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An efficient multiscale method for time-domain waveform tomography
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ABSTRACT

This efficient multiscale method for time-domain wave-
form tomography incorporates filters that are more efficient
than Hamming-window filters. A strategy for choosing opti-
mal frequency bands is proposed to achieve computational
efficiency in the time domain. A staggered-grid, explicit fi-
nite-difference method with fourth-order accuracy in space
and second-order accuracy in time is used for forward model-
ing and the adjoint calculation. The adjoint method is utilized
ininverting for an efficient computation of the gradient direc-
tions. In the multiscale approach, multifrequency data and
multiple grid sizes are used to overcome somewhat the severe
local minima problem of waveform tomography. The method
is applied successfully to 1D and 2D heterogeneous models;
it can accurately recover low- and high-wavenumber compo-
nents of the velocity models. The inversion result for the 2D
model demonstrates that the multiscale method is computa-
tionally efficient and converges faster than a conventional,
single-scale method.

INTRODUCTION

Traveltime tomography (Zhu and McMechan, 1989; Luo and
Schuster, 1991; Pratt and Goulty, 1991; Schuster and Quintus-Bosz,
1993; Nemeth et al., 1997; Min and Shin, 2006) is a robust tool for
estimating the subsurface velocity structure. By minimizing the dif-
ference between observed and calculated traveltimes, a velocity per-
turbation is calculated and the velocity model is updated iteratively.
Although this method is fast and cost effective, the high-frequency
approximation used by traveltime tomography violates the finite-
frequency bandwidth of the seismic source. As a result, an estimate
of the earth’s velocity structure from traveltime tomography is sub-

optimal. Moreover, traveltime tomography only uses the traveltime
of the first arrival and neglects other important information con-
tained within the amplitude and phase of the recorded data.

To overcome the high-frequency assumption, Fresnel-volume or
finite-frequency traveltime tomography (Cerveny and Soares, 1992;
Woodward, 1992; Schuster and Quintus-Bosz, 1993; Vasco et al.,
1995; Dahlen et al., 2000) and waveform tomography (Lailly, 1983;
Tarantola, 1984, 1986; Mora, 1987) have been developed. Wave-
form tomography can be implemented in the frequency domain
(Pratt, 1990; Liao and McMechan, 1996; Pratt et al., 1996; Pratt et
al., 1998) or the time domain (Tarantola, 1984, 1986; Mora, 1987;
Bunks et al., 1995; Zhou et al., 1995; Zhou et al., 1997). A velocity
tomogram obtained using waveform tomography that inverts all ar-
rivals has higher accuracy and resolution than one obtained by trav-
eltime tomography (Sheng et al., 2006). However, the waveform
misfit function is strongly nonlinear, and waveform tomography
typically converges to a local minimum if the starting model is not in
the vicinity of the global minimum (Gauthier et al., 1986).

Some efforts have been undertaken to overcome this local minima
problem in the time domain (Bunks et al., 1995; Sheng et al., 2006)
and the frequency domain (Sirgue and Pratt, 2004; Brenders and
Pratt, 2007). In the time domain, Sheng et al. (2006) propose a meth-
od called early-arrival waveform tomography (EWT), in which a
time window is applied to seismic data to allow for the inversion of
only early-arrival wavefields. The misfit function for EWT is more
linear with respect to slowness because fewer events need to be fitted
than in conventional full waveform tomography. However, high-fre-
quency data used in the inversion cause the misfit function to be
highly nonlinear, and EWT can suffer from the local minima prob-
lem.

Alternatively, multiscale waveform tomography (MWT), pro-
posed by Bunks et al. (1995) for time-domain waveform tomogra-
phy, uses a finite-impulse response (FIR) Hamming-window filter
for low-pass filtering of the seismic source wavelet and the data be-
fore inversion. This allows the inversion to proceed sequentially
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from low-frequency data to high-frequency data. Because the misfit
function at low frequencies is more linear with respect to slowness
than at high frequencies, MWT is more likely to reach the global
minimum (Sirgue and Pratt, 2004).

