case a) where only one traverse is
required. If the time to propagate one wavelength is one period
≈ τB − τA of time, then the Cartesian oval band in b) is about
1/3 of a wavelength thick compared to the one-wavelength
thick band in a). Skinnier migration bands lead to better reso-
lution in the migration image.

For a source with frequency f , N roundtrips in propagating
between two scatterers decreases the effective wavelength to
λ/2N. This decreased wavelength can be used to achieve su-
perresolution imaging that is an improvement over the λ/2
diffraction limit. However, N cannot be too large because each
roundtrip returns a weaker signal due to attenuation, geomet-
rical spreading and transmission loss effects.

This abstract is organized as follows. The first part is the intro-
duction just presented. This is followed by the theory section
that presents the formalism for superresolution imaging with
resonant multiples using the simple example of two scatter-
ers. A resonant multiple is defined as the reverberation be-
tween two scatterers (or reflectors) such that the inter-scatterer
rays for the multiples coincide with one another. As an ex-
ample, Figure 2c depicts the triplet of parallel rays associated
with resonant scattering between two scatterers. This differs
from the usual multiple reflections where the raypaths for a
fixed source-receiver pair do not coincide for different orders
of multiples. The theoretical predictions are supported by a
numerical example, and the final section presents the conclu-
sions.
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Figure 2: Ray diagrams for a) single scattering, b) primary multiple scattering and c) first-order N = 1 resonant scattering between
the two scatterers (black filled circles). The geophone and source wavenumber vectors are denoted as kg and ks, respectively,
and each scatterer is a sub-wavelength sized reflectivity distribution centered about either xo or x1. The reflectivity model vector
estimated by migration is given by ks +kg; for a wide range of geophone positions the reconstructed model spectra are denoted by
the thick quarter circles below each ray diagram in a)-c). The dashed semi-circles denote the model spectra associated with a wide
range of source positions in d) or x1 scatterer positions in e) and f).

THEORY

With a simple two-scatterer example where the point scatterers
can be located more than a wavelength apart from one another,
we show that superresolution imaging in the far-field region of
sources and receivers is possible if resonant multiples in the
data are properly migrated.

Assume the two-scatterer model in Figures 2b-c where the
Nth-order resonant scattering data are approximated by

g,s ∈ B

d︷ ︸︸ ︷
d(g|s)N =

L︷ ︸︸ ︷
r2N+2

o G(x1|s)
∫

Ωxo

dyG(g|y)G(y|x1)
2N+1

m︷ ︸︸ ︷
δm(y), (1)

where a localized2 reflectivity distribution δm(y) is centered at
y = xo about the small area Ωxo , and the two neighboring scat-
terers each have a scattering coefficient denoted by ro. The
above equation is more compactly represented by d = Lm,
where L is the forward modeling operator, d represents the
data vector, and m denotes the perturbed reflectivity distribu-
tion. The line of coincident sources and receivers is directly
above the two scatterers, so the integration is only over the ver-
tical cross-section that contains both the scatterers and record-
ing line. The point scatterer at x1 is assumed to be known, and

2For convenience, we assume a sub-wavelength-sized reflectivity distribution. We will
also denote this localized scatterer as a point scatterer.

the goal is to use migration of the inter-scatterer multiples to
locate the scatterer’s location and shape at xo.

The asymptotic Green’s function is given by

G(x|x′) = Axx′e
iωτxx′ , (2)

for a harmonic point source at x′, a receiver at x, Axx′ accounts
for geometrical spreading, and ω is the angular frequency.
The two scatterers are assumed to be in the far-field region of
the recording line and the background medium is sufficiently
smooth relative to the wavelength for the validity of the asymp-
totic Green’s function (Bleistein, 1984). Figure 2c depicts the
rays corresponding to the resonant scattering for N = 1 and
the raypath trajectory s → x1 → xo → x1 → xo → g, where we
conveniently ignore other triple-bounce resonance such as the
trajectory s → xo → x1 → xo → x1 → g.

