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SUMMARY

We present a least-squares reverse time migration (LSRTM)
method using a factorization-free priorconditioning approach
to overcome the low signal-to-noise (SNR) problem arising
out of using severely undersampled data. Priorconditioning
is a technique where the prior information is incorporated di-
rectly into the forward operator and into the solution space of
the problem. The prior information that is used in this work
is that the inverted reflectivity is sparse in the radon domain.
The proposed method is factorization-free since the forward
mapping is defined through the action of a sparse operator on
a vector. The priorconditioning method is shown to produce
reliable images with good SNR and free from aliasing artifacts
when using very sparse shots for both synthetic and field data.

INTRODUCTION

Least-squares migration (LSM) has been shown to produce im-
ages with balanced amplitudes, better resolution and fewer ar-
tifacts than standard migration (Lailly, 1984; Nemeth et al.,
1999; Duquet et al., 2000; Plessix and Mulder, 2004; Dai and
Schuster, 2009; Tang, 2009; Wong et al., 2011). Besides a re-
verse time migration (RTM) of the data residual, every iter-
ation of LSRTM involves Born modeling to compute the pre-
dicted data from the reflectivity image and to estimate the step-
length. Thus, every iteration of LSRTM is approximately 2-3
times more computationally expensive than that of standard
RTM and the cost becomes proportional to the number of it-
erations carried out. Thus, the computational cost of LSRTM
becomes very high for practical 3D problems.

To reduce the cost of standard RTM, Morton and Ober (1998)
and Romero et al. (2000) proposed the idea of multisource
phase-encoded migration where they blended several shotgath-
ers using encoding functions with random time shifts and ran-
dom source polarities into one supergather which they then
migrated. Later, Dai et al. (2010) extended this idea to mul-
tisource LSRTM and showed that by an iterative migration of
supergathers, multisource LSRTM can produce more accurate
reflectivity images than standard RTM at a fraction of the com-
putational cost. Herrmann and Li (2012) adopted a similar ap-
proach and used a combination of randomized dimensionality-
reduction and divide-and-conquer-techniques to decimate the
LSM problem as a series of smaller sub-problems where each
sub-problem involved iterating on a small randomized subset
of the data. They also combined their approach with com-
pressive sensing and curvelet-domain sparse recovery (Candes
et al., 2006) to obtain crosstalk free images from multisource
LSM.

A simpler way of reducing the computational cost of LSRTM
is by migrating very sparse shots since the cost of LSRTM is

also proportional to the number of shotgathers migrated. How-
ever, using very sparse shots during migration has its pitfalls
because the final image will be degraded in quality because of
low SNR and migration artifacts which are not cancelled out
by insufficient stacking. Thus, for incomplete or undersampled
data, it becomes important to incorporate some sort of regular-
ization into the inversion that would allow for a more accurate
representation of the subsurface model parameters. Relaxing
the sampling requirements will also lead to a reduction in the
cost of data acquisition and processing.

If a regularization term is included in the misfit functional, the
solutions exhibit very slow convergence. The regularization
is controlled through a damping parameter which can be esti-
mated from the L-shaped curve constructed by a log-log plot
of the length of the model vector vs the length of the residual
vector for different choices of the damping parameter (Calvetti
et al., 2000). Such an approach becomes impractical for com-
putationally expensive problems like full waveform inversion
or LSM. A change of basis for the reflectivity using some lin-
ear transform or some form of model reparameterization (Har-
lan, 1995; Fomel and Guitton, 2006) are possible ways to ac-
count for the effect of the regularization term in the inversion
without explicitly computing the damping parameter at every
iteration. As mentioned by Kingsbury (2001), the choice of
a suitable basis is dependent on 1) perfect reconstruction of
the parameters after forward and inverse transforms, 2) suit-
ability for use with conjugate gradient, 3) efficient computa-
tion, and 4) minimal redundancy. In our work, we use a high
resolution local Radon transform of the reflectivity as a basis
function and use a regularization term that imposes sparseness
constraints on the inverted reflectivity in the Radon domain.
Using a change of basis approach, we show that the prior or
the regularization term gets embodied into a transformed for-
ward operator and the prior information of sparse reflectivity
is exploited without using an explicit regularization term. The
benefits of priorconditioning is that the convergence is faster
than the counterpart regularized problem and more meaning-
ful updates can be seen in very few iterations.

THEORY

For a regularized L2-norm inverse problem, we seek to find a
solution that best explains the observed data and is consistent
with the prior knowledge that is available before any observa-
tions are made. In a Bayesian framework, this can be repre-
sented by the likelihood and the prior probability distributions,
PD (d|m) and PM(m), respectively. In the context of a seis-
mic imaging problem, the subscripts D and M represent the
data-space and the image-space, respectively, d represents the
observed data and m represents the reflectivity model.