The Hamming-window function used for low-pass filtering in
Bunks et al. (1995) is not the most efficient filter for time-domain
MWT. Furthermore, data with arbitrarily chosen frequency bands
are used in the inversion method of Bunks et al. (1995). For each fre-
quency band, data are inverted for some number of iterations, but the
drawback is that too many frequency bands can result in a large
amount of computation time. In the frequency domain, Sirgue and
Pratt (2004) propose a strategy for choosing optimal frequencies.
This can reduce the computational cost of waveform tomography
greatly, but a modification of the method is required before it can be
applied in the time domain.

The multiscale approach can be applied to frequency-domain
waveform tomography because data already have been decomposed
into separate frequency components using the Fourier transform.
Combining the frequency selection strategy of Sirgue and Pratt
(2004) with the multiscale approach, a frequency-domain waveform
tomography method becomes much more efficient than a time-do-
main method, especially for 2D applications where forward model-
ing can be performed efficiently using LU decomposition, whichis a
direct linear solver. However, for 3D experiments, the LU decompo-
sition used for solving the large, sparse linear system arising from
frequency-domain forward modeling requires significant amounts
of computer memory and thus limits the problem size and the maxi-
mum frequencies used for 3D applications (Operto et al., 2007).An
iterative solver can avoid the memory issue (Warner et al., 2008), but
the efficiency of an iterative solver relies strongly on a precondi-
tioner. Without a good preconditioner, several iterations will be re-
quired, resulting in inefficient forward modeling.

Sirgue et al. (2007a, 2007b, 2008) propose a solution for 3D fre-
quency-domain waveform inversion by using time-domain forward
modeling and frequency-domain gradient computation. This hybrid
method requires a discrete Fourier transform of the entire wavefield
at each time step (Sirgue et al., 2008), which can be expensive to
compute. In contrast, pure time-domain waveform tomography does
not require such a large memory, preconditioner, and use of a dis-
crete Fourier transform. Therefore, it is desirable to develop a more
efficient multiscale waveform inversion method in the time domain.

In this paper, we improve the computational efficiency of the mul-
tiscale method of Bunks et al. (1995) by using a more efficient non-
leaky low-pass filter and a time-domain strategy for choosing opti-
mal frequency bands. Our filters are more efficient than the FIR
Hamming-window low-pass filter used by Bunks et al. (1995) for
time-domain multiscale waveform inversion. The strategy for se-
lecting frequencies for frequency-domain waveform tomography
proposed by Sirgue and Pratt (2004) is extended to time-domain
waveform tomography. This revised strategy is verified by inversion
results with 1D and 2D heterogeneous models.

We use true source wavelets in both experiments. In the 2D model
experiment, we show that MWT can mitigate the local minima prob-
lem of waveform tomography and yield an accurate estimate of the
velocity model, but conventional, single-scale waveform tomogra-
phy converges to a local minimum, resulting in an inaccurate esti-
mate of the true velocity model.
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METHODS FOR TIME-DOMAIN
WAVEFORM INVERSION

Acoustic waveform tomography

In this section, we review the theory of time-domain waveform to-
mography. The acoustic wave equation is used as our forward mod-
el, given by

1 8*p(r.r,)
— V2p(r.dr.) = s(r,fr.), 1
62(1’) Fy2 p( s) ( s) (1)
where p(r,¢|r,) is a pressure field at position r at time ¢ from a source

at ry, c(r) is the velocity model, and s(r,¢|r,) is the source function.
The forward solution p(r,z;r,) of the two-way wave equation 1 is
computed by a staggered-grid, explicit finite-difference method with
fourth-order accuracy in space and second-order accuracy in time
(Levander, 1988; Sheng et al., 2006). The free-surface boundary
condition is applied to the top boundary of the model, and the per-
fectly matched layer (PML) boundary conditions (Berenger, 1994;
Chew and Liu, 1996; Zeng et al., 2001; Festa and Nielson, 2003) are
used at the other boundaries. The solution to equation 1 can be writ-

tenas
ry) = f G(r,t

where G(r,t|r’,0) is the Green’s function and the symbol * repre-
sents temporal convolution.

