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Least-squares migration of multisource data with a deblurring filter

Wei Dai', Xin Wang', and Gerard T. Schuster?

ABSTRACT

Least-squares migration (LSM) has been shown to be able
to produce high-quality migration images, but its computa-
tional cost is considered to be too high for practical imaging.
We have developed a multisource least-squares migration
algorithm (MLSM) to increase the computational efficiency
by using the blended sources processing technique. To ex-
pedite convergence, a multisource deblurring filter is used as
a preconditioner to reduce the data residual. This MLSM
algorithm is applicable with Kirchhoff migration, wave-
equation migration, or reverse time migration, and the gain
in computational efficiency depends on the choice of migra-
tion method. Numerical results with Kirchhoff LSM on the
2D SEG/EAGE salt model show that an accurate image is
obtained by migrating a supergather of 320 phase-encoded
shots. When the encoding functions are the same for every
iteration, the input/output cost of MLSM is reduced by 320
times. Empirical results show that the crosstalk noise intro-
duced by blended sources is more effectively reduced when
the encoding functions are changed at every iteration. The
analysis of signal-to-noise ratio (S/N) suggests that not too
many iterations are needed to enhance the S/N to an
acceptable level. Therefore, when implemented with wave-
equation migration or reverse time migration methods, the
MLSM algorithm can be more efficient than the conven-
tional migration method.

INTRODUCTION

Conventional migration (Claerbout, 1971) computes the reflec-
tivity image by applying the adjoint operator to the data. Migration
can also be interpreted as the first iteration of iterative inversion, in
which the Hessian of the misfit functional is approximated as a

diagonal matrix. This approximation is violated when the data
are incomplete (Nemeth et al., 1999) and the migration image will
be obscured by migration artifacts.

It has been shown that least-squares migration (LSM) (Nemeth
et al., 1999; Duquet et al., 2000) can improve the resolution of the
migration image and suppress migration artifacts. However, one of
the drawbacks of LSM is its high computational cost. In this paper,
we propose to use a summation of phase-encoded shot gathers as
input data to reduce the computational burden of LSM. The blended
data are similar to that used in the blended sources method (Romero
et al., 2000), but our proposed scheme of multisource least-squares
migration (MLSM) aims to improve the image quality while reduc-
ing crosstalk noise. During the inversion, a deblurring filter is used
as a preconditioner (Hu and Schuster, 2000; Guitton, 2004; Aoki
and Schuster, 2009) to speed up the convergence.

Blended sources processing

In blended sources processing, many conventionally acquired
shot gathers are phase-encoded and blended together to form super-
gathers to reduce the computational cost and input/output (I/0)
burden of migration. Romero et al. (2000) first explored this idea
with the wave-equation migration of synthetic data associated with
the Marmousi model. They produced acceptable images with less
cost than the conventional method. The limitation of their approach
was that the blended sources images were always no better in qual-
ity than the corresponding conventional images because the blended
sources introduced unacceptable crosstalk noise into the final
migration section. To increase the computational efficiency of full
waveform inversion, Zhan et al. (2011) apply the multisource multi-
scale waveform inversion to 2D synthetic data and used a
deblurring filter to reduce the crosstalk error. Their numerical
results showed a 12-fold speedup in computation efficiency. Krebs
et al. (2009) present their full waveform inversion result with
blended sources encoded by random encoding functions. Their
computational efficiency was increased by a factor of 50 compared
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with standard full waveform inversion, and their method has been
mostly tested for a fixed-spread acquisition geometry. The exten-
sion of blended sources processing to marine acquisition is a topic
of current research.

Crosstalk noise reduction

As mentioned earlier, blended sources processing introduces
crosstalk noise, which needs to be removed from the final migration
images. Simultaneous sources acquisition shares some common
ground with blended sources, as it reduces the acquisition cost, but
introduces crosstalk noise also. The simplest approach for reducing
crosstalk noise in multisource data is to use standard migration and
stacking procedures. Lynn et al. (1987) show that coherent noise in
multisource data (with several shot gathers per supergather) can ef-
fectively be suppressed by weighted stacking. Hampson et al.
(2008) report their synthetic and field data examples and show that
for 2D cases and two shot gathers per supergather, simple stacking
was effective enough, but for their 3D example, they found that the
shot separation technique was necessary due to the strong
reflections from the shallow-water bottom. Fromyr et al. (2008)
achieve similar image quality with two-source shooting as com-
pared with conventional acquisition in their wide azimuth experi-
ment. With careful survey design, a suitable marine environment
and a small number of multiple sources, simple stacking alone
might be sufficient for quality imaging. To assist in this design pro-
cess, Schuster et al. (2011) provide rigorous formulas for predicting
the level of crosstalk noise as a function of the encoding parameters.

