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SUMMARY

Structures will be mispositioned across prestack migration
gathers in the presence of inaccuracies in the velocity model.
Stacking these misaligned gathers runs the risk of destroying
important structures in the stacked migration image. To mit-
igate this problem, we propose a trim statics inspired by the
non-local means algorithm originally developed for image de-
noising. This method differs from the conventional one in two
fundamental respects. First, the trim statics are computed by
comparing image patches instead of individual image traces.
Second, no global pilot trace is needed because only two mi-
gration images at a time participate in trim statics and are
stacked into one image. A multitude of migration images are
stacked recursively in this two-to-one fashion. Tests with a
Gulf of Mexico dataset show a noticeable improvement in the
feature coherency of the stacked migration image.

INTRODUCTION

Stacking a set of prestack migration images is typically used to
reduce the migration artifacts and to boost the signal-to-noise
ratio (SNR) of the stacked image (Yilmaz, 2001). When the
migration velocity is inaccurate, however, the reflectors will
be imaged at wrong depths that vary with each prestack mi-
gration image. For example, when the migration velocity is
too slow, the reflectors will be imaged at shallower depths for
a large source-to-receiver offset than for a small offset. Sim-
ply stacking those varyingly mispositioned reflector can smear
out or disrupt important image features such as reflectors and
faults.

This problem may be tackled by trim statics, a procedure to
correct the residual statics on input gathers (Marsden, 1993;
Cox, 1999). Due to a variety of factors such as anisotropy and
near surface inhomogeneity, time corrections need to be ap-
plied to traces to enhance the quality of the stack response. A
time correction is found by locating the maximal cross-correlation
between an individual trace and a pilot trace, which is formed
by stacking the input gather. This procedure can be gener-
alized to the image domain, where the ‘time’ is replaced by
‘depth’, and ‘within a gather’ is replaced by ‘across the com-
mon image gathers (CIGs)’. Such cross-correlation methods
have been employed, for example, in Hall (2006), Perez and
Marfurt (2008), and Hale (2009). One potential limitation, as
stressed by Ursenbach and Bancroft (2001), is that the cross-
correlation procedure in trim statics can be misled by align-
ing the noise instead of the signal. A second limitation is that
the pilot traces obtained by stacking the input gather may be
poorer in quality than individual traces because important fea-
tures may have been lost in the pilot traces.

To address the first limitation, we propose to enhance the ro-

bustness of trim statics by adopting the non-local means (NLM)
filter (Buades et al., 2005). This filter has seen usage in the
geophysical community to denoise seismic data (Bonar and
Sacchi, 2012). In image denoising, the NLM filter produces
a filtered image pixel of interest by the weighted average of
pixels in a search neighborhood, where the weighting factor
connecting the two pixels in question (i.e., the pixel of interest
and a pixel in the neighborhood) is determined by the ‘similar-
ity’ between them. This ‘similarity’ is computed based on the
L2 distance between the two image patches (deemed as vec-
tors) surrounding the two pixels in question, respectively. The
smaller this distance is, the more similar the two pixels are
regarded, and therefore the larger is the weighting factor con-
necting them. In addition to the inherent noise attenuating ca-
pability of the NLM filter, the patch-based similarity measure
is more robust than the alternative based on individual image
traces.

To address the second limitation, we propose a recursive stack-
ing strategy that obviates the need for a global pilot trace. We
first investigate a binary stacking, namely, how a pair of mi-
gration images can be optimally stacked. After this is accom-
plished, a number of migration images can be stacked recur-
sively. An example is illustrated in Figure 1. Four migration
images are stacked into two (B1 and B2), which in turn are
stacked into one image A1.
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Figure 1: The workflow of stacking four migration images C1,
C2, C3, and C4. The arrows are explained in Figure 3(c).