For a model with zero-mean Gaussian noise, these probability

SEG New Orleans Annual Meeting Page  4270

DOI  http://dx.doi.org/10.1190/segam2015-5912138.1© 2015 SEG

D
ow

nl
oa

de
d 

11
/0

9/
15

 to
 1

09
.1

71
.1

37
.2

10
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Priorconditioned LSRTM

distributions can be expressed as

PD(d|m) ∝ exp
{
−1

2
||d−Lm||22

}
,

PM(m) ∝ exp
{
−λ

2
R(m)

}
, (1)

where R(m)is a discrete regularizer/prior that imposes con-
straints on the solution m. These constraints can be m should
be sparse or the edges/reflectors in m should be sharp. Here,
L represents a linear modeling operator and λ > 0 controls the
strength of the regularization term. The maximum a-posteriori
(MAP) estimate of the model can be expressed using Bayes’
theorem as

mMAP = arg max
m∈M

P(m|d),

= arg max
m∈M

PD(d|m)PM(m) , (2)

which can also be obtained by minimizing the misfit function
given by

min
m∈M

[
φ(m) =

1
2
||d−Lm||22 +

λ

2
R(m)

]
. (3)

If we assume that λ 6= 0 and the prior R(m) = ‖Rm‖1 =

‖WRm‖2
2 = ||Rm||22 is some weighted transform that would

make the image sparse in that domain, then the misfit function
in equation 3 can be written as

min
m∈M

[
φ(m) =

1
2
||d−Lm||22 +

λ

2
||Rm||22

]
. (4)

Here Rm can be any transform operation that imposes sparse-
ness constraints on the solution m and W is any model depen-
dent weighting matrix. In this paper, we have taken Rm to be
the high-resolution Radon transform of the image m and Rm
is the weighted-Radon transform of m. The weights are model
dependent and can be chosen to be varying locally or defined
through a moving window over the samples in the model or
can be estimated using quantile measures. In our present im-
plementation, the weights are chosen locally.

The normal equations corresponding to the misfit function in
equation 4 are given by(

LT L+λRT R
)

m = LT d, (5)

which can be solved using any conjugate gradient based least-
squares algorithm (LSQR type approach) (Paige and Saunders,
1982; Arridge et al., 2014). The functional φ(m) in equation
4 is minimized over the Krylov space

κ
LT L+λRT R = span{LT d,(LT L+λRT R)LT d, . . . ,

(LT L+λRT R)imax−1LT d} ⊂M, (6)

where imax is the limit of the Krylov subspace in equation 6.
As noted by Arridge et al. (2014), the difficulties associated
with the solutions in the subspace described by equation 6 are
1) the solutions exhibit slow convergence, and 2) the inversion
is controlled by the parameters λ and imax. If the damping

parameter λ is estimated empirically, any change in λ will re-
quire a re-computation of the subspace defined by equation 6.
If λ is evaluated from the L-shaped curve constructed from a
log-log plot of the length of the model vector and the residual
vector (Calvetti et al., 2000), it becomes impractical for a com-
putationally expensive problem like full waveform inversion or
least-squares migration.

Thus, to incorporate the information contained in the prior into
the solution, a change of basis is required for the reflectivity m.
If R is invertible in equation 4, a change of basis

m̂ = Rm, L̂ = LR−1, (7)

in equation 4 gives

min
m̂∈RM

[
φ̂(m̂) =

1
2
||d− L̂m̂||22 +

λ

2
||m̂||22

]
. (8)

The normal equations corresponding to the misfit function in
equation 8 are given by(

L̂T L̂+λ I
)

m̂ = L̂T d,(
R−T LT LR−1 +λ I

)
m̂ = R−T LT d. (9)

Since the prior information is now contained in the transformed
operators, L̂ and L̂T

, we can set λ = 0 in equations 8 and 9 to
get the normal equations,

L̂T L̂m̂≈ L̂T d,

R−T LT LR−1m̂≈ R−T LT d, (10)

and the misfit function,

min
m̂∈RM

[
φ̂(m̂) =

1
2
||d− L̂m̂||22

]
. (11)

The new functional φ̂(m̂) in equation 11 gets minimized over
a different Krylov space given by

κ
(RT R)−1LT L = span{(RT R)

−1LT d,((RT R)
−1LT L)(RT R)

−1LT d,

. . .((RT R)
−1LT L)imax−1(RT R)

−1LT d} ⊂ RM. (12)

On comparing the Krylov spaces in equations 6 and 12, it can
be seen that the information contained in the prior/regularizer
is now contained in the transformed operator L̂ in equations 10
and 11. Thus, the prior information can be exploited without
using explicit regularization, i.e., by setting λ = 0 and letting
the number of internal iterations in the conjugate gradient algo-
rithm play the role of the regularizer. Even though the system
of equations is only partially solved at every external iteration
because the conjugate gradient algorithm is stopped before the
solution is complete, the total matrix operator resulting from
the priorconditioning is diagonalized enough so that one can
avoid using a damping factor for the smaller eigenvalues. On
the contrary, in equation 6, the prior information is controlled
through the damping parameter λ which is difficult to esti-
mate. Also, for different values of λ , the solutions in equation
12 do not change whereas the solutions in equation 6 need to
be recomputed from the beginning.
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Priorconditioned LSRTM

Such a priorconditioning approach is useful in solving a regu-
larized L2 norm problem because it provides a way of incorpo-
rating the prior information directly into the forward operator
and into the solution space of the problem. The Krylov space
solutions in equation 12 clearly reveal that the inverted images
from the very first iteration will have features with high prior
probability. Building these features using an explicit regular-
ization term will require a large number of iterations because
the eigenvalues associated with them will be very small.

