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Prediction and Migration of Surface-related Resonant Multiples
Bowen Guo*, Gerard Schuster, King Abdullah University of Science and Technology, and Yunsong Huang, CGG

SUMMARY function for a source afj and receiver ak in a heteroge-
nous medium that honors the 1-way p&thin Figure 1; and
Surface-related resonant multiples can be migrated to achieveG(x|x)M is the 1st-order multiple Green’s function that hon-
better resolution than migrating primary reflections. We now ors the two-wayxg'x path in Figure 1 for a source atand
derive the formula for migrating surface-related resonant mul- receiver atx. The recorded 1st-order resonant data are rep-
tiples, and show its super-resolution characteristics. Moreover, resented byl(g) for a source and receiver gtfor upcoming
a method is proposed to predict surface-related resonant mul-pressure waves just below the free surface. Hexe,) rep-
tiples with zero-offset primary reflections. The prediction can resents the squared reflectivity at the locatkamodulated by
be used to indentify and extract the true resonant multiple from a —1 amplitude associated with the reflection from the free
other events. Both synthetic and field data are used to validatesurface. The reflectivity at is squared because the resonant
this prediction. multiple bounces twice from the reflectonat

INTRODUCTION

A first-order surface-related resonant multiple is a zero-offset
multiple which enjoys two round trips between the free-surface
and the common reflector. As shown in Figure 1, the raypaths
are coincident with one another. Resonant multiples can be mi-
grated to achieve better resolution than migrating primary re-
flections. In fact, the imaging resolution can be better than half

of the wavelength so that this is considered super-resolution Figure 1: Raypath of a 1st-order resonant multiple in a homo-
imaging (Schuster and Huang, 2014). gen®us medium with a dipping interface. Star and triangle

represent the source and receiver, respectively. The red arrows
This report firstly derives the migration operator for surface- represent the ray which starts from the source locagjdrits x
related resonant multiples, and explains why this operator showst the dipping interface, bounces vertically up and ditst the
super-resolution characteristics. Then, we present the theoryfree surface boundary. Then the ray repeats its path by going
of using zero-offset (ZO) primary reflections to predict reso- vertically down, reflecting again atand is finally recorded by
nant multiples. This data-based prediction is used to identify the receiver ag.
and to extract the true resonant multiples in the data. This
extraction is required before migration, because the resonantThe migration formula is the adjoint of equation 1 applied to
multiples are entangled with other multiple and primary events. the data:
Migrating non-resonant multiple events with the resonant mul- )
tiple migration operator will generate artifacts in the migration m(x)™¢ =/w4/{[G(g|x)D]ZG(x|x)M}* d(g)dxédw, (2)
image. B

) ) ) ] ] where the integration is over the 2D recording survey (with
After discussing the theory section, synthetic and field data |ocations denoted by the set of pointsBhjust below the free
results are shown, and the conclusions are drawn in the lastgyrface. Herem(x)M9 is the migration image of the resonant

section. multiples.

Under high frequency asymptotic assumption (Bleistein et al.,
THEORY: MIGRATION OPERATOR OF RESONANT MUL- 2001), G(x|x)M = A(x,x)M&2%T&" | G(x|g)P = A(g,x)&®bs,
TIPLES andd(g) = A(g)é®%s. TII" is the shortest traveltime of the

ray xg'x, which in practice can be calculated by a plane-wave
The Lippmann-Schwinger equations says that the forward mod-eikonal solver. 1yg is the traveltime of the direct arrival from
eling formula for a 1st-order resonant multiple from the free gtox. 1y is the traveltime of the 1st-order resonant multiples.
surface (Raypath is shown in Figure 1.) can be approximated Neglecting the amplitude parts, the kernel in equation 2 can be
by approximated by

