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Least-squares migration of incomplete reflection data

Tamas Nemeth∗, Chengjun Wu‡, and Gerard T. Schuster∗∗

ABSTRACT
A least-squares migration algorithm is presented that

reduces the migration artifacts (i.e., recording footprint
noise) arising from incomplete data. Instead of migrating
data with the adjoint of the forward modeling operator,
the normal equations are inverted by using a precondi-
tioned linear conjugate gradient scheme that employs
regularization. The modeling operator is constructed
from an asymptotic acoustic integral equation, and its ad-
joint is the Kirchhoff migration operator. We tested the
performance of the least-squares migration on synthetic
and field data in the cases of limited recording aper-
ture, coarse sampling, and acquisition gaps in the data.
Numerical results show that the least-squares migrated
sections are typically more focused than are the corre-
sponding Kirchhoff migrated sections and their reflec-

tivity frequency distributions are closer to those of the
true model frequency distribution. Regularization helps
attenuate migration artifacts and provides a sharper, bet-
ter frequency distribution of estimated reflectivity. The
least-squares migrated sections can be used to predict the
missing data traces and interpolate and extrapolate them
according to the governing modeling equations. Several
field data examples are presented. A ground-penetrating
radar data example demonstrates the suppression of the
recording footprint noise due to a limited aperture, a
large gap, and an undersampled receiver line. In addi-
tion, better fault resolution was achieved after applying
least-squares migration to a poststack marine data set.
And a reverse vertical seismic profiling example shows
that the recording footprint noise due to a coarse receiver
interval can be suppressed by least-squares migration.

INTRODUCTION

A standard seismic migration operator can be regarded as
the adjoint of a seismic forward modeling operator (Claerbout,
1992) as used in the iterations of full waveform inversion
(Tarantola, 1984, 1987). Although an adjoint operator is a use-
ful approximation to the inverse of the forward modeling op-
erator, it is not the exact inverse. The standard migration op-
erator (e.g., Kirchhoff) can be modified to approximate the
exact inverse operator. For example, true-amplitude migra-
tion/inversion schemes (Bleistein, 1984; Hanitzsch et al., 1994)
were derived to compensate for the spreading losses in the
modeling operator. These schemes use high-frequency asymp-
totics to derive an analytic inverse represented by an inte-
gral equation, assuming as infinite recording aperture. Gray
(1997) gives an excellent comparison of the true-amplitude
methods. Similarly, Miller et al. (1987) modified the migra-
tion weights according to the generalized Radon transform.
Carrion et al. (1991) presented a wavefront-set method to esti-
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mate the effects of a limited recording aperture. In most cases
seismic data cannot be inverted for the correct earth model be-
cause either the modeling equations are inconsistent with the
data or an unlimited recording aperture is not feasible. In such
cases the exact inverse can be approximated by a generalized
inverse which can be formulated as a least-squares migration
(LSM) operator. The operation of LSM is equivalent to a lin-
earized inversion of the reflectivity for a given velocity distri-
bution. Tarantola (1987) provided the basic formalism for such
an inversion.

The following authors applied linearized inversion to a va-
riety of seismic problems. LeBras and Clayton (1988) ap-
plied iterative inversion to backscattered acoustic waves to ob-
tain velocity and density perturbations. Beydoun and Mendes
(1989) inverted elastic waves to obtain velocity perturbations.
Lambare et al. (1992) applied an iterative acoustic asymptotic
inversion to a North Sea data set and accurately reconstructed
velocity perturbations. Cole and Karrenbach (1992) used this
approach to reduce migration artifacts due to the aperture
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limitation of the observed diffractions. Schuster (1993) gener-
alized the least-squares formulation by adding constraint terms
to the objective function and applied it to crosswell synthetic
data. Sevink and Herman (1994) applied a Krylov-subspace
preconditioner to the main diagonal of the related Hessian ma-
trix to accelerate convergence. Ronen et al. (1995) used dealias-
ing dip moveout (DMO) (a partial prestack migration) to invert
for the stacked zero-offset data in cases of moderate data acqui-
sition irregularities and predict the missing data. Mittet et al.
(1997) used an iterative elastic migration to image complex
geology from offset vertical seismic profiling (VSP) data. Wu
and McMechan (1996) implemented a 2-D full-waveform in-
version of double-couple earthquake sources where the ve-
locity and density distributions were assumed to be known a
priori. They report increased model resolution and posterior
covariance after inversion. Duquet (1996) applied a linearized
inversion technique based on paraxial approximation to the
wave equation. He showed that the method can remove arti-
facts contaminating the individual depth images by integrating
a priori information in the inverse problem.

Favoring least-squares migration over Kirchhoff migration
or asymptotic inversion is justified when the data are incom-
plete. This can be explained by using Huygens’ principle: a
wavefront can be represented by a composite of secondary
wavefronts that originate from point sources along an earlier
wavefront. Kirchhoff migrated images are obtained by back-
projecting the observed data into the medium, where every
point of the medium is considered to be a possible diffrac-
tor. A necessary condition to image every diffraction point is
that the observed data along the aperture should be complete.
According to the slice-projection theorem (Kak and Slaney,
1988), an object can be completely imaged if it is illuminated
from all angles. For example, to completely reconstruct a point-
wise diffractor with measurements along the surface, continu-
ous measurements along an extremely wide recording aperture
are necessary. Furthermore, for discretely sampled data, the
spatial frequency of the objects in the view directions should
satisfy the spatial Nyquist sampling criterion. If the above con-
ditions are not satisfied, the data are incomplete and the object
cannot be exactly reconstructed.

