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SUMMARY

Conventional acoustic least-squares migration inverts for a re-
flectivity image that best matches the amplitudes of the ob-
served data. However, for field data applications, it is not
easy to match the recorded amplitudes because of the visco-
elastic nature of the earth and inaccuracies in the estimation
of source signature and strength at different shot locations.
To relax the requirement for strong amplitude matching of
least-squares migration, we use a normalized cross-correlation
objective function that is only sensitive to the similaritybe-
tween the predicted and the observed data. Such a normal-
ized cross-correlation objective function is also equivalent to
a time-domain phase inversion method where the main em-
phasis is only on matching the phase of the data rather than
the amplitude. Numerical tests on synthetic and field data
show that such an objective function can be used as an alter-
native to visco-acoustic least-squares reverse time migration
(Qp-LSRTM) when there is strong attenuation in the subsur-
face and the estimation of the attenuation parameterQp is in-
sufficiently accurate.

INTRODUCTION

Least-squares migration (LSM) has been shown to produce im-
ages with balanced amplitudes, better resolution and fewerar-
tifacts than standard migration (Lailly, 1984; Schuster, 1993;
Nemeth et al., 1999; Duquet et al., 2000; Tang, 2009; Dai and
Schuster, 2010; Dai et al., 2010; Wong et al., 2011; Huang and
Schuster, 2012; Zhang et al., 2013). The improvements in the
image quality from LSM are obtained by matching the ampli-
tudes and phases of the predicted and the observed data under
the Born approximation.

The standard implementation of LSM relies on using the L2
norm of the difference between the predicted and the observed
data as the objective function. This implementation strongly
emphasizes the matching of the amplitudes and the phases of
the predicted and observed data. However, for real data, it is
not easy to match the amplitudes directly because of the fol-
lowing factors (Dong et al., 2012; Zhang et al., 2013):

• The real earth is visco-elastic and the amplitudes and
the phases of the propagating seismic waves get severely
distorted. To mimic such an effect, visco-elastic sim-
ulations are required which are computationally very
expensive. Also, estimation of the attenuation parame-
ter,Qp, is difficult.

• The earth is often assumed to be a constant density
medium but in reality, density variations strongly affect
the amplitudes of the reflected seismic signals. Hence
matching the amplitudes of the predicted and the ob-
served data under the acoustic assumption is not straight-
forward.

• In many cases, it is difficult to find a good estimate of
the source signature, and the source strength varies at
different shot locations.

• For long wavelengths, the amplitudes of the synthetic
data do not match those of the real data because of the
inherent limitations in numerical modeling.

In this paper, the objective function for least-squares migration
is formulated as a similarity measure between the predicted
and the observed data. A normalized zero lag cross-correlation
objective function is used that relaxes the amplitude matching
criterion of standard LSM and emphasizes the phase-mismatch
between the Born-simulated data and the observed data. Such
an implementation is equivalent to a time-domain phase inver-
sion method where the phase spectra of the observed data are
matched with that of the calculated data (Schuster, 1991; Sun
and Schuster, 1993; Routh et al., 2011; Zhang et al., 2013).
Numerical tests on synthetic and field data show that the in-
verted images obtained from using a zero-lag cross-correlation
objective function are very similar to the ones obtained from
using the conventional L2 norm misfit function. However, im-
provements in the image quality can be seen in the former case
when the recorded data have strong attenuation. The reflec-
tor amplitudes below the high attenuative layers are betterbal-
anced because a zero-lag cross-correlation objective function
emphasizes only the phase-mismatch rather than on the ampli-
tude mismatch. A disadvantage of this method is that the true
amplitudes of the reflectors are not preserved in the inverted
images.

THEORY

For a given source,s, and receiver,g, the similarity between the
predicted data,pg,s, and observed data,dg,s, can be expressed
by their zero-lag cross-correlation. A normalized cross-correlation
objective function can be written as (Routh et al., 2011; Zhang
et al., 2013)

ε =−
ns∑

s=1

ng∑

g=1

pg,s

||pg,s||
.

dg,s

||dg,s||
,=−

ns∑

s=1

ng∑

g=1

p̂g,s.d̂g,s, (1)

where

p̂g,s =
pg,s

||pg,s||
= Normalized predicted data,

d̂g,s =
dg,s

||dg,s||
= Normalized observed data.