Scope of this paper

In this paper, an MLSM algorithm is proposed to combine the
strengths of LSM and blended sources processing to produce high
quality images with low computational cost. The LSM improves the
image quality by suppressing migration artifacts, balancing reflec-
tor amplitudes and enhancing image resolution, and blended
sources processing increases the computational efficiency. During
the iterations of LSM, the crosstalk noise introduced by blended
sources is effectively reduced. The MLSM algorithm can be imple-
mented with any migration method and the gain in efficiency
depends on the migration method. Our goal is to test the effective-
ness of the MLSM algorithm with a Kirchhoff migration method.

This paper is organized into the following three sections. The first
part presents the theory of phase-encoded LSM of supergathers.
The next section presents synthetic results that demonstrate the
efficiency and effectiveness of the MLSM algorithm. Finally, a
summary is provided.

THEORY

For a fixed-spread acquisition, the phase-encoded multisource
data (i.e., supergathers) can be represented as

d= iPidi, (1)

where S is the number of multiple shots and matrix P; represents the
phase-encoding functions (in this study, the encoding functions
involve random source time delay). All the P; are chosen to be
unitary so that P7P; is equal to the identity matrix.

In equation 1, we define d as a supergather, which is the summa-
tion of shot gathers, each with shot excitation time shifted by a ran-
dom time shift with a standard deviation greater than the source
period. It is shown in Schuster et al. (2011) that the combination
of random polarity changes, random time shifts and random shot
locations is more effective at reducing crosstalk noise than the
use of any of the three encoding functions alone. We assume that
the ith CSG d; and the reflectivity model m are related by

di = Lim’ (2)

where L; is the linear forward modeling operator associated with the
ith shot. This operator can represent either a Kirchhoff or a wave-
equation modeling method (Mulder and Plessix, 2004). Plugging
equation 2 into 1, we get

S
d=> PLm=Lm, 3)
i=1

L

where the supergather modeling operator is defined as

Multisource migration

From equation 4, the supergather migration operator is defined as
the adjoint of the supergather modeling operator,

N
LT => LTPI, (5)
i=1
so that the supergather migration image is
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consisting of two terms: the first term is the standard migration im-
age, and the second term is the crosstalk noise introduced by multi-
source blending of shot gathers. The magnitude of the crosstalk
term for a variety of different phase-encoding functions is derived
in Schuster et al. (2011).
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Multisource least-squares migration (MLSM)

To suppress crosstalk noise to an acceptable level when the num-
ber of multiple sources S is large, we solve equation 3 in the least-
squares sense (Dai and Schuster, 2009; Dai et al., 2009). That is,
define the objective function as

1 1
Fm) =54 =Lm|?+ 2 2m = my |2, D

so that, an optimal m is sought to minimize the objective function in
equation 7. In equation 7, Tikhonov regularization (Tikhonov and
Arsenin, 1977) is used, and 4 is the regularization parameter that is
determined by a trial and error method. Smoothness constraints in
the form of second-order derivatives of the model function can
expedite convergence (Kiihl and Sacchi, 2003) and partly overcome
the problems associated with errors in the velocity model.

With the assumption that nothing is known about m, my, is set to
be equal to zero. The model m that minimizes equation 7 can be
found by a gradient type optimization method

m&t) = m®) — gF (L7 (Lm® —d) + im®¥),  (8)

where L7 (Lm® — d) + 2m® is the gradient, F is a precondition-
ing matrix, and «a is the step length. Because both the forward
modeling and migration operators are linear and adjoint to each
other, the analytical step length formula can be used. Alternatively,
to improve the robustness of the MLSM algorithm, a quadratic line-
search method is carried out with the current model and two trial
models. In this study, we use the conjugate gradient (CG) method,
which generally converges faster than the steepest decent method.
Moreover, static encoding is used where the encoding functions are
the same for every iteration to reduce the I/O cost. Boonyasiriwat
and Schuster (2010) show that dynamic encoding (encoding
functions are changed at every iteration) is more effective in 3D
multisource full waveform inversion and so dynamic encoding re-
sults are presented as well. To ensure the convergence of MLSM,
the migration velocity should be close to the true velocity model.