D2 Mo+ o dW(Tg—2(TH"+Txg))
do - [ [(c@nPiomntimoocan. @ (SO TR domern E L @
v For a fixedrg, Tg— 2(Tgx" + Txg) = 0 defines an isochron in

whereV is the set of points in model space and for conve- the model space, which in a homogeneous medium can be an-

nience we assume a wide band source so the wavelet spec@lytically formulated as

trumW (w) = 1. The termG(x|g)P is the direct wave Green’s tnv  (X—Xg)?
2= I -0 (@)
4 tmVv
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wher v is the velocity of the homogeneous medium, and (a)  Migration Image of Primary Reflections
andx are the vertical and horizontal componentxpfrespec-
tively. This isochron is shown as the red curve in Figure 2a.
If the traveltime of a resonant multiple varies frag- To/2

to tg+ To/2, whereTy is the dominant period of the resonant
multiple wavelet, the isochron changes correspondingly from
the inner to the outer dashed blue line in Figure 2a. Between
the two lines is the migration response of a single resonant
multiple wavelet, which is defined as the migration operator of
resonant multiples. Samilar analysis can be applied to the ZO
primary reflection case, and its migration operator is shown in
Figure 2b. The comparison between Figures 2a and 2b shows
the resonant multiple operator is skinnier and so has a better 8 0.5 " 132 144
resolution than the ZO primary reflection operator. For ex- X (km)

ample, for the image point directly below the source/receiver (b)  Migration Image of Resonant Multiples
position & = xg), the thickness of the resonant multiple op-
erator is a quarter of the wavelength, which is half compared
to the primary reflection operator. In other words, resonant
multiple migration shows subwavelength (also called supper-
resolution) characteristics.

Z (km)

(@) Migration Operator of Resonant Multiples
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(b)  Migration Operator of primary reflections Figure 3: Migration images of point scatters by migrating (a)
0 primary reflections and (b) resonant multiples. The red dots
are the positions of the point scatterexsiepresents the wave-

= length corresponding to the data wavelet.
N

THEORY: PREDICTION OF RESONANT MULTIPLES
0 00 100 )25(‘,);’) 2002500 3000 WITH PRIMARY REFLECTIONS

Separation of the resonant multiples is needed before migra-
tion. We use ZO primary reflections to predict and so extract
resonant multiples. Resonant multigl@(tm,gm) recorded at

timety atgm can be predicted by

Figure 2: Single-trace migration operators for (a) resonant
multiples, and (b) primary reflections.

A synthetic experiment is designed to illustrate super-resolution
imaging achieved by migrating resonant multiples. As shown Am(tm,gm) =D _ dp(tp,Gp).

in Figure 3, .16 po_lnt scatterers are placed in the model. In where tm = T(Omitp, Op), (5)
Figure 3a, diffractions of the point scatters are generated by

Kirchhoff modeling, and then migrated by Kirchhoff migra- anddp(tp,gp) is a ZO primary reflection signal recorded at
tion to obtain the migration image. In Figure 3b, the resonant timetp atgp. The summation is along an isochon represented
multiples, generated by equation 1, are migrated by equationby tm = T(gm;tp,gp) in the data space. The construction of this

2. The comparison between Figures 3a and 3b shows that thdsochon in equation 5, that is similar to the migration to zero-
migration image of resonant multiples has finer resolution. Es- Offset operation for primaries (Tygel et al., 1998; Schleicher
pecially, the top four point scatterers which are a quarter wave- and Bagaini, 2004) can be summerized as a two-step process
length apart are distinguishable in the resonant multiple migra- shown in Figure 4a.

tion image. . .
e Step 1: In a ZO primary reflection data set, for each

time samplgtp,gp), we build an isochron in the model
space. The next step is to use this model space isochron
to build the isochron in the data space.

e Step 2: Use the model space isochron as a reflector
to forward model resonant multiples. That is, given a
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point at the model space isochrancalculate the first
ray which starts fronx and reflects normally from the
free-surface boundary. Based on this ray and the lo- (a)
cal dip of the isochon at, find the second ray which
obeys the reflection law. The intersection between the
second ray and the free-surface boundarg,is and
twice the total length of the two rays gives the resonant
multiple travel timet,,. Repeat this process for all the

x along the model space isochron so that the data space
isochron is determined.

