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SUMMARY

Inversion methods that do not model all of the physical events
in the observed data lead to inconsistent sets of equations. This
often results in serious artifacts in the inverted model. To mit-
igate this problem, I propose a misfit function that partly ig-
nores the unexplainable arrivals in the data due to modeling
limitation. This is tested on least squares migration of syn-
thetic P–P arrivals, albeit P–S reflections exist in the observed
data in addition, to demonstrate that in this case the new misfit
is more robust than the standard L2 misfit.

INTRODUCTION

The choice of misfit functionals is crucial for a successful ap-
plication of full waveform inversion (FWI) (Lailly, 1984; Taran-
tola, 1984, 2005). Studies on misfit functionals may be di-
vided into two categories. The first category, replaces the stan-
dard misfit functional with one associated with ‘skeletonized’
data (Luo and Schuster, 1991) that depend quasi-linearly on
the velocity models. In the second category, the misfit func-
tional measuring the L2 norm of the data error, which is the L2
distance between the predicted data and the observed data, is
replaced with robust alternatives. Crase et al. (1990) investi-
gated a series of robust misfit functions, such as the L1 criterion
and the Cauchy criterion. This work was extended by Brossier
et al. (2010) for elastic frequency-domain FWI. With a robust
misfit function, the inversion process is less sensitive to seis-
mic noise.

This abstract belongs to the second category, except that it ad-
dresses the problem of tolerating unexplainable arrivals in the
data.. As is often the case, with limitations in the computa-
tional resources and perhaps also in the theory, the numerical
simulation does not take into account all of the physics con-
tributing to the observed data. Consequently, some parts of
the data may appear extraneous, or inconsistent, with respect
to the numerical simulations. For example, P–S reflections are
in the observed data but only P–P arrivals are modeled in the
numerical simulation. In trying to minimize the L2 distance
between the observed and the predicted data, the numerical in-
version will generate an artificial model as a compromise to fit
both the correctly modeled data (P–P in this example) and the
extraneous data (P–S in this example). The final model will be
corrupted with serious artifacts.

One way to mitigate this problem is to relax the L2 criterion,
in that if the numerical simulation has a difficulty in fitting
unexplainable parts of the observed data, then the unexplain-
able arrivals should play a weaker role than do the explainable
parts. The criterion measuring the fitting difficulty is when
the predicted arrival is nearly zero despite a non-zero observed
event at this arrival time. This weakening of the role can be

accomplished by reducing the misfit gradient with respect to
the prediction associated with the unexplainable observation.
With a weaker gradient, these predicted data components are
less compelled to update. This property of the misfit function
is dubbed ‘tolerating inconsisent data’ (TID).

The TID misfit is tested with least-squares migration1 (LSM)
(Nemeth et al., 1999; Duquet et al., 2000) on a synthetic data
set consisting of both P–P and P–S waves, while only P–P
modeling is enabled in the LSM operators. This test suggests
the robustness of the TID misfit function.

THEORY

Expressions of TID misfit functions will be given. But firstly,
the blue curve in Figure 1 (upper right panel) serves to con-
vey the intuition. The function J(dpred) has a global minimum
at d pred = dobs and that the gradient of JT ID(dpred) is weaker
when dpred lies between 0 and dpred . Here, dpred represents a
component of the predicted data, and dobs represents the corre-
sponding component of the observed data. Since it is assumed
to be a known parameter, dobs does not explicitly appear as an
argument of J(·).

There are three points worth noting before we begin the deriva-
tion. First, we shall restrict our attention to the misfit function
as a function of dpred . Later, to derive the Fréchet derivative
with respect to the trial model m, the dependence of dpred on
m is employed in the chain rule. If this dependence is given by

dpred = Lm, (1)

an exercise in calculus leads to the Fréchet derivative

∇mJ(dpred) = LT ∇dpred J(dpred). (2)

Because dobs must be a minimum of the misfit function J(dpred),
we have the gradient equal to zero at the global minimum:

∇dpred J(dpred)|dpred=dobs = 0. (3)

Suppose the gradient can be expressed as

∇dpred J(dpred) = Q(dpred −dobs), (4)

where Q is a diagonal matrix (to be defined later in equa-
tion 11) and Q depends on dpred . Inserting this equation into
equation 2 yields