There are several cases when the completeness condition
is not fulfilled in geophysics: truncated recording apertures,
coarse source-receiver distributions, and gaps in the recording
lines. A truncated recording aperture corresponds to multi-
plying the complete data by a boxcar function or convolving
the spectrum of the data with the corresponding sinc function
(Kak and Slaney, 1988). Data with large gaps in the record-
ing aperture correspond to multiplying complete data by a
set of nonoverlapping boxcar functions. Coarse source and/or
geophone sampling introduces aliasing artifacts due to the
wraparound effect in the model spectrum. All of these mi-
gration artifacts contribute to the “recording footprint noise”
seen in migrated sections.

The purpose of this paper is to evaluate the performance
of LSM for migrating incomplete data. The first part presents
the projector matrix associated with Kirchhoff migration and
establishes the relationship between incomplete data and the
matrix equations. The next section compares the performance
of preconditioned Kirchhoff migration and LSM for several
cases of incomplete data. Following that, we describe three
applications of LSM to field data. Suggestions on improving
the LSM method are given in the Discussion section.

BASIC EQUATIONS

Assume that the linear forward modeling operator
˜
L satisfies

p =
˜
Lm, (1)

where p is a vector of modeled data and m is the earth re-
flectivity model vector. The observed data po are described by
po =

˜
Lomo where mo is the true earth reflectivity model vector

and
˜
Lo is the forward modeling operator for the actual earth

model. Unless stated otherwise, we assume that
˜
L =

˜
Lo.

Kirchhoff migration uses the transpose of the forward mod-
eling operator in equation 1:

mk =
˜
LTp, (2)

where mk is the Kirchhoff migrated section. Substituting equa-
tion (1) into equation (2) yields

mk =
˜
LT

˜
Lm. (3)

The matrix
˜
LT

˜
L is a Hessian and defines mk as an

˜
LT

˜
L-filtered

version of m. The Kirchhoff migration operator will correctly
reconstruct the actual earth model vector if

˜
LT

˜
L is an identity

matrix
˜
I. In most cases

˜
LT

˜
L is not an identity matrix and has the

following characteristics: the elements in the main diagonal are
nonuniform and differ from unity, and elements off the main
diagonal are nonzero.

To illustrate these characteristics, the explicit form of the
integral operator corresponding to

˜
LT

˜
L is (see Appendix A)

K (x, x ′) =
∫
dshs(s)Asx Asx ′

×
∫
drhr (r)Axr Ax ′r R(τsx + τxr − τsx ′ − τx ′r ), (4)

where x and x ′ denote the locations associated with mk and m,
respectively; τsx is the wave propagation time from the source
at s to the reflector at x ; τxr is the wave propagation time from
the reflector to the receiver at r ; Asx and Axr are the amplitude
terms (estimated from the transport equation) that account for
geometrical spreading from, respectively, the source to the re-
flector and the reflector to the receiver; W = W (t) represents
the time history of the source wavelet; R is the temporal cross-
correlation of Ẅ delayed by the time (τsx + τxr − τsx ′ − τx ′r ),
and hs(s) and hr (r) are the source and receiver sampling func-
tions, respectively.

The following observations can be made from expression
(4):

(1) The main diagonal has the form

K (x0, x0) = R(0)
∫
dshs(s)A2

sx0

∫
drhr (r)A2

x0r
.

(5)
This expression shows that the value of the main diag-
onal elements (for a given source wavelet) depends on
the spreading losses (A2

sx0
, A2

x0r
) and on the discontinuous

sampling of the wavefield as governed by hs(s) and hr (r).
Kirchhoff migration schemes are usually augmented to
compensate for the spreading losses; this results in the an-
alytic inversion formulas of Bleistein (1984) and others.
The effects of discontinuous sampling can be mitigated by
normalizing K (x0, x0) by the numerical hit count in each
CDP bin. This compensation scheme can be interpreted
as applying diag(

˜
LT

˜
L)−1 as a preconditioning matrix.
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(2) Each column of
˜
LT

˜
L is the response to a fixed element

x ′ in m applied to the migrated section mk , after model-
ing and migration. For one trace, the migration response
will be along migration ellipses described by x that sat-
isfy τsx + τxr = τsx ′ + τx ′r . For complete data, the mi-
gration response is the sum of responses for individual
traces (with their corresponding weighting coefficients)
and migration yields a focused image around x = x ′ for
each diffractor point at x ′. In such cases

˜
LT

˜
L is diago-

nally dominated and
˜
LT ≈

˜
L−1. For incomplete data, the

migration response is not focused only around x = x ′ be-
cause the missing data lead to incomplete cancellation of
artifacts and thus significant off-diagonal elements exist
in
˜
LT

˜
L. In this case,

˜
LT '≈

˜
L−1, and some kind of matrix

inversion method is necessary.

