Tomographic Deconvolution of Reflection Tomograms
Tushar Gautam', Yicheng Zhou', Shihang Feng® and Gerard T. Schuster
King Abdullah University of Science and Technology (KAUST), Saudi Arabia

2Los Alamos National Laboratory, USA
SUMMARY

We present a tomographic deconvolution procedure for high-
resolution imaging of velocity anomalies between reflecting
interfaces. The key idea is to first invert reflection or transmis-
sion traveltimes for the background velocity model. A convo-
lutional neural network (CNN) model is then trained to esti-
mate the inverse to the blurred tomogram consisting of small
scatterers in the background velocity model. We call this CNN
a tomographic deconvolution operator because it deconvolves
the blurring artifacts in traveltime slowness tomograms. This
procedure is similar to that of migration deconvolution which
deconvolves the migration butterfly artifacts in migration im-
ages. Results with synthetic examples show the effectiveness
of this procedure in significantly sharpening the tomographic
images of small scatterers.

INTRODUCTION

The seismic forward modeling operator L. computes the reflec-
tion traces d from the slowness model m by

Lm = d, 1)

where m = m*@! 4 m*"°°' is composed of the low-wavenumber

smooth velocity model m*™"°°"" and the high-wavenumber ve-

locity variations m**®’_ In the context of seismic migration or
traveltime tomography, equation 1 is an overdetermined and
inconsistent set of equations.

To reduce the artifacts associated with inconsistent and overde-
termined equations, we often compute the least squares solu-
tion given by (Yilmaz, 2001; Schuster, 2017)
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where a regularization term is often used to stabilize the solu-
tion and .& is the Earth’s actual modeling operator. Here, we
assume that d can be decomposed into a summation of mod-
eled slowness anomalies

d= ZLmi, ©)

where m; is the i*” localized slowness anomaly. These anoma-
lies can be combined together to form a larger slowness anomaly

m=>".m,.

The Hessian inverse [L7L]~! is often too expensive to com-
pute so an iterative gradient method is used to estimate the
solution:
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where k is the iteration index, the step length is ¢, and C is
the preconditioning operator that is sometimes chosen to be
a diagonal matrix where C; = [LTL];; ' In practice, either a
preconditioned conjugate gradient or a quasi-Newton method
is often used where for large k = K that mX = mx in equa-
tion 2.

In the context of traveltime tomography, m is the slowness
model and d defines the picked traveltimes of transmission
and/or reflection traveltimes. The operator L represents the
forward modeling of traveltimes by either ray tracing or a nu-
merical solution to the wave equation. Despite the efforts to
stabilize and precondition the gradient methodology, the final
tomogram is always filled with artifacts associated with either
incomplete data and/or physics. Such artifacts are often caused
by, for example, a limited source-receiver aperture, uneven
density of rays in each slowness cell, strong velocity contrasts
that prevent many rays from entering areas of interest, and an
irregular and coarse distribution of sources and receivers.

This paper proposes to apply a non-linear deconvolution filter
F that can suppress many of these artifacts in the slowness
tomogram m* in equation 2, i.e.

m ~ F(m"), 5)

where m is the actual slowness model and the deconvolved
tomogram F'(m*) is a more accurate rendering of m than m*.
According to equation 2, the deconvolution filter in equation 5
is given by

F o= (UL 'L, ©)
where .Z can be roughly approximated by the computer-based
operator L. The deconvolution filter F( ) is also denoted as
the inverse to the tomographic point scatterer response (PSR).
This filter is computed by training a convolution neural net-
work (CNN), where the input is the tomogram m’®"® and the
output is the sum of localized slownesses m ~ Zimi. Here,
the index i indicates different locations of the localized anoma-
lies m;.

The first part of this paper provides the theory of tomographic
deconvolution. The fundamental concept of the tomographic
point scatterer response (PSR) is defined, and then its inverse
is obtained using a neural network model. A convolutional
neural network is used and the workflow for its implementation
is described. The next section presents the numerical results
for synthetic data. The last section presents the conclusions.



WAVEPATHS AND WORKFLOW FOR TOMOGRAPHIC
DECONVOLUTION

The first Fresnel zones for transmission and reflection arrivals
are illustrated in Figure 1b for a single source-receiver pair.
These zones are defined as the points visited by rays that can be
traced from the source to the receiver with a traveltime greater
than or equal to the central ray traveltime at time ¢ and less
than ¢ + Ty /2. Here, Tp is the dominant period of the source
(Schuster, 2017). These first Fresnel zones are also denoted as
wavepaths (Woodward, 1989, 1992; Luo, 1991).

For the tomographic deconvolution problem, we assume that
the location of the reflector and the background velocity is
known, and the unknown is the location and extent of the green
velocity anomaly in Figure 1b. This unknown anomaly is the
only part of the model that generates a traveltime residual in
the data. For a single source-receiver pair, this means that the
velocity is updated all along the rabbit-ear wavepath in Fig-
ure 1b because this is the zone which largely influences the
phase of the reflection arrival. The green velocity anomaly is at
the intersection of the rabbit ears on the reflector so that the re-
sulting slowness tomogram m&tD) = mE+D — o LT Ar(®) will
take the appearance of a pair of rabbit ears. This is what we
call the point scatterer response of the tomographic operator
for a single traveltime residual. The shape of this response
will change depending on the location of the scatterer relative
to the reflector boundary and the number of traces as illustrated
in Figures 2a-2b. Figure 2c is the ideal deconvolved tomo-
gram F(m’°") in equation 5,where the rabbit-ear artifacts are
removed by the deconvolution operator F' to obtain the actual
shape of the scatterer.

