next up previous contents
Next: Numerical Scheme: Quasi-linear Inversion Up: Theory Previous: Theory   Contents

Modeling

Given a background slowness model $ \textbf{s}_{o}$ , the Green's function for the Helmholtz equation is the solution of

$\displaystyle [\bigtriangledown^{2}+\omega^{2} \textbf{s}_{o}(\textbf{x})^{2}] G_{o}(\textbf{x}\vert\textbf{x}_{s})= -\delta(\textbf{x}-\textbf{x}_{s}),$ (21)

where $ G_{o}(\textbf{x}\vert\textbf{x}_{s})$ is the Green's function associated with the background slowness $ \textbf{s}_{o}$ and an impulsive point source at $ \textbf{x}_{s}$ , $ \textbf{x}$ is the listening location, and $ \omega$ is the angular frequency. For a point source at $ \textbf{x}_{s}$ with spectrum $ W(\omega)$ (corresponding to the source term $ F(\textbf{x},\omega)=-\delta(\textbf{x}-\textbf{x}_{s})W(\omega)$ ), the solution is $ \textbf{P}_{o}(\textbf{x}\vert\textbf{x}_{s})=W(\omega)G_{o}(\textbf{x}\vert\textbf{x}_{s})$ .

If the background slowness perturbation is represented by the amount of $ \delta \textbf{s}(\textbf{x})$ , the true slowness model is described by $ \textbf{s}(\textbf{x})=\textbf{s}_{o}+\delta \textbf{s}(\textbf{x})$ . The full wavefield is obtained by solving the Helmholtz equation with slowness model $ \textbf{s}(\textbf{x})$ ,

$\displaystyle [\bigtriangledown^{2}+\omega^{2} \textbf{s}(\textbf{x})^{2}]\textbf{P}=F,$ (22)

with the same source term $ F=-\delta(\textbf{x}-\textbf{x}_{s})W(\omega)$ as before. Our goal is to calculate the scattered wavefield $ \textbf{P}_{1}=\textbf{P}-\textbf{P}_{o}$ induced by the slowness perturbation $ \delta \textbf{s}(\textbf{x})$ with a linear modeling operator. Plugging $ \textbf{s}(\textbf{x})=\textbf{s}_{o}+\delta \textbf{s}(\textbf{x})$ into equation (2.2), I get

$\displaystyle [\bigtriangledown^{2}+\omega^{2} \textbf{s}_{o}(\textbf{x})^{2}+2\omega^{2} \textbf{s}_{o}(\textbf{x})\delta \textbf{s}(\textbf{x})] \textbf{P}= F,$ (23)

where the high order term $ O(\delta \textbf{s}^{2})$ is neglected. According to Green's theorem, moving the 3rd term in equation (2.3) to the right side, multiplying both sides with the Green's function $ G_{o}(\textbf{x}\vert\textbf{x}')$ and integrating over the whole volume with index $ \textbf{x}'$ , gives the Lippmann-Schwinger equation,
$\displaystyle \textbf{P}(\textbf{x})$ $\displaystyle =$ $\displaystyle \int G_{o}(\textbf{x}\vert\textbf{x}')F(\textbf{x}')d\textbf{x}' ...
...P}(\textbf{x}'\vert\textbf{x}_{s})G_{o}(\textbf{x}\vert\textbf{x}')d\textbf{x}'$  
  $\displaystyle =$ $\displaystyle \textbf{P}_{o}(\textbf{x})+\omega^{2} \int \textbf{m}(\textbf{x}'...
...}(\textbf{x}'\vert\textbf{x}_{s})G_{o}(\textbf{x}\vert\textbf{x}')d\textbf{x}',$ (24)

which is an integral equation with unknown $ \textbf{P}(\textbf{x})$ on both sides and $ \textbf{m}(\textbf{x}')=-2\textbf{s}(\textbf{x}')\delta \textbf{s}(\textbf{x}')$ representing the reflectivity model. Here, $ \textbf{P}_{o}(\textbf{x})=\int \textbf{G}_{o}(\textbf{x}\vert\textbf{x}')F(\textbf{x}')d\textbf{x}'$ is the pressure field associated with the background velocity model. Defining $ \textbf{P}(\textbf{x}'\vert\textbf{x}_{s})=W(\omega) G(\textbf{x}'\vert\textbf{x}_{s})$ and applying the Born approximation $ G(\textbf{x}'\vert\textbf{x}_{s}) \approx G_{o}(\textbf{x}'\vert\textbf{x}_{s})$ to the right side and assuming that $ \delta \textbf{s}(\textbf{x})$ is small gives the scattered field under Born approximation
$\displaystyle \textbf{P}_{1}$ $\displaystyle =$ $\displaystyle \textbf{P}(\textbf{x})-\textbf{P}_{o}(\textbf{x})$ (25)
  $\displaystyle \approx$ $\displaystyle \omega^{2} \int W(\omega) \textbf{m}(\textbf{x}') G_{o}(\textbf{x}'\vert\textbf{x}_{s}) G_{o}(\textbf{x}\vert\textbf{x}')d\textbf{x}',$ (26)

where formula (2.5) represents a non-linear equation for calculation of the scattered wavefield and equation (2.6) is a linear equation (Mulder and Plessix, 2004a). With $ \textbf{P}_{o}(\textbf{x}')=W(\omega)G_{o}(\textbf{x}'\vert\textbf{x}_{s})$ , the linear modeling requires the solutions of

$\displaystyle [\bigtriangledown^{2}+\omega^{2}\textbf{s}_{o}(\textbf{x})^{2}]\textbf{P}_{o}=F,$    

$\displaystyle [\bigtriangledown^{2}+\omega^{2}\textbf{s}_{o}(\textbf{x})^{2}]\textbf{P}_{1}= \omega^2 \textbf{m}(\textbf{x}')\textbf{P}_{o}(\textbf{x}').$ (27)

These fields can be computed by two finite-difference simulations: one with the original point source $ F$ and background slowness model $ \textbf{s}_{o}$ to generate $ \textbf{P}_{o}$ ; The second finite-difference simulation also uses the background slowness model $ \textbf{s}_{o}$ , but the source term is $ \omega^{2}\textbf{m}(\textbf{x}')\textbf{P}_{o}(\textbf{x}')$ , where $ \omega^{2}$ becomes the 2nd-order time derivative in the time domain. The adjoint of the linear operator is the reverse time migration (RTM) operator, so the RTM equation is

$\displaystyle \textbf{m}_{mig}(\textbf{x})=\sum_{\textbf{x}_{s}} \int \omega^{2...
...extbf{x}\vert\textbf{x}_{s}) G^{*}_{o}(\textbf{x}\vert\textbf{x}')d\textbf{x}'.$ (28)

In the following section, matrix-vector notation will be used to represent the operators, such that the non-linear modeling operator is defined as $ \textbf{A}: \textbf{d}=\textbf{A}(\textbf{m})=\textbf{P}-\textbf{P}_{o}$ , the linear modeling operator is $ \textbf{L}: \textbf{d}=\textbf{Lm}$ , and the reverse time migration operator is $ \textbf{L}^{T}: \textbf{m}=\textbf{L}^{T}\textbf{d}$ . The modeling operator $ \textbf{L}$ is called the Fréchet derivative of $ \textbf{A}$ and $ \textbf{L}^{T}$ is the adjoint of $ \textbf{L}$ .


next up previous contents
Next: Numerical Scheme: Quasi-linear Inversion Up: Theory Previous: Theory   Contents
Wei Dai 2013-07-10