Thus, if a source-receiver distribution results in incomplete
data, Kirchhoff migration will produce migration artifacts in
the migrated section. To minimize these artifacts, we shall solve
for m by minimizing the following objective function:

P(m) = ‖
˜
Lm− po‖2 + ε2‖

˜
Cm−

˜
Cmapr‖2. (6)

The first term on the right-hand side of equation (6) is the data
misfit function and the second term is a regularization term.

˜
C denotes a linear operator acting on m, specified for each
application using a priori information. A priori information
about the model might be incorporated with the mapr term,
and ε2 is the regularization weight. Expression (6) assumes that
the C-filtered model residual and the data residual probability
distributions are Gaussian.

The model that minimizes equation (6) is (Tarantola, 1987)

m = (
˜
LT

˜
L + ε2

˜
CT

˜
C)−1(

˜
LTpo + ε2

˜
CT

˜
Cmapr

)
, (7)

and solves the normal equation

(
˜
LT

˜
L + ε2

˜
CT

˜
C)m =

˜
LTpo + ε2

˜
CT

˜
Cmapr . (8)

In practice m is solved using an iterative scheme. In this paper,
a preconditioned conjugate gradient scheme (see Appendix B)
is used to solve equation (8) for the model m. This procedure
is denoted as least-squares migration.

APPLICATIONS TO SYNTHETIC DATA

In this section, the least-squares migration is applied to syn-
thetic high-frequency seismic reflection data. The goal of these
tests is to demonstrate the merits and limitations of LSM. We
will study the performance of LSM in the cases of limited data
aperture, coarsely sampled data, and data with gaps in the re-
ceiver line.

Limited aperture

The objective here is to demonstrate that LSM can compen-
sate for migration artifacts due to limited recording apertures.
Figure 1a shows a 12-point diffractor model where each diffrac-
tor has a reflectivity value of 1 and the background propagation
velocity is 2000 m/s. Figure 1b shows the common-shot gather
of seismograms generated by a source at 0 m horizontal posi-
tion and recorded by geophones with 1-m station increments.
The Kirchhoff and least-squares migrated sections are shown
in Figure 1c and 1d, respectively; the latter section has fewer

artifacts, as demonstrated in Figure 1e. Iterations were con-
tinued until the energy of the misfit seismograms reached the
threshold value of 0.001 of the input data energy (also denoted
as normalized objective function value). A total of 51 iterations
were needed to reach this threshold level, and no regularization
was applied.

The frequency distributions of the reflectivities in Figures 1a,
1c, and 1d are depicted in the histograms of Figure 1f, where
the x-axis corresponds to the reflectivity values and the y-axis
corresponds to the frequencies (occurrences) of the given re-
flectivity in the migrated sections. Least-squares migration has
produced a sharper frequency distribution of reflectivities than
has Kirchhoff migration and the LSM frequency distribution
is a better approximation to the true frequency distribution
denoted by the vertical arrows.

Coarse wavefield sampling

Spatially undersampled data introduce recording footprint
noise into the migrated sections. The goal here is to show that
LSM can partially attenuate the recording footprint noise and
fill in the data gap with traces by using the least-squares mi-
grated section.

Figure 2a shows an undersampled version of Figure 1a that
is obtained by zeroing out every second trace. The precondi-
tioned Kirchhoff migrated section is shown in Figure 2b. Both
aliasing and limited aperture artifacts are observable in this
migrated section. Figure 2c shows the least-squares migrated
section after 37 iterations (with regularization applied) where
the footprint noise has been considerably attenuated. The pre-
dicted (both the known and missing) data are depicted in Figure
2d and show a highly accurate prediction.

Gaps in the data

Gaps in recording lines are often treated as if zeros were
recorded where the traces are missing. The goal here is to
demonstrate that the inclusion of gaps in the data leads to
artifacts in the least-squares migrated sections. A decimated
version of the seismograms in Figure 1b, with two gaps in the
data, one from −4 to 7 m and the other from 14 to 21 m, is
shown in Figure 3a. The gaps are designed so that the data are
both aliased and devoid of the small angle diffractivity.

Figures 3c and 3e show the final least-squares migrated sec-
tion and the corresponding objective function when zero am-
plitude traces are assumed to be recorded in the gapped inter-
vals, respectively. Many iterations are necessary to reduce the
objective function value to 0.001, yet the migrated section is
defocused. Figures 3d and 3f show, respectively, the final least-
squares migrated section and the corresponding objective func-
tion when the zeroed traces are excluded from the data (i.e.,
no data are assumed to be recorded in the gapped intervals, so
that they do not enter the matrix system of equations). Fewer
iterations are necessary to reach the same objective function
value and the migrated section is more focused than is that of
Kirchhoff migrated section in Figure 3b. No regularization was
applied to these data.

The LSM migrated section, however, has some aliasing arti-
facts due to the aliased nature of the data. The diffractor images
on both sides of the model are nearly correct, but the diffrac-
tor images in the middle column are only partly focused at
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their true location because of the exclusion of the small-angle
diffraction data.