Our inversion scheme is based on the adjoint method proposed by
Tarantola (1984). The data residuals are defined as

p(r,t r’,0)#s(r’ tflr,)dr’, (2)

5[)(l'g,l‘ I'S) = pobs(rg’t I'S) - Pcalc(rg’t I'S), (3)

where po(T,.t|r;) and pege(re.t|r,) are, respectively, the observed
and calculated data. The velocity model is updated by minimizing
the misfit function, defined as the L,-norm of the data residuals:

r,))>dt. (4)

333 [ optrs
s

A nonlinear preconditioned conjugate-gradient method (Luo and
Schuster, 1991; Sheng et al., 2006) is used to minimize the misfit
function. The gradient of the misfit function with respect to the ve-
locity model is computed by the zero-lag correlation between the
forward-propagated wavefields and back-projected wavefield resid-
uals (Tarantola, 1984; Luo and Schuster, 1991; Zhou et al., 1995;
Zhouetal., 1997; Sheng et al., 2006):

r)p'(r.fr)dt, )

o) = —3 f plrs
c(r) 5

where p denotes the time derivative of p, p(r,t|r,) represents the for-
ward-propagated wavefields, and p’(r,| r,) represents the back-pro-
jected wavefield residuals, given by

p'(r.tr,) = fG(r, — tr",0) % 8s(r’ t|ry)dr’ (6)
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and

os(r' t
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ry).

The velocity model is updated iteratively along the conjugate di-
rections defined by

di = —Pig + Bidy— 1, (8)

where iterations k = 1,2,. .. kn. g = g(r) for all image points r in
the model, and P is the conventional geometric spreading precondi-
tioner (Causse et al., 1999).

Atthe firstiteration, dy = —g,. The parameter S is obtained using
the Polak-Ribiére formula (Nocedal and Wright, 1999):

_ g (Prg— P i)

Bi ©)
g/f— P18
The velocity model is updated by
Cr1(1) = (1) + Ay (1), (10)

where A, is the step length, determined by a quadratic line-search
method (Nocedal and Wright, 1999), and d,(r) is the component of
the conjugate-direction vector d, at position r. At each iteration, one
forward propagation and one back projection are needed to compute
the gradient direction. Additional forward modeling is required for
the line search.

In this work, the starting model cy(r) is obtained using traveltime
tomography with dynamic smoothing filters (Nemeth et al., 1997).
Forward modeling and inversion are parallelized by shot numbers
and computed on a Linux cluster of AMD

Opteron 1-GHz processor. Equations 8—10 are a) 1

wcCcCe1

wavelength (Levander, 1988); a square grid (dx = dz) is used in our
finite-difference scheme. Therefore, the grid size used in forward
modeling is determined by

/\min

dx=——=

5 Sfmax

where dx is the grid size, A, is the minimum wavelength, ¢, is the
minimum velocity, and f,,, is the maximum frequency of the band.
Once the grid size is determined, the time step df is determined by
the 2D numerical stability condition (Bunks et al., 1995):

Crmin

(11)

dx
dt < —= ,

(12)
\‘”ZCmax

where ¢, s the maximum velocity.

In the original work of Bunks et al. (1995), a Hamming-window
function (Rabiner and Gold, 1975) is used for low-pass filtering the
source wavelet and the data. The source wavelet is presumably
known or estimated prior to the inversion. Several methods for esti-
mating a seismic source wavelet have been proposed (Oldenburg et
al., 1981; Lazear, 1993; Walden and White, 1998; Behura, 2007).

