next up previous contents
Next: Numerical Results Up: Filtering the GDM Kernel Previous: Horizontal Reflector Model   Contents

Vertical Reflector Model

If the reflector is vertically oriented and the source and receiver are to the right of the reflector, then a dip filter can be used to separate leftgoing and rightgoing terms. Migrating a single trace associated with the vertical reflector model in Figure [*]c gives the migration image in Figure [*]d. Only the ellipse-like feature is desired, which can be isolated by replacing the upgoing reflection Green's function $ U({\bf {x}}\vert{\bf {s}})$ by the rightgoing one $ R({\bf {x}}\vert{\bf {s}})$ in equation [*] to give
$\displaystyle m_{mig}({\bf {x}})$ $\displaystyle =$ $\displaystyle \int \int_{B} d \omega dx_r~\omega^2~[\tilde d^{t}({\bf {r}}\vert...
...bf {r}})]^*~[D^{t}({\bf {x}}\vert{\bf {s}})+R^{r}({\bf {x}}\vert{\bf {s}})]^* ,$  
  $\displaystyle \approx$ $\displaystyle \int \int_{B} d \omega dx_r ~ \omega^2~[$  
    $\displaystyle ~~~~~~ \overbrace{D^{t}({\bf {x}}\vert{\bf {r}})^*
D^{t}({\bf {x...
... {r}}\vert{\bf {s}})}^{strongest~trans.~mig.} ~~~~{\bf {x}}~\in~ direct~raypath$  
    $\displaystyle +~ \overbrace{\mathcal R^3 R^{r}({\bf {x}}\vert{\bf {r}})^*
R^{r...
...}}\vert{\bf {s}})}^{weakest~refl. ~mig.} ~~~{\bf {x}}~\in~ specular~refl.~point$  
    $\displaystyle +~ \overbrace{\mathcal R^2 R^{r}({\bf {x}}\vert{\bf {r}})^*
D^{t...
... {s}})}^{weak~sou-side~trans.~mig.} ~~~{\bf {x}}~\in~ sou-side~interbed~raypath$  
    $\displaystyle +~ \overbrace{\mathcal R^2 D^{t}({\bf {x}}\vert{\bf {r}})^*
R^{r...
... {s}})}^{weak~rec-side~trans.~mig.} ~~~{\bf {x}}~\in~ rec-side~interbed~raypath$  
    $\displaystyle +~ \overbrace{\mathcal RD^{t}({\bf {x}}\vert{\bf {r}})^* D^{t}({\...
...\bf {s}})}^{strong~refl.~mig.}~]
~~~{\bf {x}}~\in~ specular~refl.~pt.+ellipse.$ (8)

Dip filtering can be used to separate the leftgoing and rightgoing waves in the migration kernel, and the image of the desired Kirchhoff kernel is shown in Figure [*]a. The dot-product of this kernel with the data can be used to get the desirable image of the vertical reflector. Figures [*]b-d respectively correspond to the 1st, 3rd, and 4th terms in equation [*], which are the undesirable parts for migration.

Figure: Wavepaths in Figure [*]d separated by dip filtering the migration kernel $ G({\bf{x}}\vert{\bf{r}})G({\bf{x}}\vert{\bf{s}})$ associated with the vertical reflector model in Figure [*]c.


next up previous contents
Next: Numerical Results Up: Filtering the GDM Kernel Previous: Horizontal Reflector Model   Contents
Ge Zhan 2013-07-08