Effect of regularization

Aliasing artifacts can be attenuated by regularizing the equa-
tions that lead to the migrated section in Figure 3d. Regulariza-
tion reduces the size of the model space by imposing constraints
on the models. The dotted, dash-dotted, and dashed lines in
Figure 4d show the frequency distributions of reflectivities for
Figures 3b, 3c, and 3d, respectively. These frequency distribu-
tions indicate that a better reflectivity model estimate should
produce a frequency distribution with a narrower peak. This
requirement is satisfied for our L2 regularization scheme by
using damping with the diagonal matrix

˜
C containing ones and

zeros. The zero values are assigned to the columns containing
the diffractors and their neighbors; ones to all other columns.
The migrated section in Figure 4b shows that the aliasing arti-

FIG. 1. Effects of limited aperture on the 12-point diffractor model. The velocity of the migration and the forward modeling
correspond to the true parameters of the medium. (a) the 12-point diffractor model, (b) synthetic seismograms (common-shot
gather with the source at 0 m and central source frequency of 1000 Hz), (c) Kirchhoff migrated section, (d) least-squares migrated
section, (e) reflectivities at 5-m depth [the solid line shows the true reflectivities from (a), the stars and the circles show the estimated
reflectivities from (c) and (d), respectively], (f) frequency distributions of the reflectivities [the two arrows at 0 and 1 indicate the
true frequency distribution the; dotted and the solid lines show the distributions from (c) and (d), respectively].

facts were successfully damped. More importantly, most of the
energy of the middle-column diffractors is focused at their true
locations (Figure 4c). The resulting frequency distribution is a
better approximation to the true distribution (Figure 4d). Note,
however, that in complex cases the separation of aliased and
non-aliased energy is not trivial; in those cases, either more
sophisticated

˜
C matrices are necessary or the chosen objec-

tive function should better approximate the assumed true fre-
quency distribution.

Incorrect migration velocity

The goal is to demonstrate the sensitivity of LSM to changes
in the migration velocity. Figure 5 shows the results of using
incorrect velocities by migrating the data with a velocity that
is 10% lower than the actual velocity. As depicted in Figure 5,
the LSM images for different objective function values diverge
from the original model while predicting the observed data
(compare Figure 5 with Figure 1).
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The migration artifacts seen in these migrated sections fol-
low two trends. First, the strong migration-ellipse artifacts in
Figure 5a become more attenuated with increasing iteration
number. Then, in order to predict the data, new model arti-
facts are introduced, as seen in Figures 5c and 5d. These trends
can also be detected in the frequency distributions of these
migrated sections (Figure 5f). The phenomenon of slight im-
provement in the model estimates followed by their deteri-
oration is not unique to this example and is an indicator of
incorrect migration parameters. Another indicator is that the
convergence of the objective functions in cases of incorrect mi-
gration parameters (Figures 3d and 5e) is significantly slower
than in cases with proper parameters (Figures 3f and 4a).

Fault model

Attenuating migration artifacts not only focuses the images
of isolated diffractors, it also reveals otherwise hidden features.

FIG. 2. Effects of coarse wavefield sampling on the 12-point
diffractor model. (a) Synthetic seismograms where every other
trace is missing, (b) Kirchhoff migrated section, (c) least-
squares migrated section, (d) predicted unaliased seismograms
using the least-squares migrated section.

The fault model in Figure 6a illustrates this claim. A common-
shot gather (Figure 6b) was created where the source is at the
0-m horizontal position and the receivers have a 1-m spacing.
Figure 6c shows the Kirchhoff migrated section, and Figure 6d
shows the least-squares migrated section. Note the improve-
ment in the depositional sequence at around 15-m depth. More
comparisons between Kirchhoff migration and least-squares
migration are shown in Nemeth (1996).

SEG/EAGE Overthrust data

The Society of Exploration Geophysicists (SEG) and Euro-
pean Association of Geoscientists and Engineers (EAGE) de-
signed the acoustic Overthrust model shown in Figure 7a, and
provided us with the corresponding poststack traces computed
by a finite-difference solution to the acoustic wave equation.
The data along a 2-D line are shown in Figure 7b. This exam-
ple shows a successful application of LSM and highlights some
of the problems with LSM at the same time. The problems
usually arise when the LSM modeling operator does not take
into account some wavemodes present in the data or it is not
an accurate enough approximation of the actual wave prop-
agation. In particular, some off-plane reflections are present
in the data and the amplitude changes for some diffractors do
not follow simple amplitude characteristics due to the complex
geology.

First, we muted the observed data at 2 s and later to im-
age only reflections originating above 4.5 km. In this way, the
strong free-surface multiples were eliminated. Then, we ap-
plied Kirchhoff migration to the Overthrust data. The resulting
migrated section is shown in Figure 8a. After that we applied
LSM to the Overthrust data. The resulting migrated section
is shown in Figure 8b. There, the data residual is 1%, and it
took 31 iterations to reach this level. The problems pointed
out above can be observed in the zone near a point at 6.5-km
lateral position and 1.8-km depth (image resembling a partially
collapsed diffractor, but its origin is an off-plane reflection) and
near a point at 7-km lateral position and 3-km depth (partially
collapsed diffractor). These artifacts are a clear reminder of
possibilities and the limitations with using LSM (and other mi-
gration methods).