The Hamming-window function is a leaky low-pass filter as
shown in Figure 1d by the solid line. Figure 1d shows that the leaked
high-frequency components are weak compared to large-amplitude
frequency components, e.g., a dominant-frequency component.
However, these leaked high-frequency components can cause the
maximum frequency f.. to be a large number; therefore, a small
grid size is required to satisfy equation 11, resulting in computation-
al inefficiency. If a large grid size is used, numerical dispersion can

=

~'
g
o

©

applied iteratively until a stopping criterion is sat-
isfied, which is when the maximum number of it-
erations is reached or when there is no further de-
crease in data residuals. In practice, the rms error
or L,-norm of the data residuals may be used as a
stopping criterion, e.g., the inversion stops when
the error is less than a previously chosen toler-
ance value.
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raphy (Tarantola, 1984) using one frequency
band of the data and one finite-difference grid can
lead to the local minima problem. By using sever-
al frequency bands of the data and varying grid
sizes, the multiscale method of Bunks et al.
(1995) successfully inverts for the complex Mar-
mousi model. Low-pass filtering is crucial in
making multiscale waveform inversion possible
in the time domain.
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For a given frequency band, a finite-difference
grid size and a time step can be determined by the
numerical dispersion and stability conditions as-
sociated with the chosen explicit finite-difference
method. The numerical dispersion condition for
the finite-difference scheme used in this paper re-
quires at least five grid points per minimum
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Figure 1. (a) Low-pass filters in the time domain. (b) Amplitude spectra of the low-pass
filters in (a). (c) Original and filtered wavelets. The dash-dotted line is the original 20-Hz
Ricker wavelet, low-pass filtered such that the peak frequency is about 2 Hz. (d) Ampli-
tude spectra of the original and filtered wavelets in (c). In all views, the solid line is a
Hamming window, the dashed line is a Blackman-Harris window, and the dotted line is a
Wiener filter in the time domain.
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occur in forward modeling and may create artifacts in inversion re-
sults or cause convergence problems. It is therefore desirable to im-
plement an alternative low-pass filter for MWT that minimizes leak-
ing of the high-frequency components.

Several suitable filters are considered for MWT, including Wiener
filter, Blackman-Harris window function (Harris, 1978), Nuttall
window function (Nuttall, 1981), and Ricker function. The filtering
results of the first two filters in Figure 1 show they are more efficient
than the Hamming-window function. The amplitudes of leaked
high-frequency components from these filters are several orders of
magnitude smaller than those from the Hamming filter (Figure 1d).
Nuttall window and Ricker functions provide similar results but are
not shown here. The Wiener filter usually is applied in the frequency
domain; the other filters are applied in the time domain.

One merit of the Wiener filter is that it can filter one signal to
closely match another target signal. A low-pass Wiener filter can be
computed by
Wtarget(w) Wzriginal(w) (1 3)

fW' (w) = s
o |‘/Voriginal(("’)|2 + €’

where fiener i the Wiener filter, Woigina is the original wavelet, W,
is the low-frequency target wavelet, w is the angular frequency, € is a
small parameter that prevents numerical overflow, and f denotes the
complex conjugate. In Figure 1, the original and target wavelets are
20- and 2-Hz Ricker wavelets, respectively. The filtered wavelet ob-
tained by Wiener filtering is not exactly the same as the target wave-
let. However, the main purpose of our filtering is to obtain a wavelet
with alow-frequency band and minimal spectral leakage.

Figure 1 shows the results of low-pass filtering a source wavelet.
In time-domain MWT, low-pass filtering also is applied such that the
filtered source wavelet and the data have roughly the same frequency
range. In this paper, we use the Wiener filter, although other filters
can be chosen.

Strategy for choosing optimal frequency bands

The strategy proposed by Sirgue and Pratt (2004) for choosing op-
timal frequencies for frequency-domain waveform tomography is

K, A
K zmax(f)

kzmax(fn+ 1) kzmin(f)
kzmin(fn + 1)
K zmax(fa)
kzmin(fn )

0 >

0 f fout f

Figure 2. Strategy for choosing frequencies for frequency-domain
waveform tomography. A range of vertical wavenumbers can be re-
covered by a single frequency component of the data by using a
range of source-receiver pairs. A continuous coverage in vertical
wavenumbers is the key for choosing the next frequency. (after Sir-
gue and Pratt, 2004)
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extended to the time domain to reduce redundancy in the recovered
wavenumber spectrum of a subsurface velocity structure. At a single
frequency, the contribution of a single source-receiver pair has only
a single wavenumber component. A range of vertical wavenumber
components of the velocity model can be updated by using a range of
source-receiver pairs (Sirgue and Pratt, 2004).