The rest of this extended abstract is organized as follows. The
theory section presents the formalism of NLM and binary stack-
ing. This is followed by the results section that demonstrates
a noticeable improvement in feature coherency and the sharp-
ness of the stacked migration image. The final section presents
the conclusions.

THEORY

The NLM Filter

Given the prestack migration image ma, at a pixel i, the NLM
filtered value ma

i is a weighted average

ma
i =

∑
j

Wi jma
j , (1)
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Figure 2: NLM filtering weights favor repetitive structures. (a)
A noisy image m with a horizontal line. Two pixels of interest
are marked, in all panels, by ‘+’ and ‘x’, respectively. Green
squares circumscribe the image patches around ‘+’ and ‘x’.
Yellow squares circumscribe the search neighborhoods around
red ‘+’ and blue ‘x’. (b) the filtered image m by NLM. (c) the
filtering weights for the two pixels. Large weights are plotted
in white; zero weights are in black.
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Figure 3: Stacking strategies. The color scheme for image
patches in (a) and (b): black, white, and red represent nega-
tive, zero, and positive amplitudes, respectively. (a) Simple
stacking. Out-of-phase image patches will be washed out. (b)
Stacking after first shifting one image patches by an amount
ζ⃗ to make the two patches aligned. (c) Symbolization of the
procedure in (b). The two solid arrows represent stacking,
whereas the dashed arrows represent reconstruction. From the
stacked patch A1 and the shift ζ⃗ that B1 remembers, the patch
B1 can be reconstructed as {patch A1 shifted by −⃗ζ}, whereas
B2 is simply reconstructed as A1, in this example.

where Wi j is the NLM filtering weight, and the summing in-
dex j runs in a local search neighborhood around i, of size
Sx × Sz. Examples of search neighborhoods are indicated by
yellow squares in Figures 2(a). Before describing the expres-
sion of Wi j , we first illustrate the behavior of NLM with an
example in Figure 2. First, note the weight pattern, which per-
tains to the red ‘+’ pixel and is circumscribed by the upper
yellow square in Figure 2(c). The inner product between this
weight pattern and the image region delimited by the upper
yellow square in Figure 2(a) produces the filtered red ‘+’ pixel
in Figure 2(b). Note also that in Figure 2(c) the two weight
patterns (circumscribed in the two yellow squares) are differ-
ent. This contrasts with linear space-invariant filters expressed
as ma

i =
∑

j W (i− j)ma
j , where the weight pattern W (i− j) is

space-invariant.

Next, the NLM weights (Buades et al., 2005) are given as

Wi j =
1∑
k W̃ik

W̃i j, (2)

where W̃i j =exp(−||pa(i)−pa( j)||2

2σ2 ). (3)

Here, pa(i) represents amplitudes of the image patch of size
P×P centered at the ith pixel in ma. Patch examples are indi-
cated by green squares in Figure 2(a). Note in passing that be-
tween patches the L2 distance in equation 3 can be weighted,

for example as ||e(x,z)||2∆
def
=

∫∫
∆(x)∆(z)e2(x,z)dxdz, where

∆(·) denotes the triangle weighting function and e(x,z) denotes
any function of interest. This weighted patch is used in our nu-
merical simulation.

In image denoising, the patch has to be “large enough to be
robust to noise” (Buades et al., 2005) but not so large and
content-rich that it would be hard pressed to find a replica
within the search neighborhood. The search neighborhood
covers an area where such patches typically recur. In terms
of pixels, P×P ≃ 7×7 and Sx ×Sz ≃ 21×21 are among the
popular choices in image denoising. In our application how-
ever, P, Sx, and Sz are chosen differently, as will be described
in the Results section.

The upper yellow square in Figure 2(c) demonstrates that the
NLM weights concentrate on coherent structures. This is be-
cause, for example, if one moves the upper green square in
Figures 2(a) along the horizontal white line one would see sim-
ilar patches recurring, and between two similar patches is a
stronger weight effected, according to equation 3.