Numerical implementation

The numerical scheme in equation 8 is applicable to any migra-
tion method and its associated forward modeling
(demigration) operator. Each type of migration a)
method, e.g., Kirchhoff migration, one-way
wave-equation migration or reverse time migra-
tion, can be implemented in the mode of LSM
(Nemeth et al., 1999; Duquet et al., 2000; Kaplan
et al.,, 2010; Dai and Schuster, 2010). When
combined with blended sources processing, each
specific implementation will bear different
advantages. The computational cost of the one-
way wave-equation migration or reverse-time
migration method is reduced by S times when
S sources are blended together. In addition, the
I/O cost is reduced by S times with static encod-
ing method. On the other hand, the computa-
tional cost of Kirchhoftf migration is relatively
low, but it cannot be further reduced with blend-
ed sources processing because the Kirchhoff

Stack S CSGs
—_—

migration operation of L7P7 in equation 5 must be applied
separately to the supergather for i = 1,2, ..., S. However, the 1/O
cost is reduced by inputting only a supergather so this will reduce
the overall run time of Kirchhoff LSM.

In this paper, the MLSM algorithm is implemented with Kirchh-
off migration and tested on synthetic blended sources data. To
expedite convergence, a deblurring filter (see Appendix A) is used
as a preconditioner (Hu and Schuster, 2000; Guitton, 2004; Aoki
and Schuster, 2009) that can reduce the migration artifacts related
to Kirchhoff migration (frowns and smiles) and compensate for the
energy loss from geometric spreading, and therefore, speeds up the
convergence. Numerical simulations are conducted to validate these
statements.

Signal-to-noise ratio analysis

Itis desirable to estimate the relationship between the S/N, defined
in Appendix B) enhancement and the number of shot gathers (S) for
iterative LSM of supergathers. Although it affords no simple analy-
tical expression for the dependence of S/N on the number of itera-
tions of LSM, we focus on how the S/N is reduced by iterative
stacking (multiple migrations of all shots) of Romero et al.
(2000), where all the shots in a survey are phase-encoded and
blended together to form a supergather before migration (Figure 1).
Here, we assume the data are noise free and the noise is defined to be
the crosstalk noise only. In other words, in equation 6 the “standard
migration image” term is assumed to be noise free, whereas the
“crosstalk” term is responsible for all the noise. For convenience,
the terms in equation 6 are regrouped here as follows,

s s signal noise
—e, N ————
My = Y My, = Y <L,T Lm+ ) L'PT PiL,»m> :
i=1

i=1 i
)

In equation 9, we further assume the signal term and S — 1 noise
terms in the parentheses are of comparable energy, and that those
S — 1 noise terms are incoherent. Consequently, the S/N is roughly
1/V/S—1 for my,; the image associated with ith sources.
After summation over all the S sources, the S/N of my,;, is
V8/+/S =1, assuming the signal term from all the S sources are
coherent.

b) ¢) d)

Migrate S shots
—_—

in one supergather

Figure 1. (a) Time-shifted shot gathers, (b) blended supergather created by blending S
time-shifted shot gathers, (c) migration images after migrating the supergather for each

shot position with S/N approximately 1/v/S — 1, (d) final image after summing S mi-
gration images. The final S/N is v/S/v/S — 1.

Downloaded 04 Mar 2012 to 109.171.137.210. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



R138 Dai et al.

This S/N analysis is summarized in Figure 1. Here, S shots in
Figure 1a are encoded and stacked together to form a supergather
that is noise free, in Figure 1b. The supergather is then migrated S
times — once for each of the S source locations — to produce S
images, as shown in Figure 1c. Every image contains one signal
image from a correctly decoded and migrated shot and S — 1 noisy
images from the rest S — 1 shots being migrated with wrong source
locations and wrong time shifts. As analyzed before, every image in
Figure Ic has a S/N approximately 1/+/S — 1. After stacking all the
S images together in Figure 1d, the S/N becomes v/S/+/S — 1. Here,
the key assumptions are

e The correctly decoded and migrated shots from all the S
images give coherent signal that will constructively stack
after stacking. In addition, geometrical spreading effects
can be ignored.

e Theincorrectly decoded and migrated shots generate random
noise with the same strength due to random encoding that
will destructively stack after stacking.

e The crosstalk noise from each migration at each iteration is
uncorrelated:

S/N ~ VSI/VS—1. (10)

In the case that there are N supergathers in the survey, the S/N is
proportional to

S/N ~ VNSI/VS -1

~ VNI, when S>1, (11
02
0.1
E
N
-0.1
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Figure 2. 2D SEG/EAGE salt model (reflectivity).