GROUND-PENETRATING RADAR DATA

In this section, the LSM method is applied to ground-
penetrating radar (GPR) field data. GPR field data were col-
lected at Point of the Mountain, near the southern edge of
the Salt Lake Valley, Utah. Point of the Mountain is a large
sand bar formed by the southward net transport of sand and
gravel along the western shore of Pleistocene lake Bonneville
(Machette, 1988). The survey site is located on the southern
edge of Point of the Mountain (Figure 9) and is on an outcrop
exposure. The purpose of the GPR experiment is to map the
depositional sequences within the sand bar.

For the field measurements, 50-MHz antennas were used.
Several common-offset radargrams were acquired along pro-
files A, B, and C. Along profile A, radargrams with offsets 2,
4, 6, 8, and 10 m were acquired. For profile B, radargrams with
offsets 2, 4, 6, and 8 m were collected, whereas for profile C,
a 2-m common-offset gather was collected. The interval be-
tween the adjacent traces is 0.5 m. The initial data processing
included elimination of the high-frequency static shifts due to
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the occasional source and receiver mispositioning, and low-
pass filtering and removal of the strong first-arrival signals. No
amplitude enhancement was applied to the traces. The velocity
distribution for LSM was chosen as 0.15 m/ns (half of the speed
of light in vacuum) for dry sands (Davis and Annan, 1989) in the
upper 15 m, and 0.13 m/ns for the second layer corresponding
to wetter sands. The attenuation rate for modeling and migra-
tion was chosen to be 0.01 dB/m and corresponds to typical
attenuation values for dry sands (Davis and Annan, 1989).

The 8-m common-offset gather of profile A is depicted in Fig-
ure 10a. The gather has an acquisition gap in the 26–38 m inter-
val. The preconditioned Kirchhoff migrated section is shown
in Figure 10b. It contains two types of artifacts. First are the
migration ellipses directly below the interval of the acquisition
gap. The second type of artifact is the set of curved migration el-
lipses near the edges of the migrated section, resulting from the
limited aperture of the data. As demonstrated in Figure 10c,
these artifacts are attenuated after 20 iterations of the LSM
method. Unlike the Kirchhoff migrated section, the width of
the gap in the least-squares migrated section corresponds to
the width of the gap in the common-offset gather, indicating

FIG. 3. Demonstration of migration artifacts associated with irregular gaps in the data for the 12-point diffractor model. (a)
Synthetic seismograms, b) Kirchhoff migrated section, (c) Least-squares migrated section corresponding to the final iteration in
(e), (d) Least-squares migrated section corresponding to the final iteration in (f), (e) normalized objective function obtained by
treating the gaps in (a) as if zeros were recorded, (f) normalized objective function obtained by excluding the gaps from the data.

a better lateral resolution for LSM than for Kirchhoff migra-
tion. The data residual decreased to 0.5% from the initial 36%.
Figures 10d and 10e show the predicted common-offset gathers
for Kirchhoff and least-squares migration, respectively. Consis-
tent with the previous synthetic tests the least-squares migrated
section provided an accurate prediction of the data.

Figure 11a shows the 8-m common-offset gather along pro-
file A, except the traces are 1:4 subsampled. Most of the re-
flections are now aliased. Kirchhoff migration of these aliased
data produces artificial reflectors (Figure 11b) with geologi-
cally unreasonable dips. To attenuate these reflectors, LSM is
applied to the Figure 11a data where the regularization matrix
is
˜
C = a(∂/∂x) + b(∂/∂z), a= cos(5◦), b= sin(5◦), and the ar-

gument of the trigonometric functions is the dip of the upper
layers in Figure 11b. The least-squares migrated section after 20
iterations is depicted in Figure 11c. The data residual decreased
to 0.3% from the initial 34%, and the recording footprint
noise due to subsampling is significantly attenuated. Addition-
ally, Figure 11d shows the predicted data from the Figure 11c
model. Comparison of Figure 11d with Figure 10 a suggests a
good correlation between the measured and predicted data.
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In the stacked migrated sections for each line (Figure 12),
two distinctive depositional sequences can be distinguished.
The first is about 10-m thick (from 2–3 m to about 13 m in the
figures). It is characterized by layers moderately dipping (less

FIG. 4. The same as in Figure 3 except regularization is used
to damp the aliased events. (a) Normalized objective function,
(b) Least-squares migrated section, (c) Reflectivities at 5 m
depth (the solid line shows the true reflectivities, the stars and
the circles show the estimated reflectivities from Figure 3d and
Figure 4b, respectively; note that regularization helps predict
a more accurate reflectivity for the diffractor at 0 m horizon-
tal position), (d) frequency distributions of the reflectivities in
Figures 3 and 4 (the two arrows at 0 and 1 indicate the true fre-
quency distribution, the dotted line corresponds to Figure 3b,
the dash-dotted line to Figure 3c, the dashed line to Figure 3d,
and the solid line to Figure 4b).

than 5◦) to the southwest. The second sequence is character-
ized by steeply dipping 25◦–30◦) layers. This interpretation is
confirmed by the sedimentary features observed in a nearby
open gravel quarry.