Time-domain waveform tomography uses multiple frequencies
simultaneously during the inversion. Therefore, it can update a much
wider range of wavenumbers than using only a single frequency at a
time, as in frequency-domain waveform tomography. However, the
band-limited nature of seismic data, i.e., each frequency component
of the data has a different amplitude or strength, results in a band-
limited range of recovered wavenumber components of the velocity
model without sharp boundaries. Strong frequency components of
the data strongly contribute to the wavenumber update, whereas
weak frequency components (especially at the low and high ends of
a frequency band) have weak contributions and are ignored in our
strategy.

The formula for choosing frequencies proposed by Sirgue and
Pratt (2004) is

fn+1: fVl s (14)

min

where f, is the current frequency, f,.; is the next frequency to be
chosen, and a,;, = z/Vh? + Z? is the parameter that depends on the
maximum half-offset # and the maximum depth to be imaged z. At
S the vertical wavenumber range [ K. win(f,).k- max(f)] is updated
and can be determined by

47Tf rmin
kz min(fn) = ;1 ’
o
4 f,
kz max(fn) = c (15)

o

where c, is the homogeneous background velocity. Equation 14 en-
sures that at the next frequency f, ., the lowest wavenumber to be
updated is equal to the highest wavenumber at the current frequency,

kz min\J n + 1) = kz max(fn)’ (16)

as illustrated in Figure 2. Equations 14—16 are after Sirgue and Pratt
(2004).

In time-domain inversion, multiple frequencies for a given band-
width are used simultaneously. Therefore, a criterion is needed to de-
termine the minimum and maximum frequencies of the band, which
are used to calculate the recovered wavenumber range. Our criterion
is to use the frequencies at half the maximum spectral amplitude of
the frequency band.

This is illustrated in Figure 3b, which shows the amplitude spec-
trum of a 15-Hz Ricker wavelet (Figure 3a). At half the maximum
amplitude, the lower frequency is set as the minimum frequency of
the band f,,;,, and the higher frequency is set as the maximum fre-
quency fu.. The frequency components whose amplitudes are
smaller than half the maximum amplitude are considered to have in-
significant contributions to the wavenumber recovery. Nonetheless,
the contributions from these frequency components can be consid-
ered as some overlapped region between two recovered wavenum-
ber ranges from two consecutive frequency bands.

The criterion for choosing minimum and maximum frequencies
of a frequency band can be varied and depends on how much we
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want two recovered wavenumber ranges to overlap. Sirgue and Pratt
(2004) show that more frequency components are required for in-
verting noisy data. Similarly, larger overlapped regions of recovered
wavenumber components are required in our case and result in more
frequency bands in the inversion of noisy data.

In the nth frequency band, the minimum and maximum frequen-
cies of the band f,(n) and fi.(n), respectively, determine the
wavenumber range:

() = S min ) in
fomal) = 47Tfrcn—(n) (17)

In a manner similar to equation 16, at the next frequency bandn + 1,
the lowest wavenumber to be updated is equal to the highest wave-
number at the current frequency band n:

kz min(n + 1) = kz max(n)' (18)

This principle is illustrated in Figure 4.

In summary, the computational efficiency of time-domain acous-
tic waveform tomography increases by using a more efficient, non-
leaky low-pass filter and a strategy for choosing optimal frequency
bands. Regardless of computational efficiency, our method and the
method of Bunks et al. (1995) can yield about the same result. Our
method repeatedly uses low-frequency components of the data in the
inversion, similar to the approach of Bunks et al. (1995).

The starting frequency bands used in this paper are chosen arbi-
trarily. A good starting frequency band depends on model complexi-
ty. We believe, for a specific model, there is a range of starting fre-
quency bands to be used for successful inversion. However, our goal
here is not to present a criterion for choosing a starting frequency
band. In field data cases, a reasonable criterion is to use a frequency
band with the lowest peak frequency allowed as the starting frequen-
cy band.