Table 1. Modeling parameters for conventional sources
simulation.

Model size 645 x 150 Src wavelet Ricker
Grid interval 9.14 m Peak freq. 50 Hz
Src number 320 Src interval 18.3 m
Rec. number 320 Rec. interval 18.3 m
Trace length 4s Regularization 1.0e -7
Subsec. size 5X5pts Filter size 3% 3 pts

where N is the number of supergathers and / is the number of itera-
tions. The total number of shots is N X S. When S is equal to one for
the conventional sources situation, there will be no crosstalk noise.
Because we assume there is no noise in the original shot gathers, the
S/N of the migration image is infinity, and when S is much greater
than one, the S/N is independent of S. Equations 10 and 11 will be
validated with numerical examples for S > 1. In the case of iterative
LSM, the crosstalk noise in the gradient or conjugate direction from
each iteration is correlated with each other for static encoding;
moreover, after being scaled with the step length, the variance of
the crosstalk noise would be different for every iteration, where
early iterations receive large weight. Therefore, we expect the
S/N enhancement to be less than the prediction from equation 11,
where crosstalk noise is assumed to be of comparable energy.
When S is small, e.g., S = 2, the S/N of a conventional Kirchhoff
migration image is often large enough, because N is large in this
case. Several studies (Beasley, 2008; Hampson et al., 2008;
Berkhout, 2008; Fromyr et al., 2008) have shown that conventional
stacking and migration of simultaneously acquired supergathers can
effectively suppress the interference of reflections from different
sources, i.e., crosstalk. However, if S is large, the crosstalk noise
is intolerable due to the decrease of the number of supergathers
N. In the next section, MLSM is applied to synthetic multishot
supergathers to suppress the crosstalk and improve the S/N.

NUMERICAL TESTS

The MLSM algorithm wth Kirchhoff modeling and adjoint op-
erators is tested on synthetic data generated by a Born modeling
method for the 2D SEG/EAGE salt model. Figure 2 shows the re-
flectivity model calculated from the velocity model by using vertical
rays and constant density assumptions; the true velocity model is
used for migration. The ocean bottom reflector is muted to better
illustrate the deep structure, and 320 sources and 320 receivers are
deployed on the surface with the same sampling interval of 18.3 m.
The modeling parameters are listed in Table 1 (see Appendix A for
the meaning of deblurring filter parameters), where the deblurring
filter is only applied at the first two iterations® to provide a good
initial model for the inversion. The regularization parameter is cho-
sen based on a trial-and-error method and is reduced by half after
each iteration. Regularization is important for attenuating crosstalk
noise and high-frequency noise associated with the deblurring filter.

Conventional sources least-squares
migration and deblurring

Figure 3a shows the 2D prestack Kirchhoff migration image
(color scale boosted to show deep structures) for a conventional ac-
quisition geometry of 320 individual shots with 320 receivers per
shot. To reduce the artifacts, a nonstationary preconditioner (also
denoted as a deblurring filter in Aoki and Schuster (2009)) is ap-
plied to the Kirchhoff migration image to give the result shown in
Figure 3b. It is referred to as the deblurred image.

Comparison of the deblurred image and nondeblurred images
shows that the deblurred image has a more balanced reflectivity am-
plitude, which indicates that amplitude weakening due to geometric
spreading is compensated. The migration artifacts are also sup-
pressed in the deblurred image. However, the deblurring filter also

3The standard preconditioner (Nemeth et al., 1999; Plessix and Mulder, 2004) of inverse geometric spreading is used at every iteration.
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introduces some high-frequency noise into the deblurred image be-
cause it only approximates the inverse Hessian (see Appendix A for
details). In the end, the filter is effective for deblurring Kirchhoff
migration images, but it comes with the price of adding high-
frequency noise. A more effective deblurring filter (Yu et al.,
2006) can be used but comes with added computation cost.

To summarize the overall effect of the deblurring filter, Figure 4
depicts the convergence curves for both standard (CG) and de-
blurred LSM (it is referred to as DCG). Here, the CG result after
one iteration is equivalent to the Kirchhoff migration image, and the
first iteration result of DCG represents the deblurred image. We can
see that the deblurring filter reduces the data residual by 52%, in
spite of the high-frequency noise it introduced. It is not used after
a few iterations and allows the LSM to reduce the remaining noise.