REVERSE VSP DATA

In this section, the LSM method is applied to reverse
VSP (RVSP) field data for the purpose of imaging the sub-
surface reflectivity structure. The RVSP data were acquired
near Friendswood, Texas, and the description of the experi-
ment is given in Chen et al. (1990). The data consisted of 23
common-receiver gathers, with offsets ranging from 8 to 200 m.
Each common-receiver gather contained 98 downhole sources
evenly distributed over the depth range of 10 to 340 m. The
interval between the adjacent downhole sources is 3 m and
between the adjacent surface receivers is 8 m. The data pre-
processing included the following steps: (1) bandpass filtering
(90–600 Hz) to remove both the high- and low-frequency noise,
(2) first-arrival traveltime picking, (3) direct-wave removal, (5)
trace amplitude normalization, (6) f -k filtering to separate the
up- and downgoing waves, (7) traveltime tomography to esti-
mate the background velocity distribution. Figure 13b shows
a seismogram recorded at a 135-m offset from the source well
after the preprocessing.

The data were initially migrated using Kirchhoff migra-
tion. The resulting migrated section is shown in Figure 13c.
The Kirchhoff migrated section contains familiar migration el-
lipses. These artifacts cannot be compensated by stacking all
the prestack migrated sections because the wavefield sampling
along the receiver axis is coarse, resulting in recording footprint
noise in the stacked migrated section.

To remove these artifacts, least-squares migration is applied
to the data. Here we employ regularization by using a linear
filter operator

˜
C = ∂/∂x and

˜
CT =−∂/∂x in equation (6). The

regularization parameter ε2 is exponentially decreased from
2 to 0 as the iterations proceed. In this way, the regulariza-
tion term dominates the early iterations, and the misfit term
is dominant at later iterations. Figure 13d depicts the result-
ing least-squares migrated section. The migration ellipses are
severely attenuated. The normed data residual decreased to
17% after 20 iterations from the initial 79%. The predicted
seismograms using the Kirchhoff and least-squares migrated
sections are shown in Figures 14a and 14b, respectively.

Then the LSM method was applied to the 23 common-
receiver gathers, and prestack migrated sections were obtained.
Before stacking the prestack migrated sections, a VSP residual
moveout correction (Nemeth, 1994) was performed to com-
pensate for distortion induced by the incorrect background
velocity distribution. The corrected stacked migrated section
is shown in Figure 14d. Figure 14c shows a good correlation
between the migrated data trace and the well-log synthetics
near the source well.

MARINE CDP POSTSTACK DATA

The LSM method was applied to CDP poststack data col-
lected in the Gulf of Mexico (courtesy of Mobil). Figure 15a
shows the poststack data along a 2-D line. This example demon-
strates the benefits of increased spatial resolution with LSM
images, even though the data are not spatially undersampled.
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These data were migrated with conventional Kirchhoff mi-
gration to give the migrated image shown in Figure 15b. The
LSM images after 30 iterations are shown in Figure 15c. As in
the synthetic data examples, the LSM images have reflectivity
strengths that are better balanced. The CDP interval for these
data is 25 m, so these data were not aliased and, consequently,
the acquisition footprint due to receiver sampling is small.

DISCUSSION AND CONCLUSIONS

A least-squares migration algorithm is presented that sup-
presses migration artifacts (i.e., recording footprint noise) as-
sociated with incomplete data, where the data incompleteness
arises from a finite recording aperture, coarse source/receiver
sampling, and irregular recording gaps. The artifacts associated
with incomplete data can sometimes be attenuated by stack-
ing many migrated sections. There are many cases, however,
when the fold of the data does not allow for effective stacking.
Such cases include 3-D acquisition gaps, coarsely sampled data
(i.e., a sparse-offset VSP survey), the edges of the migrated
sections (surface common-midpoint 2-D, 3-D sections) or bad-
data sections in the observed data. Least-squares migration can
improve the lateral resolution of the subsurface images without
requiring costly acquisition of denser data sets.

FIG. 5. The same as in Figure 1 except the migration velocity is taken to be 0.9 times the true velocity. (a) Kirchhoff migrated section,
(b) migrated section at objective function value of 0.25, (c) migrated section at 0.05, (d) migrated section at 0.0018, (e) normalized
objective function, (f) frequency distributions of the reflectivities in the above migrated sections [the two arrows at 0 and 1 indicate
the true frequency distribution, the dashed line corresponds to (a), the solid line to (b), the dash-dotted line to (c), and the dotted
line to (d)].