The Nth-order scattered data can be migrated with the Nth-
order preconditioned migration kernel G (g,x,s)N :

g,s ∈ B;x ∈ Ω

G (g,x,s)∗N = αG(g|x)∗[G(x|x1)
2N+1]∗G(x1|s)∗, (3)

where x is the trial image point for the scatterer at xo and
α = r−2(N+1)

o [AgxA2N+1
xx1

Ax1s]
−2 is a convenient preconditioner

to mitigate the effects of reflectance scaling and geometrical
spreading in the data and migration kernel. We shall denote
G (g,x,s)∗N as a natural migration kernel because it naturally
takes into account the Nth-order multiple scattering for two
scatterers, one at x1 and the other at the trial image point x.
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Multiplying the migration kernel in equation 3 by the data in
equation 1 and integrating over sources and receivers g,s ∈ B
gives the migration image δm(x)mig at the trial image point
x ∈ Ω:

δm(x)mig =

LT︷ ︸︸ ︷∫∫
B×B

dxg dxsG (g,x,s)∗N

d︷ ︸︸ ︷
d(g|s)N

=

LT︷ ︸︸ ︷
γ
∫

B
dxg

G(g|x)∗[G(x|x1)
2N+1]∗

[AgxA2N+1
xx1 ]2

L︷ ︸︸ ︷∫
Ω

dyG(g|y)G(y|x1)
2N+1

m︷ ︸︸ ︷
δm(y), (4)

where

γ def
=

∫
B

dxs = |B|. (5)

Inserting the asymptotic Green’s function in equation 2 into
equation 4, restricting x to be near the scatterer at xo and |xo −
g| ≫ λ gives

δm(x)mig ≈γ
∫∫

B×Ωxo

dxg dyei{

kx1xo︷ ︸︸ ︷
ω(2N+1)∇τxox1+

kxog︷ ︸︸ ︷
ω∇τgxo}·[y−x]

× δm(y) (6)

=γ
∫∫

B×Bx′1

dxg dx′1δ (x′1 − x1)e
−i

k︷ ︸︸ ︷
{kx′1xo

+kgxo} ·x

× δM(

k︷ ︸︸ ︷
kx′1xo

+kgxo), (7)

where δM(kx,kz) is the spectrum of the reflectivity model
δm(y). This equation says that the migration image δm(x)mig

is a bandlimited approximation to the actual reflectivity image
δm(x). The model wavenumbers k = kx′1xo

+ kgxo are ban-
dlimited partly because the geophone aperture on the surface
is finite and there is only one pair of scatterers.

However, equation 6 implies that resonance effectively increases
effectively the source frequency from ω to ωe f f = (2N+1)ω ,
and so increases the model wavenumber from ω∇τxox1 to ω(2N+
1)∇τxox1 . For the Figure 2c example, the horizontal resolu-
tion limit for kx1xo becomes ∆x = πc/ωe f f = 0.5λ/3 so that
far-field superresolution imaging is theoretically possible3 for
N ≥ 1.

Practical Imaging of Resonance
In practice primaries, not multiples, are migrated to the reflec-
tors of origin so that far-field superresolution is not feasible
with standard migration. However, non-linear least squares re-
verse time migration (RTM) or full wave inversion (FWI) up-
dates the background reflectivity after each iteration. Doing
so means that the background wavefields can contain both pri-
maries and multiples, which can build up the natural migration

3N cannot be too large because each roundtrip returns a weaker signal due to attenuation,
geometrical spreading and transmission loss effects.
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Figure 3: Migration images subject to 6 reference scatterers
indicated by ◦, when (a) one bounce takes place between the
trial image point and any one of the scatterers, or (b) three
bounces take place between the trial image point and each of
the 6 scatterers. The bouncing condition is applied consistently
in both forward modeling and migration.

operator for imaging both primaries and multiples to achieve
superresolution. Another possibility is to use the Marchenko
equations (Wapenaar et al., 2013) to iteratively reconstruct nat-
ural Green’s functions at depth from surface measurements,
which should include strong resonance energy near layers with
strong impedance contrasts. These Green’s functions can be
used to form migration operators that contain the resonant mul-
tiples.