Figure 3c shows the conventional sources LSM image after 30
CG iterations*, which is almost identical to the original model. It
demonstrates that LSM can sometimes produce images of higher
quality and resolution compared to Kirchhoff migration (Nemeth
et al., 1999), if the migration velocity is a somewhat accurate ren-
dering of the actual smoothed velocity.

Multisource least-squares migration

To simulate multisource data, conventional sources data are en-
coded and blended together to form a small number of supergathers.
The 320 shot gathers are separated into different clusters of super-
gathers, where each supergather in a cluster is formed by stacking a
unique set of shot gathers together to form the following data sets:

a)
0
400
E
N 800
1200
b)
400 E
E
N 00
1200
0 1200 2400 3600 4800
X (m)

32 10-shot supergathers, 16 20-shot supergathers, eight 40-shot
supergathers, four 80-shot supergathers, two 160-shot supergathers,
and one 320-shot supergather. Each shot gather has a random time
shift applied to it with a standard deviation equal to about seven
times the dominant period of the source wavelet. All the random
time shifts are generated by a random number generator that honors
a uniform probability distribution. Figure 5 shows the Kirchhoff
migration images from all the experiments. Consistent with equa-
tion 11, these results show that decreasing the number of super-
gather leads to increasing levels of crosstalk.

To further validate equation 11, we adopt the iterative stacking
approach (multiple migrations of all shots) in Romero et al. (2000),
where all the 320 shots are encoded and blended together and
migrated with different encoding functions for many iterations.
The migration images from different iterations are then stacked
together to improve the S/N. Numerically, we use the formula,

S/N _ ||mref||

= , 12
Jm® — m] (12

for the S/N calculation, where m,; is the reference migration image
for conventional sources (Figure 3a) and m™® is the stacked image
after k iterations (k-fold). According to equation 11, the S/N is pro-
portional to v/I, I being the number of iterations. The numerical
results in Figure 6 largely agree with the prediction in which
the measured S/N is normalized by the S/N of the first iteration
to compare with the /I curve. Figure 7a shows the Kirchhoff

d)

0 1200 2400 3600 4800
X (m)

Figure 3. (a) Kirchhoff migration image for conventional sources data, (b) KM image after deblurring (deblurred image), (c) least-squares
migration image after 30 CG iterations, (d) preconditioned LSM image after 30 DCG iterations.

“DCG produces basically the same result after so many iterations, shown in Figure 3d.
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Figure 4. Normalized data residual plotted against iteration number. The 05. Convergence curves of conventional source data
line with stars indicates the convergence of the conjugate gradient meth- ’ ——
od and the line with squares shows the convergence when the deblurring 0.45}
filter is used as a preconditioner.
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Figure 5. Kirchhoff migration images obtained from the following clusters of supergathers, (a) 32 10-shot supergathers, (b) 16 20-shot super-
gathers, (c) eight 40-shots supergathers, (d) four 80-shot supergathers, (e) two 160-shot supergathers, and (f) one 320-shot supergather. Here,
all shot gathers consisted of 320 traces, and each supergather in a cluster was formed from a unique set of shot gathers.
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migration image of a 320-shot supergather with only one stack
(I = 1); Figure 7b the fivefold stacked image (I = 5); Figure 7c
the 10-fold stacked image (/ = 10); and Figure 7d the 20-fold
stacked image (I = 20). These numerical results suggest that itera-
tive stacking is very effective in suppressing random crosstalk
noise. The iterative stacking method is applicable to marine data
with either wave-equation or reverse-time migration, where the
supergathers are not explicitly formed, but instead, the back-
propagated wavefields are superimposed together. However, with-
out LSM, these migration artifacts will persist in the images.

For the case where S is much greater than 1, Figure 8 presents the
migration images in which the input data consist of only one super-
gather (N =1, in equation 11) but there are different numbers
of shot gathers in the supergather: Figure 8a S = 40, Figure 8b

S = 80, and Figure 8c § = 160. These results, along with Figure 5f,
demonstrate that the S/Ns of these migration images are mostly in-
dependent of the number of shot gathers in the supergather. At first
glance, this result appears contradictory to intuition because the mi-
gration of a 160-shot supergather might be expected to yield a less
noisy image than a 80-shot supergather. However, the 160-shot
supergather has a higher crosstalk noise level (by a factor of V/2) than
the 80-shot supergather, which cancels the v/2 S/N enhancement in
migrating a 160-shot supergather. The key point here is that increas-
ing the number of unique supergathers is more effective at S/N en-
hancement than increasing the number of unique shot gathers per
supergather.