To allow stacking two images to one, the NLM formalism is
extended to deal with two images ma and mb, and the goal is
to obtain a filtered version m̃a by weighted average of pixels
in mb, expressed as1

m̃a
i =

∑
j

Wi jmb
j . (4)

In this case, equation 2 remains intact as the normalization, but
equation 3 is replaced by

W̃i j = exp(−||pa(i)−pb( j)||2

2σ2 ), (5)

where pb( j) represents amplitudes of the image patch centered
at the jth pixel in mb.

The m̃a
i in equation 4 can still be deemed as a filtered version

of ma
i even though it relies on the weighted average of a differ-

ent image mb, because the weights Wi j are tuned in to patches
in mb that are similar to pa(i). To differentiate the standard
NLM filtering from the extended formalism, we call the for-
mer ‘endo-filtering’, and the latter ‘exo-filtering’. After both
filtered versions are computed, we obtain the fully stacked ver-
sion

m̂a =
1
2
(ma + m̃a). (6)

The selectivity of Wi j , in the case of exo-filtering, with respect
to ||pa(i)−pb( j)|| is controlled by the parameter σ in equa-
tion 5. Assuming there is no tie in the minimal L2 distance

1We reuse the same symbols for the weights for notational economy.
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||pa(i)−pb( j)||, we can show that

lim
σ→0

Wi j =

{
1 if j = argmin j ||pa(i)−pb( j)||,
0 otherwise,

(7)

which reduces equation 4 to

lim
σ→0

m̃a
i =mb

j , where (8)

j =argmin
j

||pa(i)−pb( j)||. (9)

Therefore in this limit, the exo-filtering of NLM is equiva-
lent to cross-correlating an image patch of interest in ma with
patches in mb and selecting the best matching patch in mb.

The Binary Stacking
Note that in equation 4 (and consequently in equation 6), im-
ages ma and mb are on unequal footing because pa(i) acts as
the reference that pb( j) tries to match. (Note in equation 4, the
index i is fixed while j is a summation index.) This is illus-
trated in Figure 3(b), where the patch on the left moves by ζ⃗
to best match the patch on the right. This movement is remem-
bered by the patch on the left. This bookkeeping is useful in
the following scenario.

Let ma and mb be two CIGs and let a diffractor of interest be
located at ia and ib in ma and mb, respectively. Suppose this
diffractor is physically located at io in the subsurface. Ow-
ing to inaccuracy in the velocity model and the differences in
the CIG setups, in general we have io ̸= ia ̸= ib. Take a patch
pa(ia), if successful we can find the best matching patch pb(ib)
according to equation 9. Stacking the central pixels in pa(ia)
and pb(ib), as prescribed in equation 6, produces the correct
value for the diffractor at ia in ma. This procedure facilitates
the LSM of ma when LSM is in use, because this stacking at-
tenuates migration artifacts in ma as intended. Note that the
diffractor is imaged and stacked at ia, which is not at the ac-
tual location io. This is not a problem, however, because LSM
does not attempt to invert the velocity model. As a wrong ve-
locity model is being used, ia, rather than io, is the apparently
consistent location for this diffractor. This analysis brings out
a problem for the LSM of mb, because the apparently consis-
tent location for this diffractor in mb is at ib, which is at odds
with where the stacked value is placed, i.e., at ia in ma. To
circumvent this problem, it must be remembered the displace-
ment from ia to j = ib. With this piece of information, the
stacked value can be correctly attributed to the pixel in mb at
ia +(ib − ia), where the parenthesised quantity is the remem-
bered displacement. This is outlined in Figure 3(c).

To make images ma and mb to be on equal footing we try out
both points of view as follows.

1. Take ma as the reference to obtain the stacked image
m̂a.

2. Take mb as the reference to obtain the stacked image
m̂b.

3. Probe the sharpness of the stacked migration image by
an ad hoc function Js(·). If Js(m̂a) > Js(m̂b), the first
approach is adopted; otherwise the second.