NUMERICAL RESULTS

Priorconditioned LSRTM is tested on the 3D Sandia/SEG C3
45 shot subset data. There are only 45 shots spread on a 5×9
source grid on the surface with a 960 m shot and shot-line sep-
aration. Each shot is recorded by a 201×201 receiver grid with
a 50 m spacing between the receivers. Figure 1 compares the
standard RTM, LSRTM and the priorconditioned LSRTM im-
ages after 10 iterations. The RTM image in Figure 1(a) suf-
fers from very strong backscattering noise because of the pres-
ence of the salt body. The depth slices show strong acquisition
footprint signatures and the reflector amplitudes are also very
weak. The image contains significant high-frequency noise
because of using severely undersampled data. The LSRTM
image in Figure 1(b) shows some improvements over the stan-
dard RTM image. The reflector amplitudes are better balanced
and the acquisition footprints in the depth slices are mitigated.
However, the aliasing noise is still prominent and is severe be-
low the salt body. The priorconditioned LSRTM image, shown
in Figure 1(c), is free from the aliasing noise and the subsalt
images are cleaner when compared to the standard RTM and
LSRTM images. The salt boundaries are also better delineated
in the crossline sections. The priorconditioned images also
have a much better SNR than the standard RTM and LSRTM
images.

The effectiveness of priorconditioned LSRTM is also demon-
strated on a real OBS dataset. There are 26 OBS nodes at a
spacing of 402.5 m. There are 360 shots fired at a spacing
of 50 m on the surface. The common shot gathers are then
sorted into common receiver gathers using reciprocity. Thus,
for migration there are only 26 very sparse shots at a spacing
of 402.5 m and each shot is recorded by 360 receivers spread
at an interval of 50 m. The sea bottom is too shallow in this
case, so mirror migration will not differ much from standard
migration. The migration velocity model, shown in Figure 2,
is obtained by early-arrival full waveform inversion.

During migration, data upto 3-10 Hz are migrated since the
velocity tomogram was obtained by inverting for frequencies
upto 10 Hz. The standard RTM and LSRTM images are shown
in Figures 3(a) and 3(b), respectively. It is evident from these
images that the aliasing artifacts are severe in the shallow parts.
The sparse shot sampling has also led to low SNR in the im-
ages. The low SNR and aliasing artifacts make the interpreta-
tion of these images very difficult. The priorconditioned RTM
and LSRTM images, shown in Figures 3(c) and 3(d), have
fewer aliasing artifacts and a much better SNR than the stan-
dard RTM and LSRTM images. The reflectors in the shallow

Figure 1: Comparison between images from (a) standard
RTM, (b) standard LSRTM, and (c) priorconditioned LSRTM.

parts can be clearly delineated and the reflector amplitudes are
very well balanced.

Figure 2: Migration velocity model for the OBS data obtained
using Gauss Newton FWI.
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Priorconditioned LSRTM

Figure 3: Comparison between images from (a) standard RTM, (b) standard LSRTM, (c) priorconditioned RTM, and (d) priorcon-
ditioned LSRTM. The LSRTM images are obtained after 10 iterations.

CONCLUSIONS

A priorconditioning approach is presented for LSRTM that
incorporates a prior/regularizer directly into the forward op-
erator and into the solution space of the problem. This ap-
proach is factorization-free since the forward mapping is de-
fined through the action of a sparse operator on a vector. This
is particularly useful for time-domain LSM problems where
the forward and adjoint mapping cannot be explicitly com-
puted and stored as a matrix. Priorconditioning also requires
a fewer number of iterations to converge when compared to
using an explicit regularization term in the objective function.
Our numerical tests on synthetic and field data validate that pri-
orconditioning can be used to reduce the computational cost of
LSRTM by using very sparse shots and overcome the aliasing
artifacts caused because of using severely undersampled data.
A disadvantage of our present implementation using weighted
radon transform with local weights is that it is sensitive to the
presence of free-surface multiples or internal multiples in the
data. This is because the false reflections from these multiples
will have a prominent dip signature which might get boosted
up if the weights are not chosen appropriately. Investigating
the selection of appropriate weights in the presence of multi-
ples is a topic of ongoing research.
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