∇mJ(dpred) = LT Q(dpred −dobs). (5)

This form allows the implementation of the optimization method
known as Iteratively Reweighted Least Squares (IRLS) (Scales
et al., 1988). Equation 5 can be implemented with three steps:

1As the misfit function is TID rather than L2 , ‘least-squares’ in this context is an oxymoron.
Nevertheless this terminology is adopted here for its popularity.
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1) compute the data error Lm−dobs, 2) weight the data error
by Q, and finally 3) migration. In the TID approach, Q serves
to reduce the gradient when desired, by weighting down com-
ponents of the Lm− dobs. This contrasts with the L2 misfit,
where Q remains as the identity matrix.

Second, the misfit function of a vector argument is defined
through the function of each component of the vector. Recall
the conventional squared misfit function of a vector argument,
given as

χ(dpred) = ||dpred −dobs||2

=
∑

i

χ(dpred
i ) =

∑
i

(dpred
i −dobs

i )2. (6)

Likewise, the TID misfit function can be expressed as

J(dpred) =
∑

i

J(dpred
i ). (7)

For notational economy, we reuse the name of the function J.

Third, the function J(Lm) is convex in m if J(d) is convex in
d. This can be seen by computing the Hessian matrix of J(Lm)
with respect to m, given as

∇m∇mJ(Lm) =LT ∇d∇dJ(d)L, (8)

=LT HL, (9)

where H is a diagonal matrix with Hii = ∂ 2J(di)/∂d2
i . If J(di)

is convex, then H is positive semi-definite, and it follows from
equation 9 that ∇m∇mJ(Lm) is positive semi-definite. There-
fore J(Lm) is convex in m.

Next, we proceed to construct J(dpred
i ) by a convex piece-wise

polynomial continuous in its derivative. Suppose dobs
i > 0, we

construct J(d pred
i ) as

J(x) =


(x−h)2/2 if x > (1−α)h,
−αhx+(α − α2

2 )h2 if 0 < x ≤ (1−α)h,
(x−αh)2/2+(α −α2)h2 if x ≤ 0.

(10)
Here, x = dpred

i , h = dobs
i , and 0 ≤ α ≤ 1 is a parameter. The

J(x) for x ∈ [0,(1−α)h] is replaced by an affine linear func-
tion. When α → 1, this replacement is minimal, whereas if
α → 0, this replacement effect is the maximal. For dobs

i ≤ 0,
the J(dpred

i ) can be likewise constructed.

By defining a q as ∂J(x)/∂x = q(x−h), we find

q =


1 if x > (1−α)h,
αh

h−x if 0 < x ≤ (1−α)h,
x−αh
x−h if x ≤ 0.

(11)

This q is the ith diagonal of the Q introduced earlier. We see
that if 0 < x ≤ (1−α)h, then q = αh

h−x < αh
h−(1−α)h = 1, sug-

gesting a reduction of the gradient magnitude. This regime is
where the TID condition is met, because while the predicted
data component x is closer to 0, compared to the observed data
component h.

A TOY EXAMPLE OF DATA INCONSISTENCY

How the TID misfit copes with inconsistent data is now illus-
trated with a toy example, and compared to the behaviors of
alternative misfit functions.

Take a model m and a forward modeling operator L as

m =

[
2
1

]
, L =


0.9 0.5

−0.9 0.5
0.5 0.9
0.7 −1.5

 . (12)

Then the consistent data would be

d = Lm =


2.3

−1.3
1.9

−0.1

 . (13)

Make the fourth data component inconsistent by setting it to 1,
and we have the observed data:

dobs =


2.3

−1.3
1.9
1

 . (14)

Three types of misfit functions L2,L1 and TID are examined,
by plotting the misfit values in a 2D space of trial model vec-
tors, as shown in Figures 1. (The 1D functions are plotted in
the upper right panel.) Here, the minimization of the TID mis-
fit function leads to the proximity of the actual model. The
reconstructed models in the cases of both L2 and L1 misfit
functions, however, are heavily affected by the equation in the
last row of Lm = dobs, because this row of L has the largest
norm. In contrast, in the TID approach, the last data com-
ponent, which is incongruous with the other three, is partly
ignored.

