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SUMMARY

Surface-related resonant multiples can be migrated to achieve
better resolution than migrating primary reflections. We now
derive the formula for migrating surface-related resonant mul-
tiples, and show its super-resolution characteristics. Moreover,
a method is proposed to predict surface-related resonant mul-
tiples with zero-offset primary reflections. The prediction can
be used to indentify and extract the true resonant multiple from
other events. Both synthetic and field data are used to validate
this prediction.

INTRODUCTION

A first-order surface-related resonant multiple is a zero-offset
multiple which enjoys two round trips between the free-surface
and the common reflector. As shown in Figure 1, the raypaths
are coincident with one another. Resonant multiples can be mi-
grated to achieve better resolution than migrating primary re-
flections. In fact, the imaging resolution can be better than half
of the wavelength so that this is considered super-resolution
imaging (Schuster and Huang, 2014).

This report firstly derives the migration operator for surface-
related resonant multiples, and explains why this operator shows
super-resolution characteristics. Then, we present the theory
of using zero-offset (ZO) primary reflections to predict reso-
nant multiples. This data-based prediction is used to identify
and to extract the true resonant multiples in the data. This
extraction is required before migration, because the resonant
multiples are entangled with other multiple and primary events.
Migrating non-resonant multiple events with the resonant mul-
tiple migration operator will generate artifacts in the migration
image.

After discussing the theory section, synthetic and field data
results are shown, and the conclusions are drawn in the last
section.

THEORY: MIGRATION OPERATOR OF RESONANT MUL-
TIPLES

The Lippmann-Schwinger equations says that the forward mod-
eling formula for a 1st-order resonant multiple from the free
surface (Raypath is shown in Figure 1.) can be approximated
by

d(g) =

∫
ω4

∫
V
[G(g|x)D]2G(x|x)Mm(x)dx3dω, (1)

whereV is the set of points in model space and for conve-
nience we assume a wide band source so the wavelet spec-
trumW (ω) = 1. The termG(x|g)D is the direct wave Green’s

function for a source atg and receiver atx in a heteroge-
nous medium that honors the 1-way pathxg in Figure 1; and
G(x|x)M is the 1st-order multiple Green’s function that hon-
ors the two-wayxg′x path in Figure 1 for a source atx and
receiver atx. The recorded 1st-order resonant data are rep-
resented byd(g) for a source and receiver atg for upcoming
pressure waves just below the free surface. Here,m(x) rep-
resents the squared reflectivity at the locationx modulated by
a −1 amplitude associated with the reflection from the free
surface. The reflectivity atx is squared because the resonant
multiple bounces twice from the reflector atx.

α α

α
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Figure 1: Raypath of a 1st-order resonant multiple in a homo-
geneous medium with a dipping interface. Star and triangle
represent the source and receiver, respectively. The red arrows
represent the ray which starts from the source locationg, hitsx
at the dipping interface, bounces vertically up and hitsg′ at the
free surface boundary. Then the ray repeats its path by going
vertically down, reflecting again atx and is finally recorded by
the receiver atg.

The migration formula is the adjoint of equation 1 applied to
the data:

m(x)mig =

∫
ω4

∫
B
{[G(g|x)D]2G(x|x)M}∗ d(g)dx2

gdω, (2)

where the integration is over the 2D recording survey (with
locations denoted by the set of points inB) just below the free
surface. Here,m(x)mig is the migration image of the resonant
multiples.

Under high frequency asymptotic assumption (Bleistein et al.,
2001),G(x|x)M = A(x,x)Mei2ωτmin

xx , G(x|g)D = A(g,x)eiωτxg ,
and d(g) = A(g)eiωτg . τmin

xx is the shortest traveltime of the
ray xg′x, which in practice can be calculated by a plane-wave
eikonal solver.τxg is the traveltime of the direct arrival from
g to x. τg is the traveltime of the 1st-order resonant multiples.
Neglecting the amplitude parts, the kernel in equation 2 can be
approximated by

{G(g|x)D]2G(x|x)M}∗ d(g)≈ eiω(τg−2(τmin
xx +τxg)). (3)

For a fixedτg, τg − 2(τmin
xx + τxg) = 0 defines an isochron in

the model space, which in a homogeneous medium can be an-
alytically formulated as

z =
tmv
4

−
(x−xg)