NUMERICAL RESULTS

We now apply MWT with optimally chosen frequency bands to
two synthetic data sets generated from 1D and 2D models. The strat-
egy for choosing frequencies is based on the 1D assumption in a ho-
mogeneous medium, originally developed for application in the fre-
quency domain (Sirgue and Pratt, 2004). Thus, we need to validate
our strategy in the time domain by applying it to a 1D model. Our

1 b)
25
20
% 0.5 %
= £15
£ £
< < 10
5
05 fmin fmax
"0 0.05 0.1 0.15 0.2 0 10 20 30 40
Time (s) Frequency (Hz)

Figure 3. (a) A 15-Hz Ricker wavelet. (b) Its corresponding ampli-
tude spectrum. The frequency at half the maximum spectral ampli-
tude at the lower end is set as the minimum frequency of the band
fmins the frequency at half the maximum spectral amplitude at the
higher end is set as the maximum frequency f ..
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strategy is then applied to a 2D model to show that it also applies to
more realistic, geologic settings. The 2D model experiment is de-
signed to show the advantages of MWT compared to conventional,
single-scale waveform tomography (SWT). In both experiments,
true source wavelets are used and data contain low-frequency com-
ponents, generally unrealizable using current acquisition technolo-

gy-

1D model

Our 1D velocity model (Figure 5a) is similar to the model used by
Sirgue and Pratt (2004), whose strategy is applied successfully to 1D
and 2D heterogeneous models. Our experiment includes 81 sources
and 401 receivers per shot; the maximum offsetis 4 km. The sources
and receivers are distributed evenly along the surface, with spatial
intervals of 50 and 10 m, respectively. The thin layer located at
1.15 km (the bottom of the layer) is the target to be imaged. Figure
5b shows a shot gather from a source atx = 0 m.

k, A
Kymax(n+ 1)
Kymin(n+ 1)
zmax(n)
kzmin(n) >
0 frin(n) Frnax() fin(n + 1) fnax(n+ 1) f

Figure 4. Strategy for choosing optimal frequency bands for time-
domain waveform tomography. Data within a limited range of fre-
quencies are inverted, allowing recovery of arange of vertical wave-
numbers. Continuous coverage within the vertical wavenumber
spectrum is the key for choosing the next frequency band.

2
Offset (km)

2
Offset (km)

Figure 5. (a) A 1D velocity model. The target reflector is located at
1.15 km depth. (b) Shot gather of the 1D model generated from a 10-
Hz Ricker source wavelet. (c) The shot gather low-pass filtered by
the Wiener filter to the frequency band of a 2.5-Hz Ricker wavelet.
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The original data were generated by using a 10-Hz Ricker wave-
let, shown as the dashed line in Figure 6a, with a total record length
of 3 s and a grid size of 10 m. To satisfy the numerical stability con-
dition, the time-sampling interval is set to 2 ms. The source and re-
corded data are low-pass filtered using the Wiener filter to the band-
width of a 2.5-Hz Ricker wavelet (solid line, Figure 6a). Figure 5b
shows a shot gather after low-pass filtering. At this low-frequency
band, we can use a larger grid size, dx = 50 m, and a larger time sam-
pling interval, df = 10 ms. Therefore, the inversion at this low-fre-
quency band will be more efficient computationally, allowing us to
compute many iterations to recover the low-wavenumber compo-
nents of the velocity model as accurately as possible. The total num-
ber of model parameters to be estimated at this band is 81X 41
= 3321. The filtered data have a total record length of 3 s, so 300
time steps are required to generate the calculated data P, for com-
parison with the observed data P .