A SYNTHETIC EXAMPLE WITH LSM

To demonstrate the effectiveness of the proposed TID mis-
fit, I test it on simplistic synthetic data, where the observed
data contain both P and S waves while the forward modeling
and migration operators of LSM only model P–P reflections.
The model size is 1.6 km in depth × 3.2 km in width, with
16 sources and 160 receivers evenly spaced, respectively, on
the surface. The background homogeneous velocity model has
vp = 2.28 km/s and vs = 1.31 km/s, and the source time history
is a Ricker wavelet with a peak frequency at f0 = 13 Hz. The
P–P reflectivity model mP is shown in Figure 2(a). In addi-
tion, P-to-S conversion occurs at the reflectors. For simplicity,
the P–S reflection coefficients are assumed to be half of the
P–P reflectivity coefficients. Consequently, the observed data
dobs, generated by Kirchhoff modeling, contains both P and S
waves, written as dobs

P and dobs
S , respectively.

The LSM images, obtained after 25 iterations, computed from
the conventional least-squares misfit and the proposed TID
misfit are shown in Figures 2(b) and (c), respectively. The
latter image exhibits improvements over the former.
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Figure 1: Shown over trial models of 2D m = [m1,m2]
T are the misfit functions: (upper left) L2, (lower left) L1, and (upper right)

TID. Each line in white or yellow represents an equation [Li1,Li2]m = di, for i = 1, . . . ,4. The yellow line corresponds to the last
equation, i.e., i = 4. Green ‘+’ denotes the actual model responsible for generating the data (except for the inconsistent 4th data
component). Individual red ‘◦’ denotes the best inverted model to minimize each case of misfit function. (Upper right) Plot the
TID, L2, and L1 misfit functions over a 1D predicted data component d pred , when the observed counterpart is at dobs = 1.
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Figure 2: P–P reflectivity models, of (a) the actual model, and
(b & c) inverted by LSM, using the (b) L2 and (c) TID misfit
functions. Here, the input data consists of both PP and PS
reflections, but the modeling can only model PP arrivals.

The standard LSM method with L2 misfit strives to fit dobs
S ,

as well as to dobs
P , by forward modeling with a P–P reflectiv-

ity model. In the standard approach, the P–P modeler has to
fit the P–S arrivals, but in the proposed approach this fitting
will be discouraged should the TID conditions be met. Fig-
ure 3(d) shows the predicted P–S arrivals using the standard
LSM method. That is, the best fit model with a P–P mod-
eler tends to introduce noisy artifacts (see Figure 2(b)) into the
inverted reflectivity model in order to explain, as best as this
method can, the P–S arrivals. In contrast, Figure 3(f) shows
that the TID prediction is less concerned with fitting the P–S
arrivals. Consequently, the inverted reflectivity model, shown
in Figure 2(c), is less susceptible to artifacts.

DISCUSSIONS AND CONCLUSIONSEQ:JBX

This abstract introduces a misfit function that can selectively
diminish some of the unexplainable parts of the data. Parts
of the data are considered unexplainable or inconsistent if the
prediction for them is nearly 0 even though the correspond-
ing observed parts are non-zero. This happens when inver-
sion methods do not model all of the physical events in the
observed data. The selective diminishing acts on the gradient
with respect to the prediction, because reducing such a gradi-
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Figure 3: An example of observed CSG consisting of (a) P and
(b) P–S reflections. The latter is not modeled in (c–f), implying
data inconsistency. (c & e) Predicted CSG of P reflections from
inverted models, (d & f) prediction residual of P reflections,
using (c & d) L2 and (e & f) TID misfits. All panels use the
same dynamic range of plotting.

ent is equivalent to partly excluding the corresponding terms of
the prediction error from the misfit function. This prescribed
action on the gradient is accomplished by the TID misfit func-
tion. An example of data inconsistency is tested to verify that
the proposed misfit function is advantageous compared to the
conventional L2 misfit.

A potential limitation of the proposed approach is that the mis-
fit function has no expert knowledge to distinguish extraneous
arrivals from modeled arrivals in the observed data. Future
work will aim towards incorporating expert knowledge in the
inversion through the TID misfit function. Expert knowledge
can be embedded as a soft muting. The more confident the
expert decision, the stronger is the muting. This soft muting
exerts a preference that the TID misfit function can take advan-
tage of, and thus helps to clarify whether the TID condition is
met for certain arrivals.
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