2

tmv
, (4)
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Surface-related Resonant Multiples

where v is the velocity of the homogeneous medium, andz
andx are the vertical and horizontal component ofx, respec-
tively. This isochron is shown as the red curve in Figure 2a.
If the traveltime of a resonant multiple varies fromtg −T0/2
to tg +T0/2, whereT0 is the dominant period of the resonant
multiple wavelet, the isochron changes correspondingly from
the inner to the outer dashed blue line in Figure 2a. Between
the two lines is the migration response of a single resonant
multiple wavelet, which is defined as the migration operator of
resonant multiples. Samilar analysis can be applied to the ZO
primary reflection case, and its migration operator is shown in
Figure 2b. The comparison between Figures 2a and 2b shows
the resonant multiple operator is skinnier and so has a better
resolution than the ZO primary reflection operator. For ex-
ample, for the image point directly below the source/receiver
position (x = xg), the thickness of the resonant multiple op-
erator is a quarter of the wavelength, which is half compared
to the primary reflection operator. In other words, resonant
multiple migration shows subwavelength (also called supper-
resolution) characteristics.

Figure 2: Single-trace migration operators for (a) resonant
multiples, and (b) primary reflections.

A synthetic experiment is designed to illustrate super-resolution
imaging achieved by migrating resonant multiples. As shown
in Figure 3, 16 point scatterers are placed in the model. In
Figure 3a, diffractions of the point scatters are generated by
Kirchhoff modeling, and then migrated by Kirchhoff migra-
tion to obtain the migration image. In Figure 3b, the resonant
multiples, generated by equation 1, are migrated by equation
2. The comparison between Figures 3a and 3b shows that the
migration image of resonant multiples has finer resolution. Es-
pecially, the top four point scatterers which are a quarter wave-
length apart are distinguishable in the resonant multiple migra-
tion image.

Figure 3: Migration images of point scatters by migrating (a)
primary reflections and (b) resonant multiples. The red dots
are the positions of the point scatterers.λ represents the wave-
length corresponding to the data wavelet.

THEORY: PREDICTION OF RESONANT MULTIPLES
WITH PRIMARY REFLECTIONS

Separation of the resonant multiples is needed before migra-
tion. We use ZO primary reflections to predict and so extract
resonant multiples. Resonant multipledm(tm,gm) recorded at
time tm at gm can be predicted by

dm(tm,gm) =
∑

dp(tp,gp),

where tm = τ(gm; tp,gp), (5)

and dp(tp,gp) is a ZO primary reflection signal recorded at
time tp at gp. The summation is along an isochon represented
by tm = τ(gm; tp,gp) in the data space. The construction of this
isochon in equation 5, that is similar to the migration to zero-
offset operation for primaries (Tygel et al., 1998; Schleicher
and Bagaini, 2004) can be summerized as a two-step process
shown in Figure 4a.

• Step 1: In a ZO primary reflection data set, for each
time sample(tp,gp), we build an isochron in the model
space. The next step is to use this model space isochron
to build the isochron in the data space.

• Step 2: Use the model space isochron as a reflector
to forward model resonant multiples. That is, given a

SEG New Orleans Annual Meeting Page  4501

DOI  http://dx.doi.org/10.1190/segam2015-5859900.1© 2015 SEG

D
ow

nl
oa

de
d 

11
/1

0/
15

 to
 1

09
.1

71
.1

37
.2

10
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Surface-related Resonant Multiples

point at the model space isochronx, calculate the first
ray which starts fromx and reflects normally from the
free-surface boundary. Based on this ray and the lo-
cal dip of the isochon atx, find the second ray which
obeys the reflection law. The intersection between the
second ray and the free-surface boundary isgm, and
twice the total length of the two rays gives the resonant
multiple travel timetm. Repeat this process for all the
x along the model space isochron so that the data space
isochron is determined.

In Figure 4b, the red curve is the isochron in the resonant
multiple data space, associated with the ZO primary reflection
signal represented by the red dot. The result of summing the
isochrons associated with the ZO primary reflections is shown
in Figure 4c, and the envelop of these of isochrons matches the
trajectory of the true resonant multiples.