We now apply our strategy for choosing the frequency bands for
the 1D experiment. The low-frequency band (solid line Figure 6b) is
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Figure 6. (a) Source (Ricker) wavelets used in the 1D model. (b) Am-
plitude spectra of the wavelets in (a) and sequential frequency ranges
used to calculate recovered vertical wavenumber ranges. (c) Se-
quence of frequency bands generated by the strategy for choosing
frequency range for the 1D model.
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the first band used in the inversion, n = 1; the minimum and maxi-
mum frequencies at half the peak of this band are denoted as fi,(1)
and f.(1). The wavenumber range that can be recovered by this
low-frequency band is shown in the solid area in Figure 6c¢. The next
frequency band that satisfies equation 17 is for the 10-Hz Ricker
wavelet, the original source wavelet. Therefore, the grid size and
time step used for this high-frequency band are the same as the pa-
rameters used to generate the observed data originally. The total
number of model parameters to be estimated with this band is 401
X201 = 80,601, and the original data, with 1501 time samples per
trace, are used in the inversion. The minimum and maximum fre-
quencies of the second frequency band, fii.(2) and fn.(2), are
shown in Figure 6b; the corresponding wavenumber range is shown
in Figure 6¢ (solid area in the high-frequency range).

The inversion results of this experiment are shown in Figure 7.
With the low-frequency-band data, the inversion was iterated for 50
iterations, starting from an initial homogeneous velocity model (c,
= 2200 m/s). Twenty iterations were carried out with the high-fre-
quency-band data. The vertical profile of the final results at x
= 2 kmis shown in Figure 7a; its corresponding wavenumber com-
ponents are shown in Figure 7b. Figure 7¢ and d shows the contribu-
tions for each frequency band to the final image. The low-wavenum-
ber components of the velocity model can be recovered quite accu-
rately using the low-frequency band, whereas the high-frequency
band recovers the moderate- and high-wavenumber components.

2D model

The 2D model used in this experiment consists of several small-
scale velocity anomalies embedded within a background of slowly
varying macrolayers (Figure 8). These small-scale anomalies are
very difficult to recover using conventional traveltime tomography.
The seismic data for this experiment consist of 201 sources and 201
receivers per shot; the maximum offset is 4 km. The sources and re-
ceivers are distributed evenly along the surface, with spatial inter-
vals of 20 m. Figure 9a shows a shot gather from a source at
x = 0 m. The source signature used to generate the data is a 20-Hz
Ricker wavelet. The grid size of 5 m and the time-sampling interval
of 0.5 ms are used to generate the observed data, with a total record
length of 2.5 s.

Both SWT and MWT were applied to this data set. In SWT, the
original source and data were used in the inversion; in MW'T, multi-
ple frequency bands of the source and the data were used. In this ex-
periment, the starting frequency band has a peak frequency of 5 Hz.
By applying our strategy for choosing frequency bands to this exper-
iment, only the frequency bands of the 5- and 20-Hz Ricker wave-
lets, i.e., the original source wavelet, are needed.

Figure 9b shows a shot gather after low-pass filtering. With the
low-frequency band, we can use a grid size of 20 m and a time-sam-
pling interval of 2 ms without risk of numerical dispersion and insta-
bility. The total number of model parameters to be estimated at this
band is 201 X 51 = 10251, and the filtered data with the same total
record length have 1249 time samples per trace. With the high-fre-
quency band, the number of model parameters to be estimated in-
creases to 801 X201 = 161,001, and the original data with 5000
time samples per trace are used.

The initial velocity model used by SWT and MWT was obtained
by the traveltime tomography method of Nemeth et al. (1997) with a
50-m square smoothing filter. One hundred iterations were carried
out to obtain the traveltime velocity tomogram, which is incapable
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Figure 7. Time-domain multiscale waveform in-
version results for the 1D model. True velocity per-
turbations in the (a) space and (b) wavenumber
domains, are shown as a dashed line. The final esti-
mated velocity perturbations from the background
are a solid line. Contributions in the (c) space and
(d) wavenumber domains from the two frequency
bands. The solid lines are the contribution from
low-frequency-band data (peak frequency = 2.5
Hz). The dashed lines are from high-frequency-
band data (peak frequency = 10 Hz).

Figure 8. The 2D velocity model used to test the ap-
plicability of the strategy for choosing optimal fre-
quency bands in a 2D heterogeneous case.

