next up previous contents
Next: 1    Rapid Expansion Method Up: Thesis Previous: Bibliography   Contents


0    3D TTI Decoupled Equations

Rewriting equations 3.6 using the relation $ \hat{k}^2_r + \hat{k}^2_z = k^2_r + k^2_z$ yields

$\displaystyle \left\{ \begin{array}{ll} \omega^2=V^2_{p_0} \bigg[ (k^2_r + k^2_...
...at{k}^4_z}{k^2_r+k^2_z} \bigg] \;\;\;\;\;\mbox{(SV wave)} \end{array} \right. .$ (01)

Plugging equations 3.8 into equations A.1, we get the approximated P wave and SV wave dispersion relations for TTI media in 3D case
$\displaystyle \left\{
\begin{array}{ll}
\omega^2 = V^2_{p_0}\bigg (
A_{\script...
...style 13}k_xk_z+B_{\scriptscriptstyle 23}k_yk_z - H
\bigg )
\end{array}\right.,$     (02)

where the differential operator $ H$ is defined as
$\displaystyle H$   $\displaystyle =
A_{\scriptscriptstyle 1111}\displaystyle\frac{ k^4_x }{k^2_r+k^...
...k^2_z} +
A_{\scriptscriptstyle 1113}\displaystyle\frac{ k^3_xk_z }{k^2_r+k^2_z}$  
    $\displaystyle +
A_{\scriptscriptstyle 1222}\displaystyle\frac{ k_xk^3_y }{k^2_r...
...2_z} +
A_{\scriptscriptstyle 1122}\displaystyle\frac{ k^2_xk^2_y }{k^2_r+k^2_z}$  
    $\displaystyle +
A_{\scriptscriptstyle 1133}\displaystyle\frac{ k^2_xk^2_z }{k^2...
...z} +
A_{\scriptscriptstyle 1233}\displaystyle\frac{ k_xk_yk^2_z }{k^2_r+k^2_z}.$  

Here $ A$ and $ B$ are coefficients related to Thomsen's anisotropy parameters ($ \epsilon $ and $ \delta $ ), dip and azimuth ($ \theta $ and $ \phi$ ), and the ratio of SV wave and P wave velocities ($ V^2_{s_0}$ /$ V^2_{p_0}$ )
$\displaystyle A_{\scriptscriptstyle 11}$ $\displaystyle =$ $\displaystyle (1+2\epsilon)-2(2\epsilon-\delta)\sin^2\theta\cos^2\phi,$  
$\displaystyle A_{\scriptscriptstyle 22}$ $\displaystyle =$ $\displaystyle (1+2\epsilon)-2(2\epsilon-\delta)\sin^2\theta\sin^2\phi,$  
$\displaystyle A_{\scriptscriptstyle 33}$ $\displaystyle =$ $\displaystyle (1+2\epsilon)-2(2\epsilon-\delta)\cos^2\theta,$  
$\displaystyle A_{\scriptscriptstyle 12}$ $\displaystyle =$ $\displaystyle -2(2\epsilon-\delta)\sin^2\theta\sin2\phi,$  
$\displaystyle A_{\scriptscriptstyle 13}$ $\displaystyle =$ $\displaystyle 2(2\epsilon-\delta)\sin2\theta\cos\phi,$  
$\displaystyle A_{\scriptscriptstyle 23}$ $\displaystyle =$ $\displaystyle 2(2\epsilon-\delta)\sin2\theta\sin\phi,$  
$\displaystyle B_{\scriptscriptstyle 11}$ $\displaystyle =$ $\displaystyle \frac{V^2_{s_0}}{V^2_{p_0}} + 2(\epsilon-\delta)\sin^2\theta\cos^2\phi,$  
$\displaystyle B_{\scriptscriptstyle 22}$ $\displaystyle =$ $\displaystyle \frac{V^2_{s_0}}{V^2_{p_0}} + 2(\epsilon-\delta)\sin^2\theta\sin^2\phi,$  
$\displaystyle B_{\scriptscriptstyle 33}$ $\displaystyle =$ $\displaystyle \frac{V^2_{s_0}}{V^2_{p_0}} + 2(\epsilon-\delta)\cos^2\theta,$  
$\displaystyle B_{\scriptscriptstyle 12}$ $\displaystyle =$ $\displaystyle 2(\epsilon-\delta)\sin^2\theta\sin2\phi,$  
$\displaystyle B_{\scriptscriptstyle 13}$ $\displaystyle =$ $\displaystyle -2(\epsilon-\delta)\sin2\theta\cos\phi,$  
$\displaystyle B_{\scriptscriptstyle 23}$ $\displaystyle =$ $\displaystyle -2(\epsilon-\delta)\sin2\theta\sin\phi,$  
$\displaystyle A_{\scriptscriptstyle 1111}$ $\displaystyle =$ $\displaystyle 2(\epsilon-\delta)\sin^4\theta\cos^4\phi,$  
$\displaystyle A_{\scriptscriptstyle 2222}$ $\displaystyle =$ $\displaystyle 2(\epsilon-\delta)\sin^4\theta\sin^4\phi,$  
$\displaystyle A_{\scriptscriptstyle 3333}$ $\displaystyle =$ $\displaystyle 2(\epsilon-\delta)\cos^4\theta ,$  
$\displaystyle A_{\scriptscriptstyle 1112}$ $\displaystyle =$ $\displaystyle 4(\epsilon-\delta)\sin^4\theta\sin2\phi\cos^2\phi,$  
$\displaystyle A_{\scriptscriptstyle 1113}$ $\displaystyle =$ $\displaystyle -4(\epsilon-\delta)\sin2\theta\sin^2\theta\cos^3\phi,$  
$\displaystyle A_{\scriptscriptstyle 1222}$ $\displaystyle =$ $\displaystyle 4(\epsilon-\delta)\sin^4\theta\sin2\phi\sin^2\phi,$  
$\displaystyle A_{\scriptscriptstyle 2223}$ $\displaystyle =$ $\displaystyle -4(\epsilon-\delta)\sin2\theta\sin^2\theta\sin^3\phi,$  
$\displaystyle A_{\scriptscriptstyle 1333}$ $\displaystyle =$ $\displaystyle -4(\epsilon-\delta)\sin2\theta\cos^2\theta\cos\phi,$  