Tomographic Deconvolution Workflow
The tomographic deconvolution workflow consists of 5 steps.

e Collect traveltime reflection or refraction data and in-
vert it by traveltime tomography to get the smooth back-
ground slowness model m’"°,

e Train the CNN model with synthetic reflection or re-
fraction data to find F(m'®"°) in Figure 2b. The back-
ground slowness model is obtained by smoothing m’"°,
The input to the training consist of small *point’ slow-
ness anomalies located at different positions in the model.
The size of these point anomalies is no smaller thana
wavelength if ray tracing is used for forward modeling.

e Once the CNN model is properly trained and validated,
it is applied to the tomogram m‘" to get m4eco"

F(m’?"?), where the tomographic artifacts are suppressed

and m ~ m@econ,

e Predicted data are computed d”"*¢ = Lm9¢°°" a5 a san-
ity test is used to ensure that m?¢°®" accurately predicts
the recorded traveltime data d.

CNN Architecture

The CNN model is that of a U-Net (Schuster, 2021) and con-
sists of a contracting path and an expansive path (which gives
it a U-shaped architecture). The training of the CNN model

uses synthetic reflection traveltime data computed by a reflec-
tion ray-tracing code, and then inverted by an iterative gradi-
ent method that minimizes the L' data misfit function. About
ten thousand training pairs (m’®""° m) are used to the train the
CNN. Each training model consists of several localized slow-
ness anomalies with a different location for each anomaly.

NUMERICAL RESULTS

Numerical results are now presented for deconvolving tomo-
grams by the tomographic deconvolution operator F' computed
by a CNN. The reflection traveltime data are computed by re-
flection ray tracing in a two-layer model with embedded slow-
ness anomalies. A source and receiver spacing of 10 m is used,
and there are 199 sources located on the surface. Each source
shoots into 200 receivers so 39,800 traveltimes are generated
for each simulation. It is assumed that the background medium
is a two-layer model with a homogeneous velocity in each
layer, and the depth of the horizontal reflector is known. The
localized slowness anomalies have a small contrast in velocity
so ray bending is negligible, and the training is computed for
localized slowness anomalies located randomly between the
reflecting interface and the recording surface.

The CNN trained on 10,000 pairs of slowness tomograms and
deconvolved tomograms. The training dataset contains mul-
tiple anomalies at random locations. The close comparison
(not shown) between the loss functions for the training and
validation sets suggest that the model is well trained without
overfitting. After training, the CNN is tested on the out-of-the-
training set models shown in the first column of images in Fig-
ure 3. The deconvolved tomograms in the third column suggest
that tomographic deconvolution can significantly improve the
resolution of the slowness tomograms in the middle column of
images. Many other examples (not shown) are tested and the
all of the results show that the deconvolved tomograms provide
significant improvement in resolution compared to the original
tomograms.

Models that Break the Deconvolution Filter

It is well known that the best resolution of a raypath is perpen-
dicular to the ray (Schuster, 2017). Therefore slowness vari-
ations in depth are not well resolved for reflection data with
narrow incident angles. This is illustrated in Figure 4 where
two oscillatory interfaces at different depths in Figures 4a and
4d give about the same traveltime data. This means that there
are many models that satisfy nearly the same data so the there
is not a unique solution to the traveltime equations, as illus-
trated by the tomograms in Figures 4b and 4e. Thus, it is not
surprising that the deconvolution operator gives poor results in
Figures 4c and 4f.

CONCLUSIONS

We presented the theory of tomographic deconvolution where
the tomogram is deconvolved of artifacts to give a high resolu-
tion estimate of the localized velocity anomalies in a reflecting
layer. The assumptions are that ray bending can be neglected in
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Figure 1: a) Horizontal reflector model along with the white direct and black reflection raypaths. b) Specular reflection and
transmission wavepaths obtained by reverse time migration of a trace recorded at the geophone (quadrilateral) and excited by a
bandlimited source (star). The gray-shaded migration ellipse has foci at the source and receiver. Figures courtesy of Ge Zhan.
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Figure 2: Tomographic models m’?"° = [LTL]’ILTd inverted from specular reflection traveltimes picked from a) one and b) two
ZO traces. The slowness model is updated by smearing the traveltime residuals to be within the Fresnel zone bounded by the thick
black line in b) that forms the rabbit ears. c) is the deconvolved tomogram F (m’"?).

the slowness anomalies and that the anomalies are no smaller
than a wavelength in order to satisfy the high-frequency ap-
proximation. To go beyond this approximation we should use
a wave equation tomography method. If the model with the
anomalies is in the null space of [LTL] then this method will
not be able to accurately recover these components. A san-
ity test is recommended after obtaining the deconvolved tomo-
gram. As an example, the final deconvolved tomogram should
be used to generate synthetic traveltimes, which can be com-
pared to the recorded ones to ensure that the L2 residual of the
deconvolved tomogram is equal to or less than that from the
input tomogram.

The computational requirements for training the CNN are high

in this feasibility study, but it is straightforward to reduce costs

by reusing the forward modeling Green’s functions as described
by the generalized migration procedure in Schuster (2017).

Other short cuts can be used as well such as transfer training.

Tomographic deconvolution can also be used for transmission

tomography and refraction tomography.
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Figure 3: First column depicts the actual slowness models, the second column show the traditional slowness tomograms and the
third column shows the deconvolved tomograms.
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Figure 4: Same as the previous figure except the input slowness models consists of oscillatory low-velocity layers at different
depths.



