next up previous contents
Next: Multisource Least-squares Migration (MLSM) Up: Theory Previous: Theory   Contents

Multisource Migration

From equation [*], the supergather migration operator is defined as the adjoint of the supergather modeling operator,

$\displaystyle \textbf{L}^{T}=\sum_{i=1}^{S}\textbf{L}_{i}^{T}\textbf{P}_{i}^{T},$ (5)

so that the supergather migration image is
$\displaystyle \textbf{m}_{mig}$ $\displaystyle =$ $\displaystyle \textbf{L}^{T}\textbf{d}=\textbf{L}^{T}\sum_{i=1}^{S}\textbf{P}_{i}\textbf{L}_{i}\textbf{m}$  
  $\displaystyle =$ $\displaystyle \sum_{j=1}^{S}\textbf{L}_{j}^{T}\textbf{P}_{j}^{T}\sum_{i=1}^{S}\textbf{P}_{i}\textbf{L}_{i}\textbf{m}$  
  $\displaystyle =$ $\displaystyle \sum_{i=1}^{S}\sum_{j=1}^{S}\textbf{L}_{j}^{T}\textbf{P}_{j}^{T}\textbf{P}_{i}\textbf{L}_{i}\textbf{m}$  
  $\displaystyle =$ $\displaystyle \overbrace{\sum_{i=1}^{S}\textbf{L}_{i}^{T}\textbf{L}_{i}\textbf{...
...}_{j}^{T}\textbf{P}_{j}^{T}\textbf{P}_{i}\textbf{L}_{i}\textbf{m}}^{crosstalk},$ (6)

consisting of two terms: the first term is the standard migration image and the second term is the crosstalk noise introduced by multisource blending of shot gathers. The magnitude of the crosstalk term for a variety of different phase encoding functions is derived in Schuster et al. (2011).



Wei Dai 2013-07-10