next up previous contents
Next: Least-squares Migration with Prestack Up: Multisource Least-squares Migration and Previous: Deblurring filter   Contents


Signal-to-noise Ratio

Consider an observed trace $ R_t$ , consisting of a signal trace $ S_t$ and zero-mean independent and identically-distributed[*] noise $ n_t$ of variance $ \sigma^2$ , as in

$\displaystyle R_t = S_t + n_t, \quad t=1,\ldots,T.$    

When $ M$ such observed traces are drawn and stacked, I get
$\displaystyle \breve{R_t}$ $\displaystyle \triangleq$ $\displaystyle \sum_{m=1}^{M} R^{(m)}_t$  
  $\displaystyle =$ $\displaystyle \sum_{m=1}^{M}[S_t + n^{(m)}_t]$  
  $\displaystyle =$ $\displaystyle M S_t + \sum_{m=1}^{M} n^{(m)}_t,$ (71)

where $ R^{(m)}_t$ denotes the $ m$ th random realization of the signal trace $ S_t$ . ($ n^{(m)}_t$ 's are still i.i.d.) The signal and the noise part of the stacked trace $ \breve{R_t}$ are denoted by
$\displaystyle \breve{S_t}$ $\displaystyle \triangleq$ $\displaystyle M S_t \quad \textrm{and}$ (72)
$\displaystyle \breve{n_t}$ $\displaystyle \triangleq$ $\displaystyle \sum_{m=1}^{M} n^{(m)}_t$ (73)

respectively. Note that the root mean squared (rms) amplitude of the stacked signal $ \breve{S_t}$ is
$\displaystyle A_M$ $\displaystyle \triangleq$ $\displaystyle \sqrt{\sum_{t=1}^{T}\breve{S_t}^2 /T}$  
  $\displaystyle =$ $\displaystyle M \sqrt{\sum_{t=1}^{T} {S_t}^2 /T}$  
  $\displaystyle =$ $\displaystyle M A_1,$ (74)

where $ A_{1}=\sqrt{\sum_{t=1}^{T}S_{t}^{2}/T}$ is the rms amplitude of the signal trace $ S_{t}$ and the second equality follows from equation B.2; and $ A_M$ is defined as the rms amplitude of the $ M$ -fold stacked signal $ \breve{S_t}$ , growing in proportion to $ M$ , according to equation B.4. The rms amplitude of the stacked noise $ \breve{n_t}$ , $ \sigma_M$ , is defined as
$\displaystyle \sigma_M$ $\displaystyle \triangleq$ $\displaystyle \sqrt{\sum_{t=1}^{T}<\breve{n_t}^2> /T}$  
  $\displaystyle =$ $\displaystyle \sqrt{<\breve{n_t}^2> }$  
  $\displaystyle =$ $\displaystyle \sqrt{ <[\sum_{m=1}^{M} n^{(m)}_t]^2> }$  
  $\displaystyle =$ $\displaystyle \sqrt{ <\sum_{m=1}^{M} {n^{(m)}_t}^2> }$  
  $\displaystyle =$ $\displaystyle \sqrt{M} \sigma,$ (75)

where $ < >$ denotes expectation, the second equality follows because $ n_t$ 's are identically-distributed, the third equality follows from equation B.3, the fourth equality follows because $ n^{(m)}_t$ 's are zero-mean and independent, and the last equality follows because $ n^{(m)}_t$ 's are identically-distributed with variance $ \sigma^2$ . Equation B.5 shows that $ \sigma_M$ grows in proportion to $ \sqrt{M}$ .

Finally, The SNR of $ \breve{R_t}$ is defined as the ratio of rms amplitude of signal over that of noise (Papoulis, 1991),

$\displaystyle \textrm{SNR}$ $\displaystyle \triangleq$ $\displaystyle \frac{ A_M } { \sigma_M }$  
  $\displaystyle =$ $\displaystyle \frac{ M A_1 } { \sqrt{M} \sigma }$  
  $\displaystyle =$ $\displaystyle \sqrt{M} A_1 / \sigma,$ (76)

which exhibits a $ \sqrt{M}$ enhancement.
next up previous contents
Next: Least-squares Migration with Prestack Up: Multisource Least-squares Migration and Previous: Deblurring filter   Contents
Wei Dai 2013-07-10