According to equation 11, even a single 320-shot supergather can
be used to get an accurate image if the number of iterations is large

15 Figure 6. The predicted and measured S/N of iterative stacking method
Observed - are plotted against iteration number as dashed and solid lines. The mea-
= = = Prediction P . . .
_- surements have been normalized by the first iteration result.
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Figure 7. Stacked images for iterative stacking after (a) one iteration; (b) five iterations; (c) 10 iterations; (d) 20 iterations.
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enough. To verify this prediction, Figure 9a-9¢ shows the MLSM
images after iteratively migrating a 320-shot supergather; here, the
deblurring filter is applied to stabilize and speed up the conver-
gence. It is clear that the image quality increases with the number
of iterations. After 60 iterations, the MLSM image is of high quality
and mostly free of migration artifacts and crosstalk. It indicates that
MLSM can accurately estimate the model even when hundreds of
shots are blended together in the processing step, and it does not
require too many iterations. Moreover, because the S/N is propor-
tional to v/N, N being the number of supergathers, the crosstalk
noise will be more effectively suppressed when there is more than
one supergather.

Dynamic encoding versus static encoding

Following Krebs et al. (2009) and Boonyasiriwat and Schuster
(2010), a different time-shift encoding of the shot gathers at each
iteration can be used for MLSM; we call this dynamic encoding,
compared with static encoding where a shot gather has the same
time shift for any iteration. To compare the effectiveness of the
dynamic encoding method relative to static encoding, the MLSM
of one 320-shot gather is computed with dynamic encoding.
Figure 9e and 9f shows the migration images after 10, 30, and
60 iterations. Compared with Figure 9a-9c, the MLSM result is

400 B

1200

400

1200

400

z(m)

800

1200

0 1200 2400 3600 4800
X (m)

Figure 8. Same as Figure 5, except the supergather clusters con-
sisted of (a) one 40-shot supergather, (b) one 80-shot supergather,
and (c) one 160-shot supergather.

improved, which indicates that dynamic encoding is more effective
than static encoding in reducing crosstalk.

To quantitatively show the image quality improvement due to dy-
namic encoding, the S/N is calculated for the MLSM images and
compared with the S/N of the statically encoded images in
Figure 10. For each iteration, the corresponding conventional
sources LSM image is used as the reference signal. Here, we assume
that the convergence rate is the same for conventional sources and
multisource LSM. Results clearly show that the dynamic encoding
helps suppress the crosstalk and produce images with higher S/N
compared to static encoding. With dynamic encoding, the assump-
tion that the crosstalk noise at every iteration is uncorrelated with
the crosstalk at previous iterations is closer to the ideal case com-
pared with static encoding. The drawback is that now / supergathers
with different encoding functions are required at input, so that the
I/0 cost will increase and approach that of conventional migration
for a large number of iterations (/).

However, our numerical results show that MLSM algorithm is
less efficient in reducing crosstalk than the iterative stacking meth-
od, as shown in Figure 10. The S/N of the 60-iteration MLSM im-
age with dynamic encoding (Figure 9f) is comparable to the S/N of
the 20-fold stacked image (Figure 7d: Note that the migration arti-
facts in this image are considered as signal in the S/N calculation).
One possible explanation is that during the iterations of MLSM the
gradients or conjugate directions are computed from different resi-
dual data and scaled by different step lengths to make different con-
tributions to the MLSM image and cause the S/N enhancement of
MLSM to be suboptimal. Therefore, in real applications, many
supergathers () should be used. According to equation 11, more
supergathers will greatly improve the S/N of final images, which is
evident in examining the change from Figure 5f to Figure Sa.

When the processing technique for blending sources is used in
full waveform inversion, the S/N of the inverted result is expected to
behave in a manner similar to that of MLSM, but analysis is difficult
because full waveform inversion is a highly nonlinear process.