Figure 5 shows the comparison between the true and predicted
resonant multiples based on equation 5. The true multiples are
a part of the data generated by finite difference (FD) method
with a free-surface boundary condition based on a two-layer
velocity model with a dipping interface. The predicted and the
resonant multiples match quite well. Notice the wavelets of
the predicted resonant multiples are streched compared to the
true multiple wavelets. This strech is because of the property
of the isochrontm = τ(gm; tp,gp), that is whentp is perturbed
by T0, the corresponding perturbation intm is longer thanT0.

NUMERICAL RESULTS

Figure 6a shows a common offset gather (142 m offset) of a
marine data set. The events above the blue dashed line are
mostly primary reflections, and the events below contain res-
onant multiple events. A moveout correction and stacking are
applied to the primary reflections and to the multiples sepa-
rately based on their moveout formula. Figure 6b shows the
post-stack marine data. Compared with Figure 6a, the signal-
to-noise ratio in Figure 6b is strengthed. We then use the post-
stack primary reflections in Figure 7b to predict resonant mul-
tiples based on equation 5. The prediction results are shown
in Figure 7a. This prediction can be used as a reference to
identify and to window the resonant multiples in Figure 7b.
Also, the predicted resonant multiples say that the third event
between the two red dashed lines (indicated by the blue arrow)
in Figure 7b is not a resonant multiple.

Figures 8 and 9 show the prediction and migration of resonant
multiples in another near-offset (108 m offset) marine data set.
The near-offset primaries are used to predict resonant multi-
ples (Figure 8b), and the prediction says that the event indi-
cated by the blue arrow in Figure 8a is a non-resonant multiple
event. Migration image of the resonant multiples is shown in
Figure 9b. Compared with the post-stack primary image (Fig-
ure 9a), resonant multiple image has better resolution.

Resonant Multiple Response of Whole Primary Reflections
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Figure 4: Illustration of predicting resonant multiples with ZO
primary reflections. (a) Transformation from the ZO primary
reflection signal recorded attp by a trace atgp to the reso-
nant multiple signal recorded attm by a trace atgm. (b) The
isochron of the resonant multiples (red curve) associated with
the ZO primary reflection signal recorded attp at gp (red dot).
(c) A group of isochrones in the resonant multiples (red curves)
associated with all of the ZO primary reflections. The envelop
of the red curves matches the trajectory of the true resonant
multiples.

CONCLUSIONS

We derive the migration formula for surface-related resonant
multiples. This migration operator has better resolution than
ZO primary reflections migration operator. We also show how
ZO primary reflections can be used to predict 1st-order res-
onant multiples. The prediction of resonant multiples can be
used to indentify and window the resonant multiples from other
events, as shown by a marine seismic data set. The result of an-
other marine data set shows the subwavelength characteristics
of imaging resonant multiples.
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Surface-related Resonant Multiples

400 600 800 1000 1200 1400 1600

0

0.5

1

1.5

Predicted and True Resonant Multiples

X (m)

t 
(s

)

Data by FD method 

Predicted resonant 

multiples  

Figure 5: Comparison of the predicted and the true resonant
multiples in the case of a dipping interface. The black wig-
gles represent the true resonant multiples, and among them the
second event is the 1st-order surface-related resonant multiple
(amplitude amplified). The red wiggles represent the predicted
resonant multiples.

Figure 6: (a) A pre-stack near offset marine data set. (b) Post-
stack data. In panels a and b, events above the blue dashed line
are mostly primary reflections, and the events below contain
resonant multiples. The blue dashed square sections highlight
the better signal-to-noise ratio of post-stack data.

Figure 7: Comparison between (a) the predicted resonant mul-
tiples and (b) the post-stack multiple events. The red dashed
lines show that the predicted resonant multiples can be used to
window resonant multiples. The blue arrow indicates a non-
resonant multiple event.

Figure 8: Comparison between (a) post-stack multiple events
and (b) predicted resonant multiples from ZO primaries. The
prediction in panel b indicates a non-resonant multiple event
(blue arrow) in panel a.

Figure 9: Comparison between (a) primary reflections migra-
tion image and (b) resonant multiples migration image. Panel b
shows better resolution than panel a. The blue arrow indicates
migration artifacts caused by non-resonant multiple events.
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