Resolution Properties of an Ellipse

I first analyze the resolution of the ellipse depicted in Figure 4.1b, and then relate the parameters of this ellipse to those defining a wavepath.

The spatial resolution limit near the point $ c$ in Figure 4.1b is related to the reciprocal of the segment length $ \overline{DE}$ . This length can be determined by noting that the end points $ D$ and $ E$ satisfy both the equations of the ellipse and the line, written as

$\displaystyle \frac{x^2}{a^2} + \frac{y^2}{b^2} =$ $\displaystyle 1,$ (10.1)
$\displaystyle y=$ $\displaystyle \tan\theta\,(x-c),$ (10.2)

where $ a$ and $ b$ are the major and minor radii of the ellipse, respectively, and $ \theta$ is the angle $ DE$ makes with the axis of the ellipse. Equations E.1 and E.2 can be reduced to a quadratic equation of one variable $ y$ , yielding two roots $ y_D$ and $ y_E$ . The distance $ \overline{DE}$ is then obtained as

$\displaystyle \overline{DE}$ $\displaystyle = \frac{\vert y_D - y_E\vert}{\vert\sin\theta\vert},$    
  $\displaystyle = \frac{2ab\sqrt{b^2\cos^2\theta + (a^2-c^2)\sin^2\theta }} {b^2\cos^2\theta + a^2\sin^2\theta}.$ (10.3)

Two special cases of $ c$ and $ \theta$ are immediately verified. We have $ \overline{DE}=2a$ when $ \theta=0$ , and $ \overline{DE}=2b$ when $ c=0$ and $ \theta=\pi/2$ , i.e., the lengths of the major and the minor axes of the ellipse, respectively.

Next, the parameters $ a$ and $ b$ of the ellipse are related to those defining the first Fresnel zone, as depicted in Figure 4.1a. Let $ s$ and $ g$ be the two foci of the ellipse, the distance between $ s$ and $ g$ be $ L$ , and $ E$ be an arbitrary point on the ellipse. The first Fresnel zone is delimited by points $ E$ on the ellipse that satisfy

$\displaystyle \overline{s E} + \overline{E g}$ $\displaystyle = L + \frac{\lambda}{2}.$ (10.4)
$\displaystyle \noalign{Also, ~~~} \overline{s E} + \overline{E g}$ $\displaystyle = 2a$ (10.5)

is a property of the ellipse. Anther property of the ellipse relates the focal distance to the major and minor radii by

$\displaystyle L = 2 \sqrt{a^2 - b^2}.$ (10.6)

Equations E.4--E.6 give us

$\displaystyle a$ $\displaystyle = \frac{L}{2} + \frac{\lambda}{4},$ (10.7)
$\displaystyle \mathrm{and~~~} b$ $\displaystyle = \sqrt{\frac{\lambda L}{4} + \frac{\lambda^2}{16}}.$ (10.8)

In the limit of $ L \gg \lambda$ , $ b \rightarrow\frac{1}{2}\sqrt{\lambda L}$ .

From equations E.7E.8, and E.3, we see that the resolution can be written as $ \overline{DE}(L,\lambda,c,\theta)$ , a function of wavepath parameters $ L, \lambda$ , and intersection parameters $ c$ and $ \theta$ .

Yunsong Huang 2013-09-22