Computational cost

Each iteration of iterative LSM costs about two migrations, so the
cost of iterative LSM is about 2/ times that of standard migration.
Assuming an ideal land acquisition geometry in which the geo-
phones are fixed and S shot gathers are recorded, the total computa-
tional cost in computing the migration image is cost®" ~ Sa for
conventional prestack migration, where « is the cost of one
wave-equation migration. In comparison, if N supergathers are mi-
grated, then the cost per iteration of LSM is only 2Na. This assumes
a wave-equation migration method. If / iterations are needed, then
the total cost of LSM is cost™ ~ 2Nal. Therefore, we conclude
that the cost of MLSM can be less than standard migration if

NI <S. (13)

In our empirical results, a high-quality image is obtained after 60
iterations for a 320-shot supergather, which translates to about 2.7
times speedup if the numerical tests are performed with wave-equa-
tion migration or reverse time migration. Meanwhile, the image is
free of migration artifacts and with balanced amplitudes (Figure 9c).

Another important saving is the reduction of I/O cost. For
Kirchhoff migration, the I/O cost can be the dominant factor for
the run time. By statically encoding S shots into a supergather,
the I/O cost is reduced to 1/S of the original cost, which allows
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a) d)

MLSM image after 10 iterations with static encoding MLSM image after 10 iterations with dynamic encoding
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MLSM image after 60 iterations with static encoding MLSM image after 60 iterations with dynamic encoding
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Figure 9. LSM images of a 320-shot supergathers after (a) 10, (b) 30, (c) 60 iterations with static encoding or (d) 10, (e) 30, (f) 60 iterations
with dynamic encoding.

18- S/N versus number of iterations Figure 10. The solid line with squares shows the measured S/N for
- images of one 320-shot supergather with static encoding; the solid line
16} —s— Static P e with stars shows the results with dynamic encoding. Here, the measured
—+— Dynamic PP S/N is normalized by the first iteration result. The dashed line indicates

144 - - - Prediction P the prediction from equation 11.
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a significant saving in run time of MLSM. For dynamic encoding, if
1 iterations are needed, / supergathers with different encoding func-
tions are required at input, so that the I/O cost is reduced to 7/S of
the original cost. Therefore, MLSM with dynamic encoding does
not enjoy a large I/O cost reduction if the number of iterations
is large. An optional strategy is to periodically stop the iterations
in static iterative LSM and restart them at the stopping model
but with a new encoding function in the supergathers. In the above
calculation, the cost of computation and 1/O of preprocessing step
is not considered.

CONCLUSION

A MLSM algorithm is proposed to efficiently produce high qual-
ity images. This algorithm is implemented with the Kirchhoff mi-
gration method and tested with 320 synthetic shot gathers for the 2D
SEG/EAGE salt model. An accurate image is obtained by migrating
a supergather composite of all these 320 shot gathers after 60 itera-
tions. Compared to conventional Kirchhoff migration image, the
1/0 cost of MLSM with static encoding is reduced by 320 times.
The MLSM image is much more resolved than conventional
Kirchhoff migration image because the migration artifacts are sup-
pressed, the reflector amplitudes are balanced, the image resolution
is enhanced, and the crosstalk noise is reduced. According to the
signal-to-noise ratio analysis, an acceptable number of iterations
are needed to achieve high enough S/N. This suggests that high-
quality images can be produced with less cost than a conventional
migration method, if the MLSM algorithm is implemented with the
wave-equation migration method.

Two encoding strategies are discussed in this paper. The MLSM
algorithm with static encoding enjoys lower I/O cost compared to
the MLSM with dynamic encoding, but our empirical results show
that the MLSM with dynamic encoding, on the other hand, is more
effective in reducing crosstalk noise introduced by blended sources.
Compared with the iterative stacking method, the MLSM algorithm
improves the image quality by suppressing the migration artifacts,
balancing the reflector amplitudes, and enhancing the image reso-
lution, although the MLSM algorithm requires more iterations to
reduce crosstalk than the iterative stacking method. For example,
the measured S/N of the 60-iteration MLSM image with
dynamic encoding is comparable with the S/N of the 20-fold
stacked image.

Future research is needed to address the following questions.
First, the MLSM has only been tested with fixed-spread acquisition
geometry. The extension to marine acquisition will be significant.
Second, the least-square migration seeks a model that optimally fits
the data. This process is sensitive to the velocity model, and it is
important to reduce this sensitivity for real applications. A third in-
teresting research topic is to look for model-dependent efficient en-
coding functions.
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APPENDIX A
DEBLURRING FILTER

Following Aoki and Schuster (2009), we use a grid model with an
even distribution of isolated point scatterers m,; as our reference
model. According to equation 6, we get