Kirchhoff migration and the measured incomplete data are
often augmented to reduce the artifacts due to incomplete data,
using some a priori information. For Kirchhoff migration these
procedures involve tapering of the traces near the edges of
the recording aperture and limiting the incidence angles for
imaging; for the measured data, interpolation and extrapola-
tion can be used to fill in the missing data gaps. If the a priori
information is sufficient, these procedures greatly improve the
migrated section. In the common case of insufficient or inaccu-
rate a priori information, however, these procedures might be
ineffective and introduce additional artifacts in the migrated
sections. In contrast, least-squares migration helps reduce ar-
tifacts in a natural way by generating the model that predicts
the observed data in a least-squares sense.

The present version of LSM uses a preconditioning matrix to
speed up convergence. The off-diagonal elements of the pre-
conditioning matrix are zero, and the diagonal elements are
calculated analytically as described in Appendix B. This ver-
sion of LSM requires a few tens of iterations to compute the
migrated sections shown in this paper. With an identity matrix

˜
I preconditioner, it would have taken a few hundred iterations
to arrive at the same results! A few tens of iterations, how-
ever, are computationally still too expensive for many data sets.
Better preconditioning matrices might reduce the number of
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iterations to an acceptable few. These preconditioning matri-
ces should be based on the sparse off-diagonal structure of the
Hessian matrix.

It is an interpretive decision to choose the number of iter-
ations or the acceptable data residual level. Our experience
indicates that for good quality seismic data a residual level of
1–3% is acceptable. At this level, the amplitudes in the residual
data are already evenly distributed and reach the noise level.
We followed these two stopping criteria except for simple nu-
merical models with no added noise.

Careful data management also decreases the relative cost
of LSM in subsequent iterations. In general case LSM costs
R= 1 + 2 i ter Kirchhoff migrations, where i ter is the final it-
eration in LSM. If we can split migration into (precomputed)
reusable and nonreusable parts, the computational ratio be-
comes R= 1 + 2 i ter [(nr + io)/(nr + ru)], where nr is the com-
putational time for the nonreusable part, ru is the computa-
tional time for the reusable part and io is the access time for
the reusable part. In case of LSM, ru includes the traveltime

FIG. 6. The fault model used to demonstrate the capability
of LSM to image hidden or weaker diffractors. (a) The fault
model, (b) synthetic seismograms, (c) Kirchoff migrated sec-
tion, (d) least-squares migrated section.

FIG. 7. Test with the Overthrust velocity model. (a) Over-
thrust velocity model associated with the Phase A data set
(SEG/EAGE 3-D Modeling Series No. 1), (b) zero-offset Phase
A data set associated with the SEG Overthrust model.

FIG. 8. Poststack migration images of the SEG Overthrust
model. (a) Image obtained by using Kirchhoff migration [au-
tomatic gain control (AGC) has been applied], (b) image ob-
tained by least-squares migration.
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FIG. 9. Sketch of the field experiment site at Point of the Mountain, Utah. Point of the Mountain is a sand bar
formed along the shoreline of Pleistocene lake Bonneville. The experiment site is an outcrop exposure with sand
gravel and a thin veneer of cemented gravel on the surface. South of the experiment site, Point of the Mountain
abruptly drops off due to the depositional bar form. In other directions, the surface is covered with soil and
vegetation. The outline of the site is marked with a solid line.

table formation and provides significant saving for large mod-
els where io* ru.

Further improvements to LSM can be made by (1) finding
the means to determine the proper regularization matrix

˜
C,

(2) using non-Gaussian assumptions about the model and data
residual distributions, and (3) making LSM more robust in the
presence of noise.
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paths RPS), (b) processed common-receiver gather (the re-
ceiver is at 135-m horizontal position), (c) Kirchhoff migrated
section, (d) least-squares migrated section. Note that the mi-
gration artifacts are attenuated in (d).
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mon-receiver gather predicted with Kirchhoff migrated sec-
tion, (b) common-receiver gather predicted with least-squares
migrated section, (c) well-log synthetics (traces 1–4) and mi-
grated data trace (5–8) at the source well, (d) the stacked mi-
grated section after residual moveout correction.

FIG. 15. The Gulf of Mexico data experiment. (a) Poststack
traces; (b) Poststack Kirchhoff migrated section; (c) Poststack
LSM migrated section. It appears that the LSM migrated sec-
tion is more highly resolved than the Kirchhoff migration
section.
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APPENDIX A
THE INTEGRAL EQUATION FORMULATION OF THE HESSIAN MATRIX

˜
LT

˜
L FOR KIRCHHOFF MIGRATION

Equation (1) can be written explicitly as

p(r, t | s, 0) =
∫
m(x)W (t) ∗ G(r, t | x, 0)

∗ G̈(x, t | s, 0) dx, (A-1)

where G(x, t | s, 0) and G(r, t | x, 0) are Green’s functions for
the sources at s and the scattering point at x and for same at
the scattering point and the receivers at r , respectively, and
W (t) is the source wavelet (Bleistein, 1984). The zeroth-order
asymptotic Green’s function is

G(x, t | x ′, 0) = Axx ′ δ(t − τxx ′), (A-2)

where Axx ′ is the solution of the transport equation and
δ(t − τxx ′) is the traveltime between x and x ′.

