Determinant of Jacobian Matrix

The transformation between the data coordinates $ (x_g,0)$ , $ (x_s,0)$ and $ (k_x,k_z)=(k_{sx_o}+k_{gx_o},k_{sz_o}+k_{gz_o})$ is given by

$\displaystyle \left( \begin{array}{c} dk_x \\ dk_z \end{array} \right) = \left[...
...} \end{array} \right] \left( \begin{array}{c} dx_g \\ dx_s \end{array} \right),$ (12.1)

where the 2x2 matrix is the Jacobian matrix. The scaled determinant $ J$ of the Jacobian matrix is given by

$\displaystyle J$ $\displaystyle =\omega^4 \left\vert\frac{\partial k_x}{dx_g} \frac{\partial k_z}...
...x_s} - \frac{\partial k_x}{dx_s} \frac{ \partial k_z}{\partial x_g}\right\vert,$ (12.2)

so that $ dk_x dk_z = J dx_g dx_s$ . In the case of a homogeneous medium with velocity $ c$ and a scatterer at $ {\bf {r}}_o=(x_o,z_o)$ , the model wavenumbers are

$\displaystyle k_x=$ $\displaystyle \frac{\omega(x_o-x_g)}{c\sqrt{(x_o-x_g)^2+z_o^2}} +\frac{\omega (x_o-x_s)}{c\sqrt{(x_o-x_s)^2+z_o^2}},$    
$\displaystyle k_z=$ $\displaystyle \frac{\omega z_o}{c\sqrt{(x_o-x_g)^2+z_o^2}} +\frac{\omega z_o}{c\sqrt{(x_o-x_s)^2+z_o^2}},$ (12.3)

so that the partial derivatives of the wavenumbers can be easily determined. For a heterogeneous medium, the derivatives can be approximated by finite-difference approximations to the first-order derivatives and the wavenumbers can be computed by a ray tracing method. Under the farfield approximation $ z\gg L$ , where $ L$ is the aperture width of the source-geophone array, so equation G.3 becomes

$\displaystyle k_x\approx$ $\displaystyle \,\frac{\omega(x_o-x_g)}{cz_o} +\frac{\omega (x_o-x_s)}{cz_o},$    
$\displaystyle k_z\approx$ $\displaystyle \,\frac{2\omega }{c},$ (12.4)

where the horizontal wavenumbers are now linear functions of the data variables $ x_g$ and $ x_s$ . This means that equation F.7 represents the inverse Fourier transform of the model spectrum.
Yunsong Huang 2013-09-22