Myyig_ref = LTLmref = LTd, (A-1)

where L is the linear diffraction stack operator, which only
depends on the background velocity v, and the source receiver
configurations. Here a column of the L7L matrix represents a
migration Green’s function (Schuster and Hu, 2000). Then, as
shown in Figure A-1, we divide m,; into somewhat large subsec-
tions centered around each point scatterer. In each subsection, we
define a small-sized filter f;, such that

[m fi = [mref]i' (A-2)

mig,ref]i *
where i indicates the ith subsection and the notation []; denotes the
model in the ith subsection. It is very important to choose a proper
size for [m,]; because it has to be big enough to cover the main
part of the migration butterflies (Schuster and Hu, 2000). In each

C
) d=Lm.;
A
) s S oL
a £
VD -
e W e

/
;

b)

e) Deblurring filter F
_ —1 —1
by P »4
-1 —1
D4

Figure A-1. Steps for computing the deblurring filter. Step (a) de-
fine smooth velocity model with point scatterers denoted as circles
in (b). Generate multisource data in (c), migrate the multisource
data and get an image shown in (d). Step (e), in each subsection,
compute a local filter according to [Myy, ], * f; = [m,]; and

combine all the local filters into the deblurring filter F.

[F1=
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subsection, the reference model [m,]; only contains a point scat-
terer. Thus, [mmigref]i represents a migration Green’s function, but
truncated by the subsection and f; is a local filter, which approx-
imates the inverse of the Hessian within the subsection. After sol-
ving for f; by a least-squares method, we apply f; to the ith
subsection of the original migration image obtained from the field
data, and construct another image m,,,. Near the boundaries be-
tween subsections, linear interpolation of nearby local filters is
computed to make a smoothly varying image. This process can
be expressed as

mmf = mmig *f. (A_3)

Here, f represents a bank of stationary filters (each filter is constant
within its corresponding subsection). We can rewrite equation A-3
in matrix notation

m,, = meig~ (A-4)
Because m,, is an approximation of m, and
m = (L7L)"'my,, (A-5)

then the computed f; in each subsection can be formed as the
approximated preconditioner matrix:

F~ (LTL)".. (A-6)

We can improve the standard migration image by applying F to it, or
we can use F as a preconditioner in an iterative LSM solution to
speed up convergence.

There are limitations associated with the deblurring filter:

»  The subsection needs to be big enough to cover the main part
of migration artifacts. It also has to be large to avoid the in-
terface between neighboring sections.

*  The migration Green’s function is constant within a subsec-
tion, so that we can keep the filter constant with the subsec-
tion. To honor these two approximations, the velocity model
needs to be smooth, so that the variation in the migration
Green’s function is smooth; hence, we usually use a high-
frequency Ricker source wavelet, which makes the migration
artifacts smaller.

APPENDIX B
SIGNAL-TO-NOISE RATIO
Consider an observed trace R,, consisting of a signal trace S, and

zero-mean independent and identically distributed® noise n, of vari-

ance o 2

, as in

R, =S,+n,

When M such observed traces are drawn and stacked, we get

=
>

M= 1=

[St + n£m>}

3
N

M
=MS, + 3 0" (B-1)
m=1

where R;m) denotes the mth random realization of the signal trace S,.

(n,(m)s are still i.i.d.) The signal and the noise part of the stacked
trace R, are denoted by

S, 2MS, and (B-2)

. M

5,25, (B-3)
m=1

respectively. Note that the root mean squared (rms) amplitude of the
stacked signal S, is

(B-4)

where A; = /Y.L, §2/T is the rms amplitude of the signal trace S,
and the second equality follows from equation B-2; and A, is de-
fined as the rms amplitude of the M-fold stacked signal S,, growing
in proportion to M, according to equation B-4. The rms amplitude
of the stacked noise 7i;, oy, is defined as

= <ﬁt2>

= VMo, (B-5)

where () denotes expectation, the second equality follows because
n,s are identically distributed, the third equality follows from equa-
tion B-3, the fourth equality follows because nEm § are zero-mean

SA sequence of random variables is independent and identically distributed (i.i.d.) if each random variable has the same probability distribution as the others and

all are mutually independent.
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and independent, and the last equality follows because n,(m)s are

identically distributed with variance o>. Equation B-5 shows that
oy grows in proportion to /M.

Finally, The S/N of R, is defined as the ratio of rms amplitude of
signal over that of noise (Papoulis, 1991),

S/NéA—M

7]
_ MA,

VMo
= \/MA]/O’, (B'6)

which exhibits a v/M enhancement.
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