Figure 9. (a) Original shot gather of the 2D model generated from a
20-Hz Ricker source wavelet. (b) Shot gather low-pass filtered by
the Wiener filter to the frequency band of a 5-Hz Ricker wavelet.
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of resolving the small-scale anomalies (Figure 10a). The ray-density
diagram from traveltime tomography (Figure 10b) can be used to de-
termine reliable regions in the traveltime tomogram.

The inversion results of this experiment are shown in Figure 11.
The data were inverted for 50 iterations with the low-frequency
band, followed by 20 iterations with the high-frequency band. Inver-
sion of low-frequency data was completed in 2 hours on our Linux
cluster with 100 CPUs; the high-frequency inversion was completed
in 12 hours. The velocity tomogram obtained after the low-frequen-
cy inversion is shown in Figure 11a. The tomogram obtained after
the low- and high-frequency inversions, our final inversion result
from MWT, is shown in Figure 11b. Figure 11c illustrates the final
inversion result of SWT after 45 iterations. Although the maximum

Figure 10. (a) Velocity tomogram from traveltime

Boonyasiriwat et al.

number of iterations was set to 70, the inversion was stopped at itera-
tion 45 as aresult of no further decrease in misfit. This indicates local
minima problems encountered by SWT.

The final model from SWT in Figure 11c shows an effect of the lo-
cal minima problem; the recovered model is much inferior to that ob-
tained using MWT. The total run time of SWT is 23 hours, 64%
longer than MWT, without additional benefit to the inversion result,
as evident by comparing the SWT result to the MWT tomogram. The
residual plot shown in Figure 12 shows that MWT residual is lower
than SWT residual by 16%. Comparing the tomograms to the true
model suggests that MWT converged to the global minimum but
SWT did not. By applying MWT successfully to a 2D model and
comparing the results to conventional single-scale waveform to-

Velocity (m/s)

tomography, the initial velocity model for wave-
form tomography methods used in the 2D model
experiment. (b) Ray density diagram from travel-
time tomography. Note the number of rays passing
through a model block. Also note the areas where
waveform tomography will improve the result us-
ing refraction energies.
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Figure 12. Relative data-residual plot. The solid line shows the rela-
tive data residuals of MWT versus the iteration number. The residu-
als at the first 50 iterations are from the low-frequency inversion us-
ing data with a peak frequency of 5 Hz. The last 20 residuals are
from the high-frequency inversion using data with a peak frequency
of 20 Hz. The dashed line shows the relative data residuals of SWT.

mography, it is clear that MWT has more computational efficiency
and a faster convergence rate than single-scale waveform tomogra-

phy.

CONCLUSIONS

We have developed a multiscale method that is more efficient than
a time-domain waveform tomography method. Increased computa-
tional efficiency is achieved by using the Wiener filter and the strate-
gy for choosing optimal frequency bands. We propose the Wiener
filter for efficient low-pass filtering for MWT in the time domain. By
applying the strategy for choosing optimal frequency bands, fewer
frequency bands are needed and unnecessary computational costs
from using too many bands are avoided. At low frequencies, forward
modeling and inversion are very efficient because larger grid sizes
and time steps can be used than at higher frequencies. By progres-
sively recovering higher wavenumber components of the velocity
structure, in a low to high fashion, the multiscale approach can im-
prove the convergence property of waveform tomography and par-
tially overcome the problem of encountering local minima in the
misfit function.

The frequency-band selection strategy was validated in an experi-
ment with a 1D model. By using the two frequency bands calculated
by our strategy, low- and high-wavenumber components of the mod-
el were recovered accurately. This result agrees with published work
for waveform inversion in the frequency domain. Results from an
experiment with a 2D model suggest that our multiscale method,
when applied for a 2D heterogeneous case, can increase computa-
tional efficiency and convergence rate when compared to a conven-
tional waveform tomography method.

In the field data cases with missing low-frequency components,
Wiener filtering using a Ricker wavelet as a target low-frequency
band can be inefficient. The other proposed filters can be used in-
stead. The criteria for selecting minimum and maximum frequencies
in a frequency band can be varied, depending on the data set, and
several frequency bands may be required.
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