It is evident from equation 1 that when the predicted and ob-
served traces are equal, their normalized cross-correlation has
a minimum value of -1 while in all other cases it is between 0
and -1.

The gradient of the misfit function can be obtained by taking
the Frechet derivative of equation 1 with respect to the pertur-
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Cross-correlation LSRTM

bation,m(x), as

∂ε
∂m

=
ns∑

s=1

ng∑

g=1

[
− 1
||pg,s||

∂ pg,s

∂m
.d̂g,s +

(
p̂g,s.d̂g,s

) ∂
∂m

( −1
||pg,s||

)]

=
ns∑

s=1

ng∑

g=1

[
− 1
||pg,s||

∂ pg,s

∂m
.d̂g,s +

1
||pg,s||2

∂ pg,s

∂m
.pg,s

(
p̂g,s.d̂g,s

)]

=

ns∑

s=1

ng∑

g=1




∂ pg,s

∂m
.

1
||pg,s||

{
p̂g,s

(
p̂g,s.d̂g,s

)
− d̂g,s

}

︸ ︷︷ ︸
weighted residual trace




(2)

The predicted trace,pg,s, in this case is scaled by its normal-
ized dot-product with the observed trace,dg,s. Such a scaling
controls the amplitude of the predicted trace according to the
similarity between the observed and the predicted traces.

Numerically, the gradient here is computed by taking a zero-
lag cross-correlation of the forward propagated source wave-
field and the backward propagated weighted residual seismo-
gram given in equation 2. This is also equivalent to a time-
domain phase inversion method (Schuster, 1991; Sun and Schus-
ter, 1993; Zhang et al., 2013) where at every iteration of the
inversion, the phase mismatch between the predicted and the
observed traces are minimized.

Mathematically, the L2 norm objective function is equivalent
to the zero-lag cross-correlation objective function. It differs
only in terms of the gradient computation. The gradient of the
L2 norm objective function for standard LSM can be expressed
as

∂ε
∂m

=

ns∑

s=1

ng∑

g=1

∂ pg,s

∂m
.
(

pg,s −dg,s
)

︸ ︷︷ ︸
residual trace

. (3)

The gradient in this case is computed by taking a zero-lag
cross-correlation of the forward propagated source wavefield
and the backward propagated residual wavefield. The gradi-
ent of the cross-correlation norm in equation 2 is similar tothe
gradient of the L2 norm objective function in equation 3 ex-
cept that in the former case, the predicted trace is scaled byits
weighted dot product with the observed trace.

The following steps are carried out for numerically implement-
ing LSM using the cross-correlation objective function by a
preconditioned conjugate gradient method, where a diagonal
preconditioning matrixC is assumed.

• Form the misfit function,ε, given by equation 1.

• Compute the gradient,gk(i+1) at thei+1-th iteration
using equation 2.

• Update the gradient using the conjugate gradient for-
mula as

dk(i+1) = Cgk(i+1)+βdk(i),

whereβ is given by

β =

(
gk(i+1)

)T
Cgk(i+1)

(
gk(i)

)T
Cgk(i)

.
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Figure 1: The modified Marmousi model: a) true velocity
model, b) migration velocity model, c) trueQp model, and
d) migrationQP model used forQp -LSRTM

• Compute the step lengthα as

α =

(
dk(i+1)

)T
gk(i+1)

(
Ldk(i+1)

)T (
Ldk(i+1)

) ,

whereL represents a Born modeling operator.

• Update the reflectivity image,

m(i+1) = m(i)+αdk(i+1).

NUMERICAL EXAMPLES

The phase-inversion LSM method is now tested on the Mar-
mousi model with strong subsurface attenuation. Figures 1(a)
and 1(c) show the true velocity andQp models, respectively,
used for generating the observed data with attenuation. The
migration velocity model is shown in Figure 1(b) and the mi-
grationQp model used forQp-LSRTM (Dutta et al., 2013) is
shown in Figure 1(d). TheQp model is chosen such that the
attenuation layers are overlying the targeted deeper anticlines.
The observed synthetic data are generated with a 2-8 time-
space domain staggered-grid finite-difference visco-acoustic
modeling code. A fixed spread acquisition geometry is used
where 200 shots are excited with a 40 m shot interval at a depth
of 10 m. Each shot is recorded with 400 receivers and a 20 m
receiver interval with a recording time of around 8 s.