$\displaystyle A_{\scriptscriptstyle 2333}$ $\displaystyle =$ $\displaystyle -4(\epsilon-\delta)\sin2\theta\cos^2\theta\sin\phi,$  
$\displaystyle A_{\scriptscriptstyle 1122}$ $\displaystyle =$ $\displaystyle 3(\epsilon-\delta)\sin^4\theta\sin^22\phi,$  
$\displaystyle A_{\scriptscriptstyle 1133}$ $\displaystyle =$ $\displaystyle 3(\epsilon-\delta)\sin^22\theta\cos^2\phi,$  
$\displaystyle A_{\scriptscriptstyle 2233}$ $\displaystyle =$ $\displaystyle 3(\epsilon-\delta)\sin^22\theta\sin^2\phi,$  
$\displaystyle A_{\scriptscriptstyle 1123}$ $\displaystyle =$ $\displaystyle -6(\epsilon-\delta)\sin2\theta\sin^2\theta\sin2\phi\cos\phi,$  
$\displaystyle A_{\scriptscriptstyle 1223}$ $\displaystyle =$ $\displaystyle -6(\epsilon-\delta)\sin2\theta\sin^2\theta\sin2\phi\sin\phi,$  
$\displaystyle A_{\scriptscriptstyle 1233}$ $\displaystyle =$ (03)

The corresponding decoupled P wave and SV wave equations in the time-wavenumber domain for 3D TTI media are

$\displaystyle \left\{
\begin{array}{ll}
\displaystyle\frac{1}{V^2_{p_0}} \disp...
...iptstyle 23}k_yk_z - H
\bigg ) P_{\scriptscriptstyle SV}
\end{array} \right. .$      

Figure A.1 shows a snapshot of an impulse response at time $ t=0.4~s$ in a 3D homogeneous TTI medium with $ V_{p_0}=3000~m/s$ , $ \epsilon =0.24$ , $ \delta =0.1$ , $ \theta =45^\circ $ and $ \phi=15^\circ$ using the above TTI decoupled P wave equation.

For the case of HTI, $ \theta $ is 90 degrees and $ \cos\theta$ becomes zero. In this case, equation A.3 is simplified with coefficients $ A_{\scriptscriptstyle 3333},A_{\scriptscriptstyle 1333}$ and $ A_{\scriptscriptstyle 2333}$ all becoming zero.

For the case of tilted elliptical isotropy, $ \epsilon = \delta$ and many coefficients in equations A.2 and A.3 go to zero, for examples, all $ A_{\scriptscriptstyle ijkl}$ and $ B_{\scriptscriptstyle 12},
B_{\scriptscriptstyle 13}$ and $ B_{\scriptscriptstyle 23}$ .

Figure: Wavefield snapshots at time $ t=0.4~s$ in a 3D homogeneous TTI medium with $ V_{p_0}=3000~m/s$ , $ \epsilon =0.24$ , $ \delta =0.1$ , $ \theta =45^\circ $ and $ \phi=15^\circ$ . A point source is located in the center at $ X=Y=Z=1.5~km$ . (a), (b) and (c) are 2D $ Y$ -$ X$ , $ Z$ -$ X$ and $ Z$ -$ Y$ slices across the source location, respectively.
\includegraphics[width=1\textwidth]{chap3img/snap3D}


next up previous contents
Next: 1    Rapid Expansion Method Up: Thesis Previous: Bibliography   Contents
Ge Zhan 2013-07-09