Substituting this Green’s function into equation (A-1) yields,
for those sources and receivers that are sampled by the hs(s)
source sampling function and the hr (r) receiver sampling
function,

p(r, t | s, 0) =
∫
m(x)Asx Axr Ẅ (t − τsx − τxr ) dx . (A-3)

Similarly, we can get the Kirchhoff migration equation

mk(x) =
∫
dshs(s)

∫
drhr (r)

×
(∫

p(r, t | s, 0)Asx Axr Ẅ (t − τsx − τxr ) dt
)

. (A-4)

Substituting equation (A-3) into equation (A-4), and inter-
changing the integrals, the Kirchhoff migration equation can

also be written as

mk(x) =
∫
dx ′m(x ′)

∫
dshs(s)Asx Asx ′

∫
drhr (r)Axr Ax ′r

×
(∫

Ẅ (t − τsx − τxr )Ẅ (t − τsx ′ − τx ′r ) dt
)

. (A-5)

The kernel of the outermost integral, K (x, x ′), can be written
as

K (x, x ′) =
∫
dshs(s)

∫
drhr (r)Asx Asx ′ Axr Ax ′r

× R(τsx + τxr − τsx ′ − τx ′r ), (A-6)

where R(τsx + τxr − τsx ′ − τx ′r ) denotes the temporal crosscor-
relation of

˜
Ẅ with its (τsx + τxr − τsx ′ − τx ′r ) shifted version

as seen in the innermost integral in equation (A-5). Then the
Kirchhoff migration equation is written as

mk(x) =
∫
K (x, x ′)m(x ′) dx ′, (A-7)

and its discretized version can be represented as

mk =
˜
Km, (A-8)

where matrix
˜
K is also the Hessian matrix

˜
LT

˜
L. Kernel K (x, x ′)

can be regarded as a projection applied to the function m(x)
to give mk(x). For a fixed diffractor point x f , K (x, x f ) shows
the response of the system to a point diffractor source. If only
one trace is migrated, the response is the migration-ellipse im-
pulse response. If a sufficient number of traces is used, the
response will approximately reconstruct the point reflectivity
at x f from the migration ellipses.

APPENDIX B
THE PRECONDITIONED AND REGULARIZED CONJUGATE GRADIENT SCHEME

In this section, the preconditioned and regularized conjugate
gradient scheme is derived. Equation (6) also can be written as

(

˜
L
ε
˜
C

)T (

˜
L
ε
˜
C

)

m =
(

˜
L
ε
˜
C

)T (
po

ε
˜
Cmapr

)

. (B-1)

To speed up convergence, preconditioning of the previous
equations is necessary. Choose the preconditioning matrix

˜
W

˜
WT

(

˜
L
ε
˜
C

)T (

˜
L
ε
˜
C

)

˜
W
˜
W−1m =

˜
WT

(

˜
L
ε
˜
C

)T (
Po

ε
˜
Cmapr

)

.

(B-2)
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Based on this equation, a good
˜
W
˜
WT approximates the in-

verse of the Hessian matrix as seen by left-multiplying equa-
tion (B-2) with

˜
W. An approximate choice for

˜
W might

be a diagonal matrix with 1/

√
diag(

˜
LT

˜
L) + ε2diag(

˜
CT

˜
C)

where the first term can be calculated analytically as in
asymptotic inversion of Bleistein (1984) and the computation
of the second term is also feasible. Introducing new variables
ˆ
˜
L =

˜
L
˜
W,

˜
Ĉ =

˜
C
˜
W and m̂ =

˜
W−1m, equation (B-2) can be

rewritten as

( ˆ
˜
L
T ˆ
˜
L + ε2

˜
Ĉ
T

˜
Ĉ
)
m̂ = ˆ

˜
L
T

po + ε2

˜
Ĉ
T

˜
Cmapr . (B-3)

The conjugate gradient scheme based on equation (B-3) can
be written as

m̂0 = 0; do =
(

po

˜
Cmapr

)

;

g0 =




ˆ
˜
L

ε2

˜
Ĉ




T (

po

˜
Cmapr

)

; h0 = g0;

for n = 0, 1, 2, . . .

fn =




ˆ
˜
L

˜
Ĉ



hn

αn = ‖gn‖2

‖ ˆ
˜
Lhn‖2 + ε2‖

˜
Ĉhn‖2

m̂n+1 = m̂n + αnhn; dn+1 = dn − αnfn

gn+1 =



 ˜
L̂

ε2

˜
Ĉ




T

dn+1

if gn+1 < η or dn+1/do < µ then quit

βn = ‖gn+1‖
‖gn‖2

2

hn+1 = gn+1 + βnhn

end;

m =
˜
Wm̂

where gn is thenth regularized gradient vector, hn is thenth con-
jugate direction vector, dn is the nth regularized data residual
vector (the zeroth iteration is the data itself), fn is the nth for-
ward modeled conjugate direction vector,αn andβn are weight-
ing coefficients, and η and µ are predetermined accuracy limits.
This scheme implicitly calculates the matrix-vector operations.
The matrices are never formed explicitly; instead, they are re-
placed by a forward and an adjoint modeling subroutine that
returns the resulting vector.
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