Conventional acoustic reverse time migration (RTM) and least-
squares reverse time migration (LSRTM) images using the L2
norm objective function are shown in Figures 2(a)-2(b), re-
spectively. The LSRTM image shows better resolution and
fewer artifacts than the RTM image in the shallow layers but
in the deeper layers, the amplitudes of the images from these
two methods are very weak. The reflectors below the anticlines
cannot be properly delineated in spite of using a very accurate
velocity model for migration.
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Cross-correlation LSRTM

a) Acoustic RTM Image
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Figure 2: Comparison between images from a) acoustic RTM, b)acoustic LSRTM, c)Qp-LSRTM, and d) phase-inverted LSRTM.
The blue boxes highlight the areas where improvements in theimage quality can be seen from phase-inverted LSM.

The Qp-LSRTM image, shown in Figure 2(c), shows signif-
icant improvements in the image quality in the shallow and
deeper parts. However,Qp-LSRTM is computationally expen-
sive and it requires an estimate of the smoothly varyingQp dis-
tribution in the subsurface. For surface seismic data, estima-
tion of Qp is difficult and in most cases, the estimation is am-
biguous. The acoustic phase-inverted LSRTM image, shown
in Figure 2(d), shows some improvements over the acoustic
LSRTM image in Figure 2(b). The zoom view of the blue
boxes in Figure 2 are shown in Figure 3 where the improve-
ments in the image quality from phase-inverted LSM are high-
lighted. The target reservoir, indicated by the black arrowin
Figure 3, is better delineated in the phase-inverted LSM image.
This happens because the normalized cross-correlation objec-
tives ignores the effect of amplitudes and emphasizes only match-
ing the phase of the predicted and the observed data. Hence,
the deeper layers, whose reflection amplitudes are very weak
in the observed data, are imaged with better balanced ampli-
tudes.

The phase inversion method is also tested on a marine data set
from the Gulf of Mexico (GoM). There are 515 shots fired at a
shot interval of 37.5 m. Each shot is recorded by 480 receivers
spread at an interval of 12.5 m. The velocity tomogram, shown
in Figure 4, is used as the migration velocity model. The
RTM and LSRTM images using the L2 norm and the cross-
correlation objective functions after 20 iterations are shown
in Figure 5 and their zoom views are compared in Figure 6.
Compared to the standard LSRTM image, the phase-inverted
LSRTM image shows modest improvements in the shallow

a) Acoustic LSRTM Image
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Figure 3: Zoom views of the blue boxes in Figure 2. The black
arrows point to the areas where noticeable improvements in the
image can be seen. Both these figures are plotted to the same
scale.
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Cross-correlation LSRTM

Waveform Tomogram of the GoM Data
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Figure 4: Velocity model of the GoM data obtained by wave-
form inversion.
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Figure 5: GoM field data example: a) RTM image, b) LSRTM
image using the L2 norm objective function, and c) Phase-
inverted LSRTM image.
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Figure 6: Zoom views of the dashed boxes in Figure 5. a)
RTM image, b) LSRTM image using the L2 norm objective
function, and c) phase-inverted LSRTM image. The strong
diving artifacts that are present in the standard LSRTM images
in a) and c) have been removed in the phase-inverted LSM
image in b) and d).

layers. The strong diving-wave and head-wave artifacts, in-
dicated by the dashed boxes in Figure 5 and in the zoom views
in Figure 6, are eliminated in the phase-inverted LSM image.
As a result, the faults in the shallow layers are better delin-
eated. These artifacts are mitigated because the predicteddata
from them do not match in phase with the observed data and
the cross-correlation objective function suppresses these dis-
similar events. However, in the deeper parts, the images from
both inversions are similar since the deeper layers are beyond
the reach of the strong diving waves.

CONCLUSIONS

A time-domain phase inversion method for least squares mi-
gration is presented that emphasizes matching the phases of
the observed and the predicted data and relaxes the amplitude
matching criterion of standard least-squares migration. Nu-
merical tests on synthetic and field data show that the inverted
images using the L2 norm and the cross-correlation objective
functions are similar when there is very little or no attenuation
in the subsurface. However, if the recorded data have strongat-
tenuation, then the cross-correlation objective functioncan be
used as an alternative to visco-acoustic imaging during least-
squares migration.
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