In Figure 4b, the red curve is the isochron in the resonant

multiple data space, associated with the ZO primary reflection

signal represented by the red dot. The result of summing the
isochrons associated with the ZO primary reflections is shown

in Figure 4c, and the envelop of these of isochrons matches the
trajectory of the true resonant multiples.

t(s)

Figure 5 shows the comparison between the true and predicted
resonant multiples based on equation 5. The true multiples are
a part of the data generated by finite difference (FD) method
with a free-surface boundary condition based on a two-layer
velocity model with a dipping interface. The predicted and the
resonant multiples match quite well. Notice the wavelets of
the predicted resonant multiples are streched compared to the
true multiple wavelets. This strech is because of the property
of the isochrorty = 7(gm;tp,9p), that is wherty, is perturbed

by T, the corresponding perturbationtipis longer tharly.

NUMERICAL RESULTS ° o8 X ) ' ‘

Figure 6a shows a common offset gather (142 m offset) of a Figure 4: lllustration of predicting resonant multiples with ZO
marine data set. The events above the blue dashed line argrimary reflections. (a) Transformation from the ZO primary
mostly primary reflections, and the events below contain res- reflection signal recorded ay by a trace agp to the reso-
onant multiple events. A moveout correction and stacking are nant multiple signal recorded &4 by a trace atym. (b) The
applied to the primary reflections and to the multiples sepa- isochron of the resonant multiples (red curve) associated with
rately based on their moveout formula. Figure 6b shows the the ZO primary reflection signal recordedtgiatgp (red dot).
post-stack marine data. Compared with Figure 6a, the signal-(c) A group of isochrones in the resonant multiples (red curves)
to-noise ratio in Figure 6b is strengthed. We then use the post-associated with all of the ZO primary reflections. The envelop
stack primary reflections in Figure 7b to predict resonant mul- of the red curves matches the trajectory of the true resonant
tiples based on equation 5. The prediction results are shownmuiltiples.

in Figure 7a. This prediction can be used as a reference to

identify and to window the resonant multiples in Figure 7b.

Also, the predicted resonant multiples say that the third event CONCL USIONS

between the two red dashed lines (indicated by the blue arrow)

in Figure 7b is not a resonant multiple. We derive the migration formula for surface-related resonant
multiples. This migration operator has better resolution than
ZO primary reflections migration operator. We also show how
ZO primary reflections can be used to predict 1st-order res-
onant multiples. The prediction of resonant multiples can be
used to indentify and window the resonant multiples from other
events, as shown by a marine seismic data set. The result of an-
other marine data set shows the subwavelength characteristics
of imaging resonant multiples.

Figures 8 and 9 show the prediction and migration of resonant
multiples in another near-offset (108 m offset) marine data set.
The near-offset primaries are used to predict resonant multi-
ples (Figure 8b), and the prediction says that the event indi-
cated by the blue arrow in Figure 8a is a non-resonant multiple
event. Migration image of the resonant multiples is shown in

Figure 9b. Compared with the post-stack primary image (Fig-
ure 9a), resonant multiple image has better resolution.
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Figure 5: Comparison of the predicted and the true resonant
multiples in the case of a dipping interface. The black wig-
gles represent the true resonant multiples, and among them the

) i 3.2 s
second event is the 1st-order surface-related resonant multiple 2 & B @ 0 1@ A e 48 20

(amplitude amplified). The red wiggles represent the predicted Xt

resonant multiples. Figure 7: Comparison between (a) the predicted resonant mul-

tiples and (b) the post-stack multiple events. The red dashed
lines show that the predicted resonant multiples can be used to
window resonant multiples. The blue arrow indicates a non-
resonant multiple event.
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(b) Post-stack Near-offset Data

Figure 8: Comparison between (a) post-stack multiple events
and p) predicted resonant multiples from ZO primaries. The
prediction in panel b indicates a non-resonant multiple event
(blue arrow) in panel a.
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Figure 6: (a) A pre-stack near offset marine data set. (b) Post-
stack data. In panels a and b, events above the blue dashed line
are mostly primary reflections, and the events below contain
resonant multiples. The blue dashed square sections highIight,:igure 9: Comparison between (a) primary reflections migra-
the better signal-to-noise ratio of post-stack data. tionimage and (b) resonant multiples migration image. Panel b
shows better resolution than panel a. The blue arrow indicates
migration artifacts caused by non-resonant multiple events.
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