Other iterative algorithms have been developed (Soni and Ver-
schuur, 2013) that theoretically predict and invert all internal
multiples in the data under ideal circumstances. This work im-
proves upon earlier developments for predicting internal mul-
tiples from surface seismic data (Jakubowicz, 1998a-b; ten
Kroode, 2002; Ikelle, 2006).

NUMERICAL RESULTS

Imaging results for two numerical experiments will be pre-
sented. The first one is for shot gathers simulated in the Fig-
ure 3 model of an unknown scatterer surrounded by six scat-
terers with known positions. The resonance is for 3-bounces
between the central scatterer and any one of its six neighbors,
with rays similar to those in Figure 1b. Figure 3a shows the
resulting migration image when only the one bounce data (see
Figure 1a) are migrated. Here, a horizontal resolution limit no
better than Abbe resolution is obtained. In contrast the three-
bounce resonance data are migrated to give the Figure 3b im-
age, where the resolution limit decreases by the expected factor
of three. Compared to the wavelength indicated by the two-
sided arrow, superresolution imaging is achieved.

The other model is the complicated two-box model in Fig-
ure 4a. The associated data will be generated by a finite-
difference method and the data inverted by full waveform in-
version. Frequencies below 5 Hz are absent from the data as
shown in Figure 4b, and the maximum source-receiver offset
of 3 km is used for the synthetic data. The shallow rectangular
anomalies are larger in size than the minimum effective wave-
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Figure 4: a) Blocky FWI test model, b) Spectrum of the source wavelet used in modeling and inversion, c) Inversion using standard
FWI, and d) FWI result with using LSRTM as an internal loop. The initial velocity model for FWI is a homogeneous medium with
a constant velocity of 2000 m/s. Images from AlTheyab and Xin (2013).

length associated with the data. The data on the top surface
are inverted by a non-linear full waveform inversion (FWI)
method that uses least squares migration (LSM) as an inner
loop to the full waveform inversion loop (Altheyab and Wang,
2013). The LSM is used to create sharp interfaces along the
boundaries so as to develop reflection wavepaths within and
outside the boxes. Without the sharp boundaries, standard
FWI fails to reconstruct the shallow anomalies as shown in
Figure 4c.

As shown in Figure 4d, the Hybrid FWI make use of reflec-
tions, diffractions, multiples and prism waves to construct the
anomalies and delineate the boundaries with high resolution.
The mispositioning of the deeper reflector due to the shal-
low velocity error is reduced and the reconstructed reflector
is nearly flat. In contrast, the reflectors in the standard FWI
tomogram in Figure 4c are more distorted because the deeper
reflections are not fully utilized for the same number of itera-
tions.

If the highest usable frequency is 40 Hz, then the shortest
wavelength is just 50 meters. This is deemed to be insuffi-
cient for reconstructing the sharp corners of the box in Fig-
ure 4d. However, resonant scattering within and between the
boxes, as well as reverberations between the boxes and the
deep horizontal layer, are likely contributors to the extremely
sharp resolution of the box’s corners. It is also possible that
scattering around the sharp corners of the box also utilize the
high wavenumbers in the evanescent portion of the diffraction
wavefields.

CONCLUSIONS

We theoretically and numerically show that superresolution
imaging in the far field region of the sources and receivers is

theoretically possible if resonant multiples are migrated. For a
source with frequency f , N roundtrips in propagating between
two scatterers increases the effective frequency to 2N × f and
decreases the effective wavelength to λ/2N.

The most significant challenge in obtaining superresolution is
to estimate the background reflectivity accurately enough to
achieve superresolution imaging. The numerical results shown
in this extended abstract suggest that this might be possible
with either non-linear least squares migration or full waveform
inversion.

One of the implications of this study is that interbed multiples
can, in principle, be used as high-frequency probes to estimate
detailed properties of layers. This is not only applicable to
crustal reflections or multiple reflections from the top or bot-
tom of salt bodies, but also to mantle and core reverberations
studied by earthquake seismologists.
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