This ad hoc function is expressed as

Js(m) = P75(|
∂ 2

∂ z2 m|), (10)

where P75(·) denotes the 75th percentile. Evaluating this func-
tion entails the following steps.

1. Take ∂ 2

∂ z2 m, where m is an image of size M ×N. Let
the result be c, of size M×N as well.

2. Let b = |c|, where | · | denotes element-wise absolute
value. Cast b as an MN ×1 array.

3. Let d be the sorted array in ascending order of b.

4. We obtain Js(m) = dl , where l = ⌈0.75MN⌉. This is
known as the 75 percentile of b.

Note that the 100th percentile is equivalent to the maximum,
which is not robust to outliers, whereas the 50th percentile is
equivalent to the median, which might not be sensitive enough
to pick up subtle increases in |∂ 2/∂ z2m̂|. To strike a balance,
we choose the 75th percentile.

RESULTS

We test the proposed NLM trim statics on a Gulf of Mexico
(GOM) dataset. The size of the velocity model is 3.63 km
in depth × 15.7 km in width, with 1260 receivers on the sur-
face spacing at 12.5 m. The source wavelet is extracted from
the near offset water-bottom reflection. Thirty-one plane-wave
gathers are generated at the tenth iteration of a plane-wave
Kirchhoff LSM. The plane-wave ray parameters vary evenly
from -0.33 ms/m to 0.33 ms/m.

The parameters regarding the NLM algorithm are chosen as
follows. The patch size is 17× 17, which is about four wave-
lengths across, as a wavelength extends about 3 pixels in the
shallow part of the model and about 5 pixels in the deeper part.
As for the search neighborhood, the width is smaller than the
height, as the depth of the features are more likely to be mis-
positioned. The sizes also depend on the stacking stride. Refer
to Figure 3, the stride on level B, i.e., the difference in CIG pa-
rameters (e.g., source-to-receiver offsets) between neighbor-
ing nodes such as B1 and B2, is larger than that on level C.
Larger stride implies larger relative mispositioning, and there-
fore larger size of the search neighborhood is appropriate. As-
cending the stacking tree, the width of the search window in-
creases from 1 to 7, while the height increases from 3 to 9.
Finally, the σ in equation 3 is chosen to be 5 percent of the
standard deviation of the prestack image pixels.

Stacking straightforwardly the 31 prestack migration images
leads to a stacked image shown in the upper panel of Fig-
ure 4, whereas our proposed stacking after NLM trim statics
leads to a stacked image shown in the lower panel of Figure 4.
Comparing the two, we see evidently that in the former im-
age quite a few reflectors are smeared and disrupted, and some
faults are smeared, whereas in the latter image the continuity
of reflectors and the distinctiveness of faults are noticeably im-
proved. The downside of the former approach is illustrated in
Figure 3(a).
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Figure 4: Migration images stacked by two methods: (upper panel) simple stacking, and (lower panel) NLM trim statics, based on
31 plane-wave gathers of a GOM dataset.

CONCLUSIONS

We show that the mispositioning of reflectors in prestack mi-
gration images due to an inaccurate velocity model can be cor-
rected by a trim statics based on image patches utilized by the
non-local means (NLM) filter and a recursive binary stacking
scheme that obviates the need for a pilot trace.

Tests with a GOM dataset demonstrate a noticeable improve-
ment in the continuity of reflector and the distinctiveness of
faults.

The limitation, however, is that trim statics will not correct
mispositioning of reflectors migrated with strong velocity er-

rors. The reflectors can be clearly revealed by migration+trim
statics, but their locations and geometry might still be wrong.
In this case, common receiver gathers should be migrated, trim
statics with different parameters should be applied, and the fi-
nal image should be similar to the final one using common
shot gathers. If not, then this indicates erroneous positions of
reflectors.
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