For weak scattering, the scattered data
in the frequency domain can be
migrated (McMechan, 1983; Stolt and Benson, 1986; Claerbout, 1992) using the Born
formula
The double dot symbol represents the trace
differentiated twice in time,
and
represents convolution of the time reversed Green's function
traces
with the recorded trace.
This operation backpropagates the trace energy at
to the subsurface at
.
In contrast, the Green's function
forward propagates the energy at the source point
to the subsurface point
, and the
migration image at
is formed by taking the zero-lag
temporal correlation of
with the backpropagated trace at
.
Traditional reverse-time migration
simulates backpropagation by a
finite-difference solution
to the acoustic wave equation, where
the point sources are at the traces
located on the surface and
the traces act as the
time histories for backpropagating seismic wavefields at the receiver locations
(McMechan, 1983).
A different implementation of reverse-time
migration can be obtained by left shifting the square brackets in
equation to get
|
Equation
says that the migration image at
is computed
by taking the dot-product of the shot gather
with the migration kernel
in Figure
a.
This is similar to the interpretation of Kirchhoff migration (KM), except only primary events are accounted
for in standard KM, while GDM takes
into account